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ABSTRACT

In this paper we generalize two results of Lasalle’s, the invariance theorem
and asymptotic stability theorem of discrete and continuous semidynamical
systems, to impulsive semidynamical systems.
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1. Introduction

Let (X, 7, R) be a dynamical system, where X = (X,d) is a metric space with metric d, and
m XX R—-X

is a continuous function satisfying:
() 7(z,0) = z for all z € X and 0 € R, and
(1)  w(w(z,t),z) = w(z,s+1t) for all z € X and t,s € R.

Then the function
T X—X

defined, for any fixed t € R, by m,(z) = 7(x,t), © € X, is a homeomorphism of X onto itself.

The function
T, R—-X

defined for any fixed z € X, by 7 _(t) = 7(z,t), € R, is continuous and is called the trajectory of
.

Let Q@ C X be an open set in X, and denote the boundary of € in X by M. Assume that
M # ¢. Let I: M— be a continuous function and I(M) = N. We shall denote I(x) by z * and
say that & jumps to z .

Given = € Q we now define an “impulsive trajectory”, 7, for z, over a subset of the
nonnegative reals R ™ and also, simultaneously, a function ®: QO—RT U {oo} = R*, where R™ is
the space of extended positive reals.
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If m(z,t)¢ M for any t€ RT, we set ¥, (t)=n(z,t) for all te RT, and &(z)= co.
Otherwise, let
O(z) =1,

where t; € R * is the smallest number for which zy =7(x,t;) € M, and set

N w(z,t), 0<t<t,
0=
zy t=1.

Since t; < 0o, we continue the process, now starting with xl'", repeating the above two steps.
Thus if 7(z;",t) ¢ M for any t € R * we set,

To(t) = m(zm,t =) for t > 1,
and
q>($1+ ) = o0,
otherwise
(1) m(att 1)), t <t<t,,
T =
‘ zt, t=t,,

for some t,y,x, = 7r(x1+,t2) € M and 7r(w1+,t) ¢ M for any t,t, <t < t,.

Continuing inductively, it is clear that an impulsive trajectory 7, has either no jumps, only a

k
finite number of jumps at points z,,...,z,, the jump at x; occurring at ¢t= Y ¢, and for
1=1
n
t> ) t;, 7, (t) =m(z,t), or lastly, it has an infinite number of jumps at {z,}>°_, and % is

i=1

[e.9]
defined over the interval [0,T'(x)), where T'(z) = ) t.. Note that in the other two cases above
i1=1

T(z) = co. We now define 7 (x,t) = 7 (t) for any t in [0,T(z)). We shall often use the fact that
for any t€ R, such that 0<t<T(z), there exists a k=0,1,2,..., such that, t=

k
> ®(z")+t, where 5" = z, and consequently % (z,t) = m(zgd, 1), 0 <t < ®(zh).
1=0

Furthermore, the following two properties are easy to check:
(1) 7 (x,0) ==z for any z € Q and
(it) 7 (7T (z,t),2) =7 (2,t+s), for z€Q and t and se€[0,T(z)), such that
t+s€[0,T(x)).
Thus from here on we assume that Q,M,I and N are as considered above in a dynamical

system (X,7), and call (Q,7), with ¥ as defined above, an impulsive semidynamical system
associated with (X, m) (see [6]).

Let Q)= {z € Q:®(z) < co}. Then there exists a function g¢:Q,—N, defined by
g(z) =7 (m,®(z)) for any z € Q.

Assumption I: We assume throughout the paper that ¢ is a continuous function on 2.

It follows then that for any z € Q, g(x) = I(n(x,®(z))) is a continuous function on €.
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Let N = {x € N: <I>(.r )< oo for n=0,1,2,...}. Then g maps N into N. Consequently,
(N ,g) defines a discrete semidynamical system [5] associated with the impulsive semidynamical
system (Q,7 ).

In this paper, as in [3] and [4], we continue to study dynamical notions defined in (2,7 ) by
relating them to similar notions in (N 9)- In particular, we study stability and
asymptoticstability in (2,7 ) by relating them to the corresponding notions in (N ,9). The main
results obtained are (1) characterization of stability (Theorems 3.6 and 3.11) similar to Theorem
1.12 [1, p. 61], and (2) asymptotic stability (Theorems 5.4 and 5.6) in terms of Lyapunov
functions which generalizes a similar theorem of Lasalle [6, Theorem 7.9, p. 9] and also Theorem
2.2 [1, p. 66].

The following notations are used throughout. For any A CQ and € >0, U(4,¢) ={z € 9%
d(z,A) < €}, where d(z,A) = znf{d(x,y) y € A}, cl denotes the closure operator in ; A = AN N,
and for any z € Q, Cy(z) = {n(z,t) = T (x,1):0 <t < P(x)}.

2. Limit Sets, Prolongation Limit Sets and Prolongation Sets

Definition 2.1: We extend the known definitions of these sets in a natural way to (9,7 ).
Let z € Q.

(2.1.1) The limit set of z in (2,7 ) is defined by

I (z) = {y € :7 (,t,)—>y for some t,—T(z) and t,, < T(z)}.

(2.1.2) The prolongation limit set of z in (2,7 ) is defined by

J(z)={ye% (z,t,)—y for z —z and t,—T(z), t, < T(z)}.

(2.1.3) The prolongation set of z in (2,7 ) is defined by

D(z) = {y € &:% (2,,t,)—y for x,—z and t,, € [0,T(x))}.

The definition of these sets in a discrete semidynamical system are well known. In (]V,g) we
shall denote them by L(z), J(z) and D(z) respectively for z € N.

Furthermore, we denote the orbit of a point xGQA in (Q,7) by 8’(:6): {7 (z,1):

t€[0,7(x))} and its closure in Q by K( ). These sets in (N, g) are denoted by C(z) and K(z)
forz € N.

Generally one uses a + sign with the above symbols for these sets for flows in positive
direction, but as we are dealing with flow only in positive direction we have dispensed with it for
convenience.

Definition 2.2: A subset A of  is said to be positively invariant if for any = € A, 5’(;6) C A,
and it is said to be invariant if, it is positively invariant and, furthermore, given z € A and
t €0, T(x)) there exists a y € A such that 7 (y,t) = .

A subset A of N is said to be positively invariant if g(;l) C A and is said to be invariant if
A =g(A).

It is clear that T is not a continuous function. However, the following lemma holds.
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Lemma 2.3: Suppose {z,} is a sequence in §, convergent to a point y € Q. Then for any
rtve [0,T(y)), the:e ezists a sequence of regl~numbers, {e,,}, en—’iO, such that, t+¢, < T(z,) and
T (2, t+e,)— |7 (y,t)|. In particular, if T (y,t) = y1+ , then 7 (x,,t+¢,) can be chosen to be

+
T,y

Proof: First suppose that ®(y) < oo. Then clearly, we may assume, since ® is continuous,
that ®(x,) < oo.

Case 1: If 0 <t < ®(y), let ¢ < ®(y)—¢. Then from the continuity of & we may conclude
that ®(y) — e < ®(z,,) for all n, so that t < ®(z,,) and 7 (z,,t) = w(z,,1), and the continuity of =
implies the result for ¢, = 0.

Case 2: If t = ®(y), then % (y,t) =y;F. If ®(z,)> ®(y), 7 (z,,P(z,)) =7 (2t +¢,)=

+ —>y1+ because z,, ;| = n(z,, ®(z,,)—y;, and I is continuous.

zn,l

m—1
Case 3: Now suppose t > ®(y), so that t = 3 ®(y )+, 0<¢t < ®(y,}), where yl-++ 1=
i=1

7 (yt,e(y)), i=0,...,m—1. Define {x:i}, inductively by l‘r_::i y1=7 (xn+,l-,<I>(xn+’i)).
m—1
Clearly, if t, = 3 ®(z,, ), then % (z,,t)—y,t. Nowsete, =t +t —t. Then
i=1 !
% (xn’ t + €n)__)'7\r’ (yfj k) t’) = % (y’ t)

completes the proof.

Now suppose ®(z) = co. Then continuity of ® implies that for any ¢ € [0,00) there exists an
ng such that for n > ng, ®(x,) >t. Consequently, for n > ng,, T (z,,t) = 7(x,,t) and the result
follows from the continuity of .

Lemma 2.4: Suppose A C Q is positively invariant in (Q,7 ), then clA is positively invariant
in (,7).

Proof: Suppose x € clA and t €[0,7(z)). Then there exists a sequence {z,} in A with
z,—z. Hence by Lemma 2.3, 7(z,,t+¢,)—7 (z,t) for some sequence ¢,—0 such that
t+e¢, €[0,T(z,)). Since A is invariant, 7 (z,,t+¢,) € A, hence 7 (z,t) € clA. This completes
the proof.

~ ~ o
Lemma 2.5: Suppose .p € N, and K(p) is compact, then T = Y, <I>(p:) is infinite, where
p= p0+ . n=0

Proof: Suppose T is finite. Then <I>(p: )—0. Assuming that p,fk—>q € Q,
W(p,:Llc,d)(prfk))—m(q,O) =gq. But, W(pnk,q)(pnk)) € M, which is a closed subset of X. Hence

¢ € M implying M NQ # ®. But this is a contradiction since §2 is open in X and has no point in
common with its boundary M in X.

Assumption II: From now on we assume that if z € N, then T(z) = oco; so that if for some
z€Q, ¥ (z,8(z)) € N, then T(z) is also infinite. Note that if % (z,®(z)) ¢ N then T(z) = oo
anyway. Thus from here on T'(z) will be assumed to be infinity for all z € ©, and [0, T(z)) will
be replaced by R T .

Lemma 2.6: For any x € o1 (z) 1s closed and positively invariant in (Q,7 ).

Proof: To show that it is closed is trivial. To prove that z(:c) is positively invariant, let
y € L (z). Then there exists a sequence {t,} in R, t,—oo, such that 7 (z,t,) = z,—y. Now,
given t € R1 | there exists a sequence {¢, } as in Lemma 2.3, such that,

T (2,,t+€,)—T (y,t).
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Consequently,
77 (2, t,) t+€,] =7 (2, t, +t+¢€,)>T (y,1)

and since t,, +t + ¢, —00, T (y,1) € I (x).

Lemma 2.7: For anyz € Q, and t € R, if 2 =% (2,t) then L (z) C L (2).

Proof: Let y € L (z), and ¥ (z,t,,)—y for t, —oo. Since t, >t for all n > n, for some n,, we
have 7 (z,t,) = 7 (7 (x,1),t,, — t)—y completes the proof since ¢, — t—oo.

Lemma 2.8: For any z € €, J (z) is closed and positively invariant in (Q,7 ).

Proof: 1t is easy to see that 7 (z) is closed. To prove positive invariance, let y € 7 (z) and
% (z,,t,)—y for z,—z and t,—oco. Given any t€ R, % (¥ (z,,1,),t+¢,) =% (y,t) as in
Lemma 2.3. Hence, (1, + ¢ +e,)— 7 (y,t) €J ().

Lemma 2.9: For any x € Q and any t € RV, if ¥ (2,1) = 2, then J (z) C J (z).

Proof: Similar to the proof of Lemma 2.7.

Lemma 2.10: For any z € Q, IA{’(:::) = 5’(x) ul (z). Consequently R’(w) is positively inva-
riant in (Q,7 ).

Proof: Trivial.

Corollary 2.10: For any A C Q, IA{’(A) =u {R’( ):z € A} is positively invariant.

Lemma 2.11:  For any ¢ € Q, D (z) = K (z) UJ (z) is closed and positively invariant.

Proof: Both K (z) and J (z) are positively invariant and closed as shown above. To prove
equality is straight forward. Hence the result.

Lemma 2.12:  Let ACN bea compact and positively invariant set in (N g). Then the clos-

ure ofh(A) in X s compact. Furthermore, K ( )= C(A) is closed and positively invariant in
@,7).

Proof: Let p € A. Then by positive 1nvar1ance of A under g, it is clear that p € A for all
n.  Hence C( )= U{Cy(p,f )in=0, 1,2,...} pg” =p. Since A s _compact, c{ptin=
0,1,2,...} = Q is compact, and clearly Ix( )_ U{Cy(q): g€ Q}. Hence K(A) = U{Cy(p): p
A}. Let H be the closure of k(A) in X. Let {y,,} be a sequence in H. Then there ex1sts a
sequence {y; } in k(A) such that, d(y,,,v;) <7- Consequently, there exists a z,, € A , such that
v, € Cy(z,), that is, y, ==(z,,t,), 0<t, <®(zx,). Assuming that z,—z € A, clearly
m(x,,t,)—m(z,t) =y, where 0 <t < ®(z), since both 7 and ® are continuous. Consequently,
Y,—Y, and y € H. Thus H is compact.

Note that k(A) = 5’(;1) as shown above. Hence if for any sequence {y,,} in C(‘Zl) Y,—Y €
Q, then, as in the above proof, 0 <t < ®(x) and y € Cy(z) C C(A) Therefore C’/(A is closed.
That it is positively invariant follows form the fact that A is positively invariant in V.

. Lemma 2.13: Let z €Q and 7 (z,®(z))=pE€E N. If é(p) has compact closure in K’, then
L (z) = Co(L(p))-

Proof: Let yez(w) and 7 (z, tk)—+y for t—oo. Assume t; > ®(z) for all k. Then
7 (p,t — ®(x)) = W(p,j;c, k), 0< < <I>(pn ). Slnce C(p) has compact closure in N, we may

assume that p,j}c—>q € N. Since 1), —00, clearly n;—oo, and ¢ € L(p). By Lemma 2.12, since
yeQ, y=m(qt), 0<t<P(g). Hence, y € Cy(q) C Co(i(p)).
Conversely, suppose y € Co(i(p)). Then y = m(gq,t), 0 <t < P(q) for some q € Z(p) Now let
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p,'l’;c—>q as n;—o0, where Pry = gnk(p). Then ?r'(p:k,t+en)—-> 7(¢,t) =y by Lemma 2.3. If
ng -

te =Y ®(p;T)+ ®(z), then % (z,t; +t+¢,)—y, and y € L (z). This completes the proof.
1=0

Lemma 2.14: Let ACN be compact and ﬁ::g(;l) Then for any teRT,
Co(A) C T (Co(A),1).

Proof: Let y € C'O(A) ‘Then there exists a ¢ € A such that y € Cy(g). Since Ais compact,
and ®(z) > oo for each z € 4, , inf{®(z):z € A} =T >0. Hence given g, there exists a sequence
915+ 9m +1 = ¢, of points in A such that, g(¢q;) = 9 +1t=12,...,m and

m—1 m
Y @(g) <t< Y W(g,)

Set t' =1— Z <I>(q ). Then 0 <1t < ®(q,,). Suppose y=7(gs), 0<s<®(q). Then t, =
1=1

(®(q,,)—t")+s>0. Let z =% (gq,¢;). Then z € Cy(A), and

T (2,1) =7 (7 (a1, ), Z (6;)+¢ —”(‘11at1+2¢(‘1)+t)

i=1 i=1

:%(q1,¢(qm>—t'+s+Z@(q,w)
1=1

~vr(q1,2<1><q )+8) =F (4 4 195) = V-

i=1

This completes the proof.

Corollary 2.15: Let z € Q and 7 (z,®(z)) =p € N. If é(p) has compact closure in N, the
L (z) is invariant.

Proof: By Lemma 2.13, I(z)= Co(L(p)). But L(p) is invariant [5, _Theorem 5.2, p. 4]. By
Lemma 2.6, I (z) is positively invariant, hence Lemma 2.14 implies that I (z) is invariant.

Lastly, we note a trivial result for future reference.
Lemma 2.16: If A C Q and B(A) =A i (Q,7), then A is positively invariant in (Q,7 ).
Proof: By definition for any z € A, 5(1‘) C R(r) C T)(w) C A. Hence the result.

3. Stability

Definition 3.1: A subset A of Q is called a cylindrical set if for any = € A, Cy(x) C A, where
Co(x) = {m(x,t):0 <t < P(x)}.

Note: For any = € Q, C () is a cylindrical set.
The following is trivial.
Lemma 3.2: If A CQ s a cylindrical set, then so is clA.

Lemma 3.3: Let 'V be an open set in Q, then Cy(V)= U{Cy(z); 2€V}=W is a
cylindrical open set in Q.

Proof: W is clearly a cylindrical set. Let z€ W. Then there is a y € V such that
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z=m(y,t), 0<t<P(y). Let 0 <e<P(y)—t. By continuity of ® there exists an open set U
containing y and U C V, such that, if 2 € U, then | ®(z) —®(y)| <e. Hence t < ®(y) — e < P(x),
and 7, (z) = n(z,t) € Cy(x) CW. Since 7, is a homeomorphism, y € 7,(U) C W implies that W
is open.

Definition 3.4: A subset A of Q is said to be stable in (Q,7 ) if given any cylindrical open set
U containing A there exists an open set V, such that ACV C U, and for any z €V, C(z) C U.

Theorem 3.5: Let Q2 be locally compact. Let A be a cylindrical subset of Q and for each
r€ A, ®(x)<oo. Then for any € >0 there ezists an open set U D A, such that, Cy(U) C
U(A,e).

Proof: Let z € A. Then, since 7 is continuous and € is locally compact, there exists a
compact neighborhood U(z) of z and a real number §(z) > 0, such that 6(z) is less than both ¢
and ®(z), and for any y €  such that d(z,y) < é(z), and any ¢, t' in [0,®(z)+ €], satisfying
|[t—1t"| < é(z), we have d(n(z,t),m(y,t')) <e. And, since ® is continuous, there exists a v(z)
such that for any y € Q for which d(z,y) < v(z), | ®(z) — ®(y)| < 6(z)/2 and U(z,v(z)) C U(x).
We claim that for any y, such that, d(z,y) <v(z), if z€ Cy(y) then d(z,Cy(x)) <e. Let
z=m(y,t), 0 <t < P(y). Since P(y) < ®(z) +6(x)/2, t —6(z)/2 =t < P(z), and |t'—t]| < é(z).
Hence, d(m(z,t',m(y,t)) < e. This proves the claim. Hence if U = U{U(z,v(z)):z € A}, then U is
open, contains A and Cy(U) CU(A,e).

Example 1: The following example shows that if a set A C Q2 does not satisfy the condition
that ®(z) < oo for each z € A, then the above theorem is note true.

Consider the dynamical system (R2,7r) shown in the Figure 1 below:

Figure 1
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Let X be the open set in R% obtained by deleting the set {(z,y):zy = =+ k,y > 0} for some
k> 1. The two curves, zy = =+ k define trajectories in the original dynamical system. Hence
(X,7) is a dynamical system, with metric space z. Let M = {(z,y): 0<y <1, z = +k}, and
N={(z,y): —1<z<1,and y=k}. Let Q@ = X — M, and define I: M—N by

I(z,y) = (y% k) if € = k, and I(z,y) = (—y* k) if 2 = — k.

Notice that deleting the orbits as we did from the original dynamical system to get X, makes ®
continuous on €.

Now suppose A = {(0,y):0 <y < k}. Then A is a cylindrical set. € is locally compact. But
for each z € A, ®(z) =co. Note also that for this A the above theorem fails, because any
cylindrical open set containing A has finite diameter of 2k.

Lemma 3.6: Let A CQ be positively invariant in (Q,7 ) and for each z € A, let ®(z) < co.
Then p = % (z,®(z)) € A. Consequently, ANN = ANN.

Proof: Since ®(z) < oo, p € N. Since A is positively invariant p € A also. Repeating the
above argument we get pl+ € N and pl+ € A. Thus, inductively, p: €eANN for n=1,2,...
Consequently, p € N and therefore p€ A= ANN.

If, furthermore, £ € N, then clearly, z € ﬁ’, and the last result follows.

Lemma 3.7: Let A C Qg and b(A) = A. If N_has compact closure in §2, then there exists
an open set V containing A such that VNN =V NN.

Proof: Suppose no such open set exists. Then there exists a sequence {z,} in N—N,
T —»:L'EA Since «, € N — N, there exists a t,€ RT, such that, % (z,,t,) =4, €N, and
<I>(qn) =o00. Since N has compact closure in Q we may assume that ¢, —q € Q. However,
g€ D(A) = A, and, therefore, ®(q) < co. But this contradicts the continuity of ® at ¢, and
completes the proof.

Lemma 3.8: Suppose A C 2 1s positively invariant and for each z € A, ®(z) < oo. Suppose
V is an open set containing A such that V=VNN=Vn N. Then there exists a cylindrical
open set U D A such that for any y € U, ®(y) < 0o and 7 (y,P(y)) € V.

Proof: Let z € A. Then ®(z)< oo implies m(z,®(z)) =z, € M. Since A is positively
invariant, by Lemma 3.7, 7 (z,®(z)) = ”31 € A. Now _I being continuous, there exists an open
set U(z;) in M, containing x,, such that I(U(x,)) C V. Again, by the continuity of 7 and ®,
there exists an open set U(z) in Q containing , such that, for any y € U(x), 7(y, ®(y)) € U(z,)
and ®(y) < co. Furthermore, we may assume that U(z) lies in V. Hence U = Cy[U{U(x):
z € A}]is a cylindrical open set (Lemma 3.3), and satisfies the requirements of the lemma.

Theorem 3.9: Let Q be locally compact. Let A CQ be a closed cylindrical set and for each
z € A, let ®(z) < oo. If A is stable in (Q,7), then

1. D(A)= A4, and A A )
2. there exists an open set U in Q containing A= ANN, such that, UNN = UNN.

Proof: 1. Follows from the usual argument using Theorem 3.5.

2. From continuity of ®, each z € A is contained in an open set V  such that for each y €
Vi ®(y) <oo. Set V.=U{CyV,):z € A}. Then V is a cylindrical open set (Lemma 3.3) con-
taining A. Hence, by stability of A there exists an open set U, A CU CV such that C’( ycv
for each z € U. Set W = U {F( ): @ €U}. Then clearly W is positively invariant and since for
each z € V, ®(z) < 00, by Lemma 3.6, WNN =W nN N. Hence, UNN =UNN. This completes
the proof.
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The converse is proved in Theorem 3.13.
Example 2: Note that in Example 1 given earlier, A is stable but T)(A) # A.

Lemma 3.10: Suppose ACN is compact and stable in (N g) and admits a compact
neighborhood V in Q0 such that VAN =V NN =V. Then there exists an open set W containing
A= C’O(A) such that for any x € W, ®(z) < oo and J (z) C CO(J(p)) where p =7 (z,®(z)).

Proof: By stability of A there exists an open set U in N, such that A c U C V, and for any
pE ﬁ,pn eV for all n= 0,1,2,.... By Lemma 2.12, A is closed and positively invariant in
(9,7 ). Consequently, by Lemma 3 8 there exists a cylindrical open set W containing A such that
for any z € W,®(z) < co and p =% (z,®(z)) € U. To prove the result, pick a y € J (z). Then
s (a:k,tk)—>y for some z;,—z and t;—o0, where z;’s may be assumed to lle in W. By lemma 2.3,
P =7 (xp,t + 6k)——>p and ¢, are so chosen that p, € U where t = ®(z). Assuming that t, —t—
€, >0, we have T (z,t)="7(pptr—t—¢€)= 7r(p,c ny )=y, where 0<t < <I>(pk,nk)

k=1,2,.... Since p € U, pk‘nk eviv being compact we may assume pk+,nk—>q. Then clearly

q€ j(p) By continuity of ®, t;—t', and y =7 (g,t') for 0 <t' <®(g). But y €, hence
t' < ®(q) and therefore y € Cy(q). Thus, J (z) C Cy(J(p)), and the lemma is proved.

Theorem 3.11: Under the hypotheses of the above lemma, T)(A) =

Proof: A is clearly cylindrical. By Lemma 2.12, since A is positively invariant and closed
and for any z € A, K () C A. To complete the proof, it is enough to note that for any z € 4,
J (z) C A. Since A4 is stable, for any p € 4, J(p) C A, hence by Lemma 2.10, 7 (z) C A. This
completes the proof by Lemma 2.11.

Theorem 3.12: If D(A) = A and A= AﬂN then in (N,g), D(A)= A. If, furthermore,
there exists a compact neighborhood 1% ofA m N then A is stable.

Proof: To prove that D(A) = A it is enough to show that D(A) C A. So let ¢ € D(A). Then
there exists a {py} in N, Pr—p € A and a sequence ¢ of positive integers {n;}, such that, pkn —q
and ¢ € N. But, clearly, q € D(A) = A, hence q € NNA=A. This proves the inclusion. Hlhe
last statement follows from Lemma 7.4 (a) [5, p. 8].

Theorem 3.13: Let A C Q be closed, let ®(x) < oo for each x € A and let T)(A) =A. Let N
bAe clo/:sed and let there ezist a compact neighborhood V of A= ANN, such that, VAN =VnN
N =V. Then A 1s stable.

Proof: Since D(A) A, A is positively invariant in (2, 7r) Since V is compact in N and
A=ANN=ANN is closed in N, A is compact. Hence A is stable in (N,g) (Theorem 3.12).
Let W be a cylindrical open set containing A. We may assume without loss of generality that
Vc w. By stability of A there exists an open set U inN such that Ac U CV and for any
pE U pn €V forall n=1,2,.... Let G be an open set containing A as in Lemma 3.9 so that
for any z € G, <I>(zc) <ooand p=7%(z,8(z)) € U. Furthermore, let G C W. Then for any z € G,
C(:r) = U{Cy(p,;}):n=0,1,2,.. } UCy(z) C Cylz)UCy(V V) C W. This completes the proof.

Theorem 3.14: Suppose A CQ s closed, ®(z) < oo for each z€ A. Let A=ANN be
compact and_stable 1n (N,g), and suppose there exists an open set V in Q such that
VAN=VNN =V and clV is compact. Then A is stable in (Q,7).

Proof: By Theorem 3.11, b(A) = A, hence by Theorem 3.13, A is stable. This completes
the proof.

The results of this section can be combined as:

Theorem 3.15: Let Q be locally compact, A CQ be a closed, cylindrical set and ®(z )<<>o
for each x € A. Let N be closed and let there be a compact neighborhood V ofA ANN in Q,
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such that, VAN =V N N. Then the following are equivalent:
(a) A is stable in (2,7 ).
(6)  D(A)=Ain (Q7T).
() D(A)=A in(N,g).
(d) A is stable in (N, g).

In view of Lemma 3.8, Theorem 3.15 has another version as follows:

Theorem 3.16: Let Q be locally compact, A CQ be a closed, cylindrical set and ®(z) < oo
for each x € A. Let N be compact. Then the following are equivalent:
(a) A is stable in (Q,7 ).
(b) D(A)=A in (Q,7).
() D(A)=4 in (N,g).
(d) A is stable in (N, g).

4. Asymptotic Stability

For any subset A of Q we set P(A)—{xEQ L(x);é@and L(z)CA}, and Q(A)— {z e
J(x);é(DandJ(a:)CA}

P(A) and Q(A) and defined similarly in (N,g) for 4 C N.

Definition 4.1: We say A is an atiractor if '}V’(A) is a neighborhood of A, and a wuniform
attractor if @ (A) is a neighborhood of A. Furthermore, A is said to be asymptotically stable in
(2,7 ) if A is both stable and an attractor.

For AC N, attractor and uniform attractor are similarly defined if IAJA( ) and @(,:1) are
neighborhoods of A in N respectively and A is asymptotically stable if A is stable and an
attractor in (N, g).

Lemma 4.2: Letz € N. If we L(z) then J(z) C J(w).

Proof: J(z) can be characterized as follows: (i) y € J(z) if and only if () given any € > 0,
6>0 and a positive integer ng, there exists a z € U(z,6) such that ¢"(z) € U(y,¢) for some
n > ng.

Suppose y € 7(1:) Let ¢ >0, 6 >0 and ny be glven Since w € L(z), g k(z)—w for some
n;—0o0, hence there exists a k; such that for k 2 kg, g *(z) € U(w,§). From the continuity of g™,
there exists 6,, such that ¢"(U(z,6;)) CU(w,6), for n=mn; . Hence by (i) there exists a
zeU(z,6,) and a positive integer m such that, { =m —n3 ng and g™(z) € U(y,¢). Hence
g"(z) € U(w,6) and ge( "(z)) € U(y,¢) implies by (i7) that y € J(w) This completes the proof.

_ Lemma 4.3: Let Y C N be closed. If Y s positively invariant and a uniform attractor in
(N,g), then D(Y) =Y. If, furthermore, Y C G where G is a compact neighborhood of Y, then Y
1s asymptotically stable.

_ Proof: To prove DY) =Y, it is enough to show that D(Y)cY. But D(Y)=K(Y)U
J(Y). Since Y is_a uniform attractor J(Y)CY, and since Y is closed and invariant then
K(Y)CY. Hence D(Y)CY.

To prove the second part, note that Y is stable by [5, Lemma 7.4]. Since Y is stable, there
exists an open set U in N, YCUCG, so that if peU, g"(p) €G for all n=1,2,
Consequently, for any p € U, L(p) # 0, and since L(p) C K(p), Y CUNQ(Y)C P(Y) and Y is

an attractor.

Lemma 4.4: Let Y be asymptotically stable in (N,g), then Y s a uniform attractor in
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(N,9).
Proof: It is enough to show that P(Y)CQ(Y), so let :L'GP(Y) Then L(z)#@ and

L(z) CY. Hence J(z)# 0, and by Lemma 4.2 if we L(z), then J(z) C J(w). Since Y is stable
and we Y, J(w) CY. Hence J(z) CY, and z € Q(Y). This completes the proof.

Lemma 4.5: Let ACQ be an_attractor in (Q,7 ). If for each peEANN = 4, K(p) is
compact, then A is an attractor zn(N g).

Proof: Let pGP(A)ﬂN Then L(p);é(b and L( ) C By Lemma 2.13, L(p)=
CO(L(p)) Hence L(p) # 0 and CO(L pP)NNC ANN = A. But CO(L(p))ﬂN L(p), ‘because
of the definition of CO and because L(p)CN Hence A C P(A)ﬂNCP(A) and A is an
attractor, since P (A) is a neighborhood of A.

Theorem 4.6: Let Q be locally compact, A C S be a closed cylindrical set and <I>(\a:) < oo for
each x € A. Let N be closed and let there be a compact neighborhood V ofA ANN in Q such
that VAN =V N N =V. Then the following statements are true.

(a)  If A is asymptotically stable in (N,g), then A is a uniform attractor in (Q,7 ).
(b)  If A is asymptotically stable in (Q,7 ), then A is a uniform attractor in (Q,7 ).

Proof: (a) Since A is asymptotically stable by Lemma 4.4, A is a uniform attractor. Since
A is stable in (N,g), there exists an open set U in N containing A and contained in Q(A) such
that, for any p € U R(p) cV. By Lemma 3.8 there exists an open set W containing A such that
for any 2 € W, ®(x) < oo and p =7 (z,®(z)) € U. Then z € W satisfies all conditions of Lemma
3.10, hence J (z) C Cy(J(p))- But pe Q(A) implies J(p) -y A, hence J (z) C Cy(A) C 4, since A
is cylindrical. To see that J(g) # ®, note that J(x) DL(:L‘) and by Lemma 2.13, I(z)=
CO(L( )) and L(p) # ®, hence L (z)# ®. This proves that W C Q(A) hence A is a uniform
attractor.

(b) In view of (a), it is enough to show that A is asymptotically stable inA(]V,g). But by
Thegrem 3.15, A is stable in (N, g) and by Lemma 4.5, since A is an attractor, 4 is an attractor
in (N,g). This completes the proof.

Theorem 4.7: Under the assumptions of Theorem 4.6, the following are equivalent:
(a) A is asymptotically stable in (Q,7 ).
(b) A is asymptotically stable in (N,g).

Proof: Suppose (a): Since A is stable in (2,7 ) by Theorem 3.15, A is stable in (N,g), and
by Lemma 4.5, A is an attractor. Thus (b) is true.

Suppose (b): Since A is stable in (N g), by Theorem 3.15, A is stable in (£, 7r’2, and by
Theorem 4.6 (a), A is a uniform attractor. Now let z € IntV N Int Q(A). Then clearly L (z) # @,
and since J (z) C A, L( ) C A. Hence A is an attractor. This proves (a).

5. Lyapunov Function

In this section we introduce a Lyapunov function in (£,7) and extend the Invariance
Theorem and the Asymptotic Stability Theorem [6] to (2,7 ).

Let G C Q be a positively invariant closed set, and recall that G denotes the closure of G in
X.

Definition 5.1: A function

is said to be a Lyapunov function, if
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1. V is continuous,
2. V(:L'+)<V(:c)form€GﬂM and
3. V(z) <0 for z € G, where V(z) = Izm 1{V(7r (z,t)) = V(z)}.

We remark that it follows that V satisfies V(7r (z,t))<V(z)foral z€ Gand t€ RT.

Let
E ={z€G:V(z) =0}.

Let A C E be the largest invariant set under 7 .

We assume for the remainder of this section that for any z € G, ®(z) < 00, G = CO(G), where
G = GN N is compact. By Lemma 3.6 then GNN=GnN.

Let N be closed, so that A=ANN=ANN is also compact.

Lemma 5.1: A is invariant under g.

Proof: Let p € A. Then for any tyER * there exists an z € A such that ¥ (z,¢,) = p

Suppose t; > ®(z): Then 7 (z,®(z))=g¢# p. Since A is positively invariant, g€ A.
Consequently, ¢€ ANN C GNN=GNN=G. Hence q€ A. Since A is compact, S =

inf{®(p): P € A} >0. Thus, proceeding inductively, we can show that there exists a ¢,, € A
such that ¥ (q,,,, ®(q,,)) = p. Thus AcC g(A)

Suppose t; < <I>(x) Now z € A C G implies there exists a ¢ € G such that z € Co(q), since
CO(G) G. That is, z = m(q,s), 0 < s < P(q). Let T >s. Then given x there is a y € A such
that 7 (y,T) = z.

Case 1: If 7 (y,t) = m(y,t) for 0 <¢< T, then n(n(y,T —s),s) =z = 7(q,s) implies that
m(y,T —s) =g, since (X,m) is a dynamical system. Consequently q¢€ A and therefore
gEANG = A and proceeding as above we can show that Ac g(A)

Case 2: 7 (y,t) # 7(y,t), 0 <t <T. In this case 7 (y,5,) = ¢; € N for some s, 0 <5, <T.
Again, as shown earlier, ¢; € G. Consequently q; € A. Thus we have A C g(A)

The inclusion g(A) C A is trivial, since A is positively invariant. Hence the result.

_ Let V=v | G. Then . clearly V:G-Ris a Lyapunov function with respect to g. That is, (1)
V is continuous, and (2) V(q(p)) < V(p) for p € G [6, Def. 6.1, p. 6].

Let

~

E={peG:V(p)=V(s(p))}
Let F C E be the largest invariant set under g.

Theorem 5.2: (Invariance Theorem). There exists an a € R such that for any ¢ € G, I (z) C
ANV ~Ya).

Proof: Let z € G. Then % (z,®(z))=peG. By Theorem 6.3 [6, p. 6], it follows that
L( )CFﬂV Y(a) for some a € R. By Lemma 2.13 L(a:) CO(L(p)) consequently for any
yE L(g:) V(y) = a and V(y) = 0. Therefore, J7 (z) C E and since L (z) is invariant by Corollary
2.15, L (z) C A. This completes the proof.

Theorem 5.3: (Asymptotic Stability).
(1) If AC IntQG, then A is an attractor.
(2)  If, furthermore, V(A) = a for some a € R, then A is asymptotically stable.

Proof: (1) Let z€G, then ¥ (z,®(z))=peG and L(p)#0 implies L(z)#0. By
Theorem 5.2 it follows that A is an attractor.
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(2) We first show that F = A: First note that if p € £ then V(7 (z,t)) = V(z) for 0 <t <
®(z). Hence Cy(p) C E. Consequently, COLE) CE. Let pe AC A. Since g(p) € AN G=
V(p) =0 and p € E, that is ACE. Since E is a closed subset of G then E is compact. Also,
F C E is the largest invariant set in E under g, F is also closed and hence compact. Therefore,
by Lemmas 2.12 and 2.14, Cy(F) C CO(G) C G is invariant under 7. Thus,

F:CO(F)QGCAﬂa:}i

implies that F' = A.

Now V(A) =a and A C IntG implies that AcAnGc IntGﬂG C Int(GNN) = IntG.
Hence, by Theorem 7.9 [6, p. 9], Ais asymptotlcally stable in (N g). Consequently, by Theorem
4.7, A is asymptotically stable in (2,7 ).

In the remainder of this section we shall prove the converse of Theorem 5.3. We begin by
proving:

Theorem 5.4: Let AC N be compact_and asymptotically stable in (N,g) Suppose_ there
exists a compact neighborhood 14 of A in N. Then there ezists a positively invariant set Gin N
containing A and a function a: G—R* , such that,

(])  «a is continuous,

()  og(z)) < afz) if z € G — A4,
(i5i) a(z)=0ifz € A, and
(iv) AcCIntG.

Proof: By Lemma 4.4, A is a uniform attractor in (N ,g) Hence there exists a compact
neighborhood V' of A such that, VNN =VnN N =V Int Q(A) where p € Q(A) implies that
J(p) # 0 and J&p) C A. Since A is stable there exists a compact neighborhood U of A, such that,
for any p e U, K(p) C V.

Now on the closure G in N of the positively invariant set W :U{g"(ﬁ):n:ﬂ,l,...} we
define a function ~
B:G—R*
as follows: For z € 6:, R
B(z) = sup{d(¢g™(z),A):n=0,1,2,...}.

Since V is compact and g"(z) € V for each n, B(z) is well defined, and clearly for any z € G,
B(g(z)) < B(x). Furthermore, B(z) = 0 if and only if z € A.

Now define ,Bn:CA?——»R * by setting:
B,(z) = B(g"(x)), for any = € G.

Then clearly 3, , ((z) < B,(z), n=0,1,2,.... Since J(z)C A for any T€ U, g"(m)——».:l as n—oo.
Hence 3, (x)—0 for any z € G and {f,,(z)} is monotone decreasing on G.

We claim that g, (z )——»0 uniformly on G as n—oo. Note that GC@(A) hence for any
ped, J(p) C A. Thus, it is easy to see that given any € > 0 there exists an n, and a 6 > 0 such
that if y € U(p,6)N G then 9" (y) € U(A €) for all n > ng:. For otherwise there exists a sequence
{py} converging to p and {ng}, np—oo, such that, q" k(pe) ¢ U(A €), implying, since V is
compact and contains {g k(pk)} that J(p ) ¢ A, a contradiction. This completes the proof, since
G is compact.

Now define ~
a:G-RT
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by setting,

8

=25

for z € G. Then, by Abel’s Theorem (7, (i1), p 421] o is continuous on G and clearly satisfies (%)
and (7i7) above. This completes the proof.

Theorem 5.5: Let A C Q2 be a closed cylindrical set and for each x € A, ®(z) < oo. Let N be
closed, A=ANN be compact and CO(A) A. If A s asymptotically stable then there exists a
positively invariant set G in Q containing A which admits a Lyapunov function v: G—R T such
that

(7) AC IntG,
(i1)  y(F (2,t)) < y(z) forallt e R, and
(747)  y(z) =0 if and only if x € A.

Proof: By Theorem 4.7, Ais ~asymptotically stable in (N,g) and there exists an open set
VDO Asuchthat V=VNN=VNN and V has compact closure in N.

Since A is stable given the cylindrical open set Co(V') containing A, there exists an open set
UDA, such that, UCCyV) and for any zeU, C’(:c) CCg(V).  This implies that
U=UNNCV and for any pe U, ¢g"(p) € V for n=0,1,2,.... Let G and

a:G-R*
be as in Theorem 5.4.

Now by Lemmas 3.8 and 3.10 there exists an open set W D A such that W C Co(V) and for
any z € W, ®(z) < 0o, % (z,®(z)) € U and 7 (x)cC (J(p)) Let G = U{C(:c) z € W}. We now
define a function

&G—R*
as follows: Let z € G:
1. If ¢ € CO(G) then set &(z) = a(p) where z = 7(p,t), 0 <t < ®(p).
2. If z ¢ Cy(G), then 7 (z,®(z))=p € U, and we set

&(z) = (z) + alp).
3. If € G N M, then z = 7(y, ®(y)) for some y € G and we set

y(z) = Iim+ a(m(y,t)), where ty = ®(y).
t—tg

This limit exists because a(7(y,t)) is a nonincreasing function of t.

That the three conditions (3), (i¢) and (1) as required are satisfied follows easily from this
definition.
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