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ABSTRACT

In this paper we generalize two results of Lasalle’s, the invariance theorem
and asymptotic stability theorem of discrete and continuous semidynamical
systems, to impulsive semidynamical systems.
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1. Introduction

Let (X, , R) be a dynamical system, where X (X, d) is a metric space with metric d, and

r’X xR-X

is a continuous function satisfying"
(i) (x,0)- x for all x E X and 0 E R, and
(ii) r((x, t),x) r(x, s + t) for all x X and t, s G R.

Then the function

rt"XX

defined, for any fixed t R, by 7rt(x r(x, t), x c=_ X, is a homeomorphism of X onto itself.

The function

x:RX
defined for any fixed x E X, by 7rx(t 7r(x, t), x R, is continuous and is called the trajectory of
X.

Let f C X be an open set in X, and denote the boundary of f in X by M. Assume that
M - . Let I" M--a be a continuous function and I(M)- N. We shall denote I(x) by x + and

say that x jumps to x +.
Given x we now define an "impulsive trajectory, x, for x, over a subset of the

nonnegative reals R + and also, simultaneously, a function (I)" fR + U {oc}- R*, where R* is

the space of extended positive reals.
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If 7r(x,t)M for any tER +
Otherwise, let

we set x(t)-(x,t) for all t E R + and

where t R + is the smallest number for which X 7r(x, tl) E M, and set

(x,t), O_t <t1x(t)- x?, t--t1.

Since t1 < o, we continue the process, now starting with Xl+
Thus if r(xl+ t) M for any t e R +, we set,

repeating the above two steps.

x(t) (x?, t-- tl) for t

_
tI

and

otherwise

r(xl+, t--tl) 1

_
t < t2,

+x2 t- t2,

for some t2, x2 (Xl+,t2) e M and (Xl+,t) M for any t,t1 _< < t2.
Continuing inductively, it is clear that an impulsive trajectory x has either no jumps, only a

k
finite number of jumps at points Xl,...,Xn, the jump at xk occurring at t-_, t and for

i=1

t2 ti, x(t)- 7r(x,t), or lastly, it has an infinite number of jumps at {xn}= and x is
i=1

defined over the interval [0, T(x)), where T(x)- i. Note that in the other two cases above
i=1

T(x)- oc. We now define (x, t)- x(t) for any tin [0, T(x)). We shall often use the fact that
for any tR, such that 0<_t<T(x), there exists a k-0,1,2,..., such that, t-

k

E (I)(x/+) + t’, where x0+
i=0

x, and consequently (x, t) (x+ t’), 0 <_ t’ < (I)(x+ ).

Furthermore, the following two properties are easy to check:
(i) (x,O) x for any x and
(ii) ( (x, t), x) (x, + s), for x( and and s[O,T(x)), such that

t+se[O,T(x)).
Thus from here on we assume that ,M,I and N are as considered above in a dynamical

system (X,), and call (,), with as defined above, an impulsive semidynamical system
associated with (X, r)(see [6]).

Let 0 {x G f:(I)(x) < oc}. Then there exists a function g:Fto--,N defined by
g(x) (r, (I)(x)) for any x G f0"

Assumption I: We assume throughout the paper that (I) is a continuous function on f.

It follows then that for any x efto, g(x)= I(r(x, (I)(x)))is a continuous function on ft0.
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Let -{x e N’O(xn+)< cx for n-0,1,2,...}. Then g maps into . Consequently,
(N,g) defines a discrete semidynamical system [5] associated with the impulsive semidynamical
system (f,).

In this paper, as in [3] and [4], we continue to study dynamical notions defined in (,) by
relating them to similar notions in (N,g). In particular, we study stability and
asymptoticstability in (f,) by relating them to the corresponding notions in (N,g). The main
results obtained are (1) characterization of stability (Theorems 3.6 and 3.11) similar to Theorem
1.12 [1, p. 61], and (2) asymptotic stability (Theorems 5.4 and 5.6) in terms of Lyapunov
functions which generalizes a similar theorem of Lasalle [6, Theorem 7.9, p. 9] and also Theorem
2.2 [1, p. 66].

The following notations are used throughout. For any A C f2 and
d(x,A) < }, where d(x, A) -inf{d(x, y): y a}, cl denotes the closure operator in f; a a f N,
and for any xea, Co(x)-{r(x,t)- (x,t):0_<t<O(x)}.

2. Limit Sets, Prolongation Limit Sets and Prolongation Sets

Definition 2.1:
Let xEQ.

We extend the known definitions of these sets in a natural way to (f,).

(2.1.1) The limit set of x in (f, is defined by

L (x) {y e a" (x, tn)-y for some tnT(x and tn < T(x)}.

(2.1.2) The prolongation limit set of x in (,) is defined by

J (x) {y e a: (xn, tn)y for xnx and tn---*T(x), tn <

(2.1.3) The prolongation set of x in (a,) is defined by

D(x) {y
_
a:’ (xn, tn)-y for xn-,x and tn z

The definition of these sets in a discrete semidynamical sys..tem are well known. In (N, g) we

shall denote them by L(x), J(x) and D(x) respectively for x E N.

Furthermore, we denote the orbit of a point x Eft in (,) by C(x)- {(x^,t)"
t e [0, Tx))} and its closure in by K(x). These sets in (N,g) are denoted by C(x) and g(x)
for x N.

Generally one uses a + sign with the above symbols for these sets for flows in positive
direction, but as we are dealing with flow only in positive direction we have dispensed with it for
convenience.

Definition 2.2: A subset A of is said to be positively invariant if for any x A, C (x) C A,
and it is said to be invariant if, it is positively invariant and, furthermore, given x A and

E [0, T(x)) there exists a y A such that (y, t) x.

A subset A of N is said to be positively invariant if g(A)C A and is said to be invariant if
A- g(A).

It is clear that is not a continuous function. However, the following lemma holds.
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Lemma 2.3: Suppose (xn} is a sequence in , convergent to a point y E . Then for any
E [0, T(y)), there exists a sequence of real numbers, (n}, n----0’ such that, tA-en < T(xn) and

Proof: First suppose that (I,(y)<
that (xn) <

Then clearly, we may assume, since is continuous,

Case 1: If 0 < t < (I)(y), let e < O(y)-t. Then from the continuity of we may conclude
that (I)(y)- < O(xn) for all n, so that < O(xn) and (xn, t)- r(xn, t), and the continuity of r
implies the result for n- 0.

Case 2: If t (I)(y), then (y, t) yl+ If O(xn) > (y), (xn, O(xn) ’ (Xn, t + n)
X:l--*yl+ because Xn, 1 --7r(Xn, O(Xn)---yl, and I is continuous

m-1
Case 3: Now suppose t>q(y), so that t- (y/+)+t’, O_<t’< q(9), where Y/++I=

i=1

(y/+,(I)(y/+)), i-O,...,m-1. Define {xn+,i}, inductively by

m-1
Clearly, if tn (Xn, i) then (xn, t)---y +m Now set n tn + t’ t. Then

i=1

t + t’) t)

completes the proof

Now suppose (I)(x) cx. Then continuity of (I, implies that for any t [0, cx3) there exists an
no such that for n > no, P(xn) > t. Consequently, for n > no, (xn, t) 7r(xn, t) and the result
follows from the continuity of r.

Lemrna 2.4: Suppose A C f is positively invariant in (f, ), then clA is positively invariant
in

Proof: Suppose x clA and t [0, T(x)). Then there exists a sequence {xu} in A with

xnx. tIence by Lemma 2.3, (xn, t+en)-(x,t for some sequence n--0 such that
+ n [0, T(xn) ). Since A is invariant, (xn, + en) A, hence (x, t) clA. This completes

the proof.

Lemma 2.5: quppose .p G , and ft’(p) is compact, then T- qp(p: is infinite, where
p_po+ n-o

Proof: Suppose T is finite. Then (I’(pn+)40 Assuming that p +-q ,
nk

r(p4, O(p+k))zr(q,O --q. But, r(Pnk, O(pk))e M, which is a closed subset of X. Hence

q E M implying M N (I). But this is a contradiction since f is open in X and hasno point in
common with its boundary M in X.

Assumption II: From now on we assume that if x N, then T(x)- cx; so that if for some

x , (x, (I’(x)) N, then T(x) is also infinite. Note that if (x, (I)(x)) N then T(x) cx
anyway. Thus from here on T(x) will be assumed to be infinity for all x , and [0, T(x)) will
be replaced by R +.

Lemma 2.6: For any x , (x) is closed and positively invariant in (, ).
Proof: To show that it is closed is trivial. To prove that L (x) is positively invariant, let

y e .(x) Then there exists a sequence {t} in R + t--cx, such that (x, tn)- xn--y. Now,
given R +, there exists a sequence {en} as in Lemma 2.3, such that,
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Consequently,

[ (.. t.). + .] (.. t., + + .) (. t)

and since tn + t + n--+cx3, (y, t) e L (x).
Lemma2.7: For any x E , and t E R + if z (x, t) then (x) C_ (z).
Proof: Let y L (x), and (x, tn)y for tn-c. Since tn t for all n n0 for some n0, we

have (x, tn) ( (x, t), tu t)y completes the proof since tn t.

Lemma 2.8: For any x , J (x) is closed and positively invarian in (, ).
Prf: It is easy to see that J (x) is closed. To prove positive invariance, let y J (x) and

(x, t)y for xnx and tn. Given an t R +, ( (Xn, tn) t + n) (y, t) as in
Lemma 2.3. Hence, (xn, tn + + n) (y, t) g (x).

Lemma2.9: For any x G and any t G R + if (x, t) z, then (x) C (x).
Prf: Similar to the proof of Lemma 2.7.

Lemma 2.10: For any x G , K (x) C (x) L (x). Consequently K (x) is positively inva-
rianl in (, ).

Prf: Trivial.

Corollary 2.10: For any A C , K (A) {K(x):x G A} is positively invariant.

Lemma 2.11" For any x ,D(x)- K(x) J (x) is closed and positively invarianl.

Prf: Both K(x) and J (x) are positively invariant and closed as shown above. To prove
equality is straight forward. Hence the result.

Lemma 2.12: Let A C N be a compact an p2sitilinvariant set in (N, g). Then the clos-
ure of K(A) in X is compact. Furthermore, K(A)- C(A) is closed and positively invariant in

(,).
Prf: Let p . Then by positive invariance of under g, it is clear that p for all

n. Hence (p) {C0(P)’n 0,,2,...}, p p. Since is opact, cl{p:’n
0, 1,2,...} Q is compact, and lerly K(p) U {C0(q): q Q}. Hence K (A) {C0(P): p
A}. Let H be the closure of k(A) in X. Let {Yn} be a sequence in H. Then there exists a

sequence {y} in (), such that, d(Yn, y).< . Consequently, there exists a xn e ,zuch that
y Co(xn) that is, y (xn, tn) 0 n < O(xn). Assuming that xnx A, clearly
(xn, tn)(x,t)- y, where 0t O(x), since both r and are continuous. Consequently,
yny, and y H. Thus H is compact.

Note that k(A)- C (A) as shown above. Hence if for any eqence {Yn} in (), yny, then, as in the above proof, 0 < O(x) and y e Cdx)C C(A). Therefore CA) is closed.
That it is positively invariant follows form the fact that A is positively invariant in N.

Lemma 2.13: Let x and (x,(x))-p N. g C(p) has compact closure in N, then

L(x)-Co(()).
Prf: Let y (x) and (x, tk)y for tk: Assume k > O(x)for all k. Then

(, t (x)) (2 tl) 0 < t < ( +
nk

). Since C(p) has compact closure in N, we may

assume that pkq . Since tk clearly nk and q (p). By Lemma 2.12, since

z n, (q, t), 0 < (q). HenCe, Co(q)C Co(L()).
Conversely, suppose y Co((p)). Then y (q, t), 0 < (q) for some q (p). Now let
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pn+-q as nk---o where P4 gnk(p). Then (P4’t + e) r(q,t)- y by Lemma 2.3.

nk

tk E I’(P/+ + O(x), then (x, k + t + n)y, and y e (x). This completes the proof.
i--0

If

Lemma 2.14:Let f4C. be compact and fi-g(fi). Then for any t ER +,
Co(A) c(Co(A),t).

Proof: Let y Co(A). Then there exists a q A such that y Co(q). Since A is compact,
and (x) > oo for each x A,..inf(p(x): x C A) T > 0. Hence given q, there exists a sequence
ql,’",qm + 1 q, of points in A, such that, g(qi) qi + 1, i- 1,2,...,m and

m--1 m

E 4P(qi) <-t< E
i=1 --1

m-1
Set t’ t- ap(qi). Then 0 < t’ < O(qm)" Suppose y r(q,s), 0 < s < O(q).

i=1

(O(qm)- t’) + s > O. Let z 7 (ql, tl)" Then z Co(A), and
m-1 m-1

(z, t) ( (ql, tl)’ E O(qi)+ t’) (ql, tl -4- E O(qi)+ t’)
i=1 i=1

m--1

+ + +
i=1

Then tI

m

=(ql, E+(qi) +s)-(qm+l,s)-y"
i=1

This completes the proof.

Corollary 2.15: Let x e a and (x,(x))-p e . If (p) has compact closure in , the
L (x) is invariant.

Proof: By Lemma 2.1a, L (z)- C0(L(p)). But L(p)is invariant [15,rI’heorem 15.2, p. 4]. By
Lemma 2.6, L (x) is positively invariant, hence Lemma 2.14 implies that L (x) is invariant.

Lastly, we note a trivial result for future reference.

Lemma 2.16: If A C and D(A) A in (a,), then A is positively invariant in (a, ).
Proof: By definition for any x A, C (x)C K(x)C D(x)C A. Hence the result.

3. Stability

Definition 3.1: A subset A of Q is called a cylindrical set if for any x A, Co(x C A, where
Co(z)- t).o < <

Note: For any x , Co(x is a cylindrical set.

The following is trivial.

Lemma 3.2: If A C Q is a cylindrical set, then so is clA.

Lemma 3.3: Let V be an open set in , then Co(V)- t0{Co(x); x Y}-W is a

cylindrical open set in .
Proof: W is clearly a cylindrical set. Let z W. Then there is a y V such that
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z--(y,t), 0_t<(I)(y). Let 0<<(I)(y)-t. By continuity of (I) there exists an open set U
containing.y and U C V, such that, if x E U, then (I)(x)- (I)(y) < e. Hence t < (I)(y)-e < (I)(x),
and t(x) (x, t) Co(x C W. Since wt is a homeomorphism, y rt(U C W implies that W
is open.

Definition 3.4: A subset A of is said to be stable in (, if given any cylindrical open set
U containing A there exists an open set V, such that A C V C U, and for any x G V, C (x) C U.

Theorem 3.5:
x e A, (P(x) < oc.

U(A,).

Let be locally compact. Let A be a cylindrical subset of and for each
Then for any > 0 there exists an open set U D A, such that, Co(U C

Proof: Let x G A. Then, since " is continuous and is locally compact, there exists a

compact neighborhood U(x) of x and a real number 5(x)> 0, such that 5(x)is less than both
and (I)(x), and for any y E such that d(x,y)< 5(x), and any t, t’ in [0,(I)(x)+ ], satisfying
It-t’ < 5(x), we have d((x,t),(y,t’))< . And, since (I)is continuous, there exists a

such that for any y G for which d(x, y) < u(x), (I)(x)- (I)(y) < 5(x)/2 and U(x, u(x)) C U(x).
We claim that for any y, such that, d(x,y)< u(x), if z Co(y then d(z, Co(x))< . Let
z r(y, t), 0 _< t < (I)(y). Since (I)(y) < (I)(x) + 5(x)/2, 5(x)/2 t’ < (I)(x), and It’- < 5(x).
Hence, d(r(x, t’, r(y, t)) < e. This proves the claim. Hence if U U {U(x, (x))’x A}, then U is
open, contains A and Co(U C_ U(A,e).

Example 1" The following example shows that if a set A C does not satisfy the condition
that (I)(x) < oc for each x G A, then the above theorem is note true.

Consider the dynamical system (R2, ) shown in the Figure 1 below"

Figure 1
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Let X be the open set in R2 obtained by deleting the set {(x,y):xy- + k,y > 0} for some
k > 1. The two curves, .xy- 4-k define trajectories in the original dynamical system. Hence
(X,r) is a dynamical system, with metric space x. Let M- {(x,y): 0 < y < 1, x- 4- k}, and
N-{(x,y):-i <x< 1, and y-k}. Let -X-M, and define I: M---,N by

I(x,y)- (y2, k)if x k, and I(x,y)-(-y2, k)if x -k.

Notice that deleting the orbits as we did from the original dynamical system to get X, makes (I)

continuous on .
Now suppose A {(0, y):0 < y < k}. Then A is a cylindrical set. is locally compact. But

for each x E A, (I)(x)- cx. Note also that for this A the above theorem fails, because any
cylindrical open set containing A has finite diameter of 2k.

Lemma 3.6: Let A..C be positively invariant in ., and for each x A, let 4p(x) < oc.

Then p (x, (P(x)) A. Consequently, A f3 N A f3 g.

Proof: Since (I)(x)< oc, p N. Since A is positively invariant p A also. Repeating the
above argument we get pl+ N and p EA. Thus, inductively, pn+ AVIN for n-1,2,
Consequently, p N and therefore p A A ’1N.

If, furthermore, x N, then clearly x E N, and the last result follows.

Lemma 3.7: Let A Co and D(A)- A. If N has compact closure in , then there exists
an open set V containing A such that V N N- V N.

Proof: Suppose no such 2pen set exists. Then there exists a sequence {xn} in N-N,
xn---xft. Since xnN-N, there exists a tnR+, such that, (xn, tn)-qn N, and

(I)(qr- C. Since N has compact closure in , we may assume that qn---+q . However,
q D(A)- A, and, therefore, (I)(q)< c)c. But this contradicts the continuity of (I) at q, and
completes the proof.

Lemma 3.8: Suppose A C is posilivel..y invariant and for each x G A, 4p(x) < cxz. Suppose
V is an open set containing A such that V- VN-V N. Then there exists a cylindrical
open set U D A such that for any y G U, ep(y) < cx and " (y,(y)) G Y.

Proof: Let x G A. Then (I)(x)< oc imp.lies 7r(x,(P(x))- x1 M. Since A is positively
invariant, by Lemma 3.7 (x, gp(x))- Xl+ A. Now I being continuous, there exists an open
set U(Xl) in M, containing Xl, such that I(U(Xl) C V. Again, by.the continuity of r and (I),
there exists an open set U(x)in 12 containing x, such that, for any y U(x), r(y,(y)) U(Xl)
and (I)(y)< oc. Furthermore, we may assume that U(x)lies in V. Hence U-C0[t2 {U(/):
x E A}] is a cylindrical open set (Lemma 3.3), and satisfies the requirements of the lemma.

Theorem 3.9: Let f be locally compact. Let A C f be a closed cylindrical set and for each
x A, let (P(x) < oc. IrA is stable in (, ), then

1. D(A)- A, and
2. there exists an open set U in f containing A- A VI N, such that, U V1N- U VI N.

Proof: 1. Follows from the usual argument using Theorem 3.5.

2. From continuity of (I), each x A is contained in an open set Vx such that for each y

Vx, (I)(y) < oc. Set V t2 {Co(Vx):X A}. Then V is a cylindrical open set (Lemma3.3) con-

taining A. Hence, by stability~ of A there exists an open set U, A C U C V such that C(x) C V
for each x E U. Set W t2 {C(x): x U}. Then clearly W is positively invariant and since for
each xV, (I)(x)<oc, by Lemma3.6, WNN-WVIN. Hence, UV1N-UV1N. This completes
the proof.
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The converse is proved in Theorem 3.13.

Example 2: Note that in Example 1 given earlier, A is stable but D(A) =/: A.

Lemma 3.10: Suppose A C N is compact ..and stable in (N,g) and admits a compact
neighborhood V in such that V n N- V f3 N- V. Then there exists an open set W containing
A Co(A such that for any x G W, O(x) < and J (x) C Co(J(p)) where p (x, O(x)).

Prf: By stability of A there exists an open set U in N, such that A C U C V, and for any
p ,p for all n- 0,1,2, By Lemma 2.12, A is closed and positively invariant in
(, ). Consequently, by Lemma g.8 there existsa cylindrical open set W containing such that
for any zeW,(z)< and p-(,())eU. To prove the result, pick a eJ(). Then
(,) for some and, where ’s my be assumed to lie in W. By lemma 2.,
p (, + e)p and are so chosen that p U, where (). Assuming that --0, we have (z,)-(p,--e)-(pn,)9, where 0<O(pn),

+ Then clearly- 1,2, Since Pk U, Pk, nk
; V being compact we may assume pnk

qe(p). By continuity of , ’,2nd 9-q,’) for 0’O(q). But 9ca, hence

’ < O(q) and therefore 9 e Co(q). Thus, J ()C Co(J(p)), and the lemma is proved.

Theorem .11: Under he hpolheses of lhe above lemma, D(A)- A.

Prf: A is clely cylindrical. By Lemma.2.12, since A is positively invariant and closed
and for any AkK(z)C A. To complet2 t)e proof, it is enough to note that for any A,
J()cA. Since A is stable, for any peA, J(p) CA, hence by Lemma 2.10, J(z) cA. This
completes the proof by Lemma 2.11.

Theorem 3.12: If D(A)-A and A-AnN, then in (N,g), D(A)-A. If, furthermore,
here exisls a compact neighborhood V of A in N, then A is stable.

Prf: To prove that D(A)- A it is enough to show that D(A) C A. So let q e D(A). Then
there exists a {p} in , p , and a sequence of positive integers {n}, such that, pn.q
and q. But, clearly, qD(A)=A, hence qeA=. This proves the inclusion. he
last statement follows from Lemma 7.4 (a)[5, p. 8].

be closed and le lhere exis a compacl neighborhood V of A- A N, such hal, g N-
N-V. Then A is slable.

Prf: Since (A)- A, A is positively invariant in (,). Since is compact in and
A-AN-AN is closed in N, A is compact. Hence A is stable in (N, 9) (Theorem
Let W be a cylindrical op2n set containing A. We may assume withoulosof gnerality that
f C W. By stability of A, there exists an open set in such that A C U C V and for any
p , p for all n 1,2, Let G be an open set containing A as in Lemma .9 so that
for any zG, (z)<and p-(,(z))eU. urthermore, let GCW. Then for anyeG,
() U {C0(p ): n 0, 1, 2,...} U C0(z C C0() U C0( C W. This completes the proof.

Theorem 8.14: Suppose A C is closed, () < for ech x A. el A-AN be

compacl aed sable in (,9), and suppose lhere exists an open sel in such
comp   .

Prf: By Theorem g.ll, (A)- A, hence by Theorem g.lg, A is stable. This completes
the proof.

The results of this section can be combined as:

Theorem 8.15: e be locall compacl, A C be closed, clindrical se and () <
for each z A. e N be closed and le here be a compacl neihborhood g of A A N
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such that, V V N- V VI N. Then the following are equivalent"
(a) A is stable in (, ).

).
(c) D(A)- A in (N,g).
(d) A is stable in (N, g).

In view of Lemma 3.8, Theorem 3.15 has another version as follows"

Theorem 3.16: Let be locally compact, A C f be a closed, cylindrical set and O(x) < c
for each x E A. Let N be compact. Then the following are equivalent"

(a) A is stable in (, ).
).

(c) D(A)- A in (N,g).
(d) A is stable in (N,g).

4. Asymptotic Stability

For any subset A of we set P(A)- {x E ’L (x) and L (x) C A}, and Q(A) {x "J (x) : 0 and J (x) C A}.

P(A) and Q(A)and defined similarly in (N, g) for A C N.

Definition 4.1: We say A is an attractor if P(A) is a neighborhood of A, and a uniform
attractor if Q (A) is a neighborhood of A. Furthermore, A is said to be asymptotically stable in
(, if A is both stable and an attractor.

For A C N, attractor and uniform attractor are similarly defined if P(A) and Q(A)are
neighborhoods., of A in N respectively and A is asymptotically stable if A is stable and an
attractor in (N, g).

Lemma4.2: Let x C N. If w C L(x) then g(x) C J(w).
Proofi J(x) can be characterized as follows: (i) y J(x) if and only if (ii) given any > 0,

6 > 0 and a positive integer no, there exists a z E g(x,6) such that gn(z) V(y,) for some

n>_no.

Suppose yG(x). Let >0, 6>0 and no be given. Since wG(x), gnk(x)---*w for some

nk---cx hence there exists a k0 such that for k >_ ko, gnk(x) G U(w, 6). From the continuity of gn,
there exists 61, such that gn(U(x,61))C V(w, 6), for n nk Hence by (ii) there exists a

zEU(x, 61) and a positive integer m such that, =m-nno and gm(z) Gg(y,). Hence
ngn(z) e U(w, 6) and g (g (z))G U(y,)implies by (ii) that y G (w). This completes the proof.

Lemma 4.3: Let Y C N be closed. If Y is positively invariant and a uniform attractor in

(N, g), then D(Y)- Y. If, furthermore, Y C G where G is a compact neighborhood of Y, then Y
is asymptotically stable.

Proof: To prove D(Y)- Y, it is enough to show that D(Y)C Y. But D(Y)- K(Y) U

J^(Y). Since Y is^a uniform attractor J(Y)C Y, and since Y is closed and invariant then
K(Y) C V. Hence D(Y) C Y.

To prove the second part note that Y is stable by [5 Lemma 7.4]. Since Y is stable there
exists an open set U in N, YcUcG, so that if pEU, gn(p)G for all n-1,2,
Consequently, for any p U, L(p) - O, and since L(p) C K(p), Y C U V Q(Y) c P(Y) and Y is
an attractor.

Lemma 4.4: Let Y be asymptotically stable in (N,g), then Y is a uniform attractor in
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Proof: It is enough to show that P(Y)C Q(Y);^ so let x E P(Y);. Then L(x)=/= and
L(x) C Y. Hence J(x) O, and by Lemma 4.2 if w L(x), then J(x)C g(w). Since Y is stable
and w Y, J(w) C Y. Hence g(x) C Y, and x Q(Y). This completes the proof.

Lemma 4.5" Let AC be an attractor in (f, ). If for each p AC?N-A, K(p) is
compact, then A is an attractor in(N,g).

Proof: Let p e P(A) C3N. Then L(p)5 (I) and L.(p)C A. By Lemma 2.13, L(p)-
Co(L(p)). Hence L(p) and Co(L(p) gl N C^ A gl N A.^ But Co(L(2)) N- L(p), ^because
of the definition of CO and because n(p) cg. Hence AcP(A) nNCP(A) and A is an

attractor, since P (A) is a neighborhood of A.

Theorem 4.fi: Let be locally compact, A C be a closed cylindrical set^ and (P.x) < oc for
each x E A. ;Let N be closed and let there be a compact neighborhood V of A-AnN in f such
that V N- V fl N- V. Then the following statements are true.

(a) If A is asymptotically stable in (N, g), then A is a uniform attractor in (, ).
(b) If A is asymptotically stable in (,’ ), then A is a uniform atlraclor in (, ).

Proof: (a) Since A is asymptotically stable by^Lemma 4.4, A is a uniform attractor. Since
A is stable in (N,..g),^there exists an open set U in N containing A and contained in Q(A), such
that, for any p U, K(p) C V. By Lemma 3.8 there exists an open set W containing A such that
for any x e W, (I)(x) < oc and p (z, (x)) e U. Then x e W satisfies all conditions of Lemma
3.10, hence J (x) C Co(J(p)). But p e Q(A) impliesJ(p) cA, hence J (x) C Co(A C A,since A
is cylindrical.^ ..T see that J ():/: (I), note that J (x)D L(x) and by Lemma 2.13, n(x)-
C0(L(p)) and L(p) (I), hence L (x) 7 (I). This proves that W C Q (A), hence A is a uniform
attractor.

(b) In view of (a), it is enough to show that A is asymptotically stable in^(N,g). But by
Theorem 3.15, A is stable in (N,9) and by Lemma 4.5, since A is an attractor, A is an attractor
in (N, g). This completes the proof.

Theorem 4.7: Under the assumptions of Theorem .6, the following are equivalent"
(a) A^ is asymptotically stable in (, ).
(b) A is asymptotically stable in (i, g).

Proof: Suppose (a): Since A is stable in (,) by Theorem 3.15, A is stable in (N,g), and
by Lemma 4.5, A is an attractor. Thus (b) is true.

Suppose (b): Since A is stable in (N,g), by Theorem 3.15, A^ is stable in 2, and by
Theorem 4.6 (a), A is a uniform attractor. Now let e Int V 711nt O(A). Then clearly L (x) :/: (I),
and since J (x)C A, L (z)C A. Hence A is an attractor. This proves (a).

5. Lyapunov Function

In this section we introduce a Lyapunov function in (f,) and extend the Invariance
Theorem and the Asymptotic Stability Theorem [6] to (,).

Let G C be a positively invariant closed set, and recall that G denotes the closure of G in
X.

Definition 5.1" A function
V:GR

is said to be a Lyapunov function, if
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1. V is continuous,
2. Y(x + <_ Y(x) for x E V M, and
3. l(x) < 0 for x E G, where l(x) lira }{Y( (x t))- Y(x)}.

t-O +
We remark that it follows that V satisfies V( (x, t)) <_ V(x) for all x G and t e R +

Let
E-{xa’(x)-O}.

Let A C E be the largest invariant set under .
We assume for the remainder of this section that for any x G, (x) < cx, G Co(G), where

G-GC’lNiscompact. ByLemma3.6 thenGflN-GN.

Let N be closed, so that A A N A N is also compact.

Lemma 5.1: A is invariant under g.

Proof: Let pE. Then for any tIR + there exists anxAsuchthat(x, tl)-p.
Suppose t1 >(x)" Then (x,(x)..)-. p. Since A^ is positiveJy invariant, q A.

Consequently,^qANCGON-Gf?N-G. Hence qEA. Since A is compact, S-
inf{(p): p A} > 0. Thus, proce.e.eding..inductively we can show that there exists a q A
such that (q, (q,n))- P" Thus A C 9(A).

Suppose 1 (Z): Now A C V implies there exists a q G such that x E Co(q) since

Co(G)-G. That is, z-r(q,s), 0_<s<(q). Let r>s. Then given there is a eA such
that (y, T) x.

Case 1: If (y,t)-r(y,t) for 0<:t<T, then (r(y,T-s),s)-x-r(q,s) implies that

(y,T-s^)-^q, since (X,r) is a dynamical system. Consequently^ q@ A and therefore
q A G A, and proceeding as above we can show that A C g(A).

Case 2: (y, t) (y, t), 0 _< < T. In this case (y, sl) ql N for some 81, 0 81 < T.
Again, as shown earlier, q E G. Consequently ql A. Thus we have A C g(A).

The inclusion 9(A) C A is trivial, since A is positively invariant. Hence the result.

Let V- giG. Then clearly I/:G--,R is a Lyapunov function with respect to . That is, (1)
V is continuous, and (2) V(q(p)) <_ V(p) for p e G [6, Def. 6.1, p. 6].

Let
{p e a: V(p)

Let F C E be the largest invariant set under g.

Theorem 5.2: (Invariance Theorem). There exists an a R such that for any x G, n (x) C
A g Y- l(a).

Proof: Let x E G. Then (x,O(x))-p G G. By Theorem 6.3 [6, p. 6], it follows that

(p)^C F V-I(a) for some a e R. By Lemma 2.13 (x)- C,o((p)) consequently for any
y e Lx), Y(y)-a and I?(y)- 0. Therefore, (x)C E and since L (x)is invariant by Corollary
2.15, L (x) C A. This completes the proof.

Theorem 5.3: (Asymptotic Stability).
(1) If A C Int G, then A is an attractor.
(2) If, furthermore, V(A) a for some a R, then A is asymplolically stable.

Proof: (1) Let xG, then (x,(x))-pG( and (p):/:O implies (x)-0. By
Theorem 5.2 it follows that A is an attractor.
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(2) We first show that F-A: First note that ifpEE then V(r(x,t))-V(x) for 0<t<
I)(x). Hence Co(P).. C E. Consequ..ently, CoE C E. Let p E A C A. Since.. g(p) A C G A,
l(p)2--0 and p E, that is A C E...Since E is a closed subset of , then E is compact. Also,
F C E is the largest invariant set in E under g, F is also closed and hence compact. Therefore,
by Lemmas 2.12 and 2.14, Co(F C Co(G C G is invariant under . Thus,

F Co(F)f3G C AG A

implies that F- A.

Now V(A) a and A C Int G implies that A C A f3 G C_ Int G n G C Int (G f3 N) Int G.
Hence, by Theorem 7.9 [6, p. 9], A is asymptotically stable in (N,9). Consequently, by Theorem
4.7, A is asymptotically stable in (f, ).

In the remainder of this section we shall prove the converse of Theorem 5.3. We begin by
proving:

Theorem 5.4: Let A C N be c%mpact and asymptotically stable in (N,g). Suppose.. there
exists a comffact neighborhood V of A in N. Then there exists a positively invariant set G in N
containing A and a function a: --R +, such that,

(i) a is continuous,
(ii) a(9(x)) < a(x) if x G G A,

(iii) a(x) 0 if x A, and

(iv) A C Int G.

Prf: By Lemma 4.4, A is a uniform attractor in (N,..g). Hence there exists a compact
neighborhood^ ^V of A,.. such tha..t, V 71N V Cl N V C Int Q(A), where p e Q(A) .mplies that
J(p) @ an Jp) C A... Since A is stable there exists a compact neighborhood U of A, such that,
for any p U, K(p) C V.

Now on the closure G in N of the positively invariant set W- U{gn(U)’n- 0,1,...} we
define a function

as follows: For x G,
13(x) sup{d(gn(x), A): n 0, 1, 2,...}.

Since V is compact and g’(x) V for each n, /3(x) is well defined, and clearly for any x G,
(g(z)) <_/3(x). Furthermore, /3(x) 0 if and only if z E A.

Now define/3n’R + by setting:

/3,(x) (gn(x)), for any x G G.

Then clearly /3n + l(X) n(X), l 0, 1,2, Since J(x) C A for any f U, gn(x)--A as noe.

Hence/3n(x)O for any x G and {/3n(x)} is monotone decreasing on G.

We claim that /3n(x)O uniformly on G as ncx. Note that G C Q(A), hence for any
pG, J(p) CA. Thus, it is easy to see that given any >0 there exists an no anda6>0 such

For otherwise there exists a sequencethat if 9 e U(p, 6)C G then 9’(y)e U(A, ) for all n > n0hk{Pk} converging to p and {nk}, noe, such that, (p) U(,), implying, since I7" is

c..ompact and contains {gn(p)}, that J(p) A, a contradiction. This completes the proof, since

G is compact.

Now define
a:-R +
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by setting, o

n--0

for x E G. Then, by Abel’s Theorem [7, (ii), p. 421] a is continuous on G and clearly satisfies (ii)
and (iii) above. This completes the proof.

Theorem 5.5: Let A C be a closed cylindrical set and for each x A, (x) < . Let N be
closed, A- AN be compact and Co(A -A. If A is asymptotically stable then there ezists a

positively invariant set G in containing A which admits a Lyapunov function 7:GR +such

(i) A C Int G,
(ii) 7( (x, t)) 7(x) for all e R +, and
(iii) 7(x) 0 ff and only fix A.

Prf: By Theorem 4.7, A is)symptfitically stable in (N,g) and there exists an open set
V D A such that V V N V N and V has compact closure in N.

Since A is stable given the cylindrical open set Co(V ontaining A, there exists an open set

UDA, such that’ UCCo(V) and forany xeV, C(x) CCfi(Y). This implies that
U-UNCVandforany pGU, gn(p) GVfor n-0,1,2, Let Gand

be as in Theorem 5.4.

Now by Lemmas 3.8 and 3.10 there exists an open set W D A such that W C Co(V and for
any xW, (I)(x)<c, (x,(I)(x))U and J(x) CCo(J(p)). Let G-U{C(x):xW}. We now
define a function

:-R +
as follows: Let x G"

1. If x E C0(G) then set (x)- a(p) where x (p, t), 0 t < (p).
2. If x Co(G), then (x, O(x)) p G U, and we set

+.(;).

If x G V M, then x r(y, (I)(y)) for some y G and we set

7(x)- lira a(r(y, t)), where to -(I)(y).
t--to+

This limit exists because a((y, t))is a nonincreasing function of t.

That the three conditions (i), (ii) and (iii) as required are satisfied follows easily from this
definition.
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