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ABSTRACT

In this paper we examine second-order nomlinear evolution inclusions and
prove two existence theorems; one with a convex-valued orientor field and the
other with a nonconvex-valued field. An example of a hyperbolic partial differen-
tial inclusion is also presented.
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1. Introduction

In this paper we study the existence of solutions for second order nonlinear evolution
inclusions. Our work here complements the existence results of [7], where we considered first
order nonlinear evolution inclusions. We present two existence results. One in which the multi-
valued term (orientor field) is convex valued and the other with a nonconvex valued orientor
field. At the end of the paper, we work in detail an example of a hyperbolic partial differential
inclusion, illustrating the applicability of our result.

2. Mathematical Preliminaries

Let T =[0,7] and Y a separable Banach space. Throughout this paper we will be using the
following notation: Pf(c (Y)={A CY: nonempty, closed (and convex)}. A multifunction (set-
valued function), F:T—»];f(Y) is said to be measurable if for all z € Y, the R, -valued function
t—d(z, F(t)) = mf{ lz—yll:y€ F(t)} is measurable. By S%(1 < p < c0), we will denote the set
of selectors of F(-) that belong to the Lebesgue-Bochner space LP(Y); i.e. SE = {f € LP(Y):
f(t) € F(t) a.e.}. Tt is easy to check using Aumann’s selection theorem (see for example Wagner
(8], theorem 5.10), that SE is nonempty if and only if the R, -valued function
t—inf{ ||z || :z € F(t)} belongs to LP, .
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Let H be a separable Banach space and X a dense subspace of H, carrying the structure of a
separable, reflexive Banach space, which embeds in H continuously. Identifying H with its dual
(pivot space), we have X—H—X™, with all embeddings being continuous and dense. Such a tri-
ple of spaces is known in the literature as “evolution triple” (or “Gelfand triple” or “spaces in nor-
mal position”). We will also assume that the above embeddings are compact, a condition that is
very often satisfied in applications. By || - || (resp. | - |, || - || ,), we will denote the norm of X
(resp. of H,X™). Also by (-, ) we will denote the duality brackets for the pair (X, X™) and by
(-, -) the inner product of H. The two are compatible in the sense that (-, )| y, g =1(, ")
To have a concrete example in mind let Z CR”™ be a bounded domain, X = Wy"P(Z), H =
LX(Z) and X*=WIP(Z)* =W ~™9(Z), 2 < p < o, —;—+% =1. From the well-known Sobolev’s
embedding theorem we know that (X,H,X™) is an evolution triple and furthermore all em-
beddings are compact. Let W(T) ={z € L*(X):& € L?(X*)}. The derivative in this definition is
taken in the sense of vector valued distributions. Equipped with the norm ||z || W(T) =
RIEA] 22()() + ||z L2(X*)]l/2’ W(T) becomes a separable reflexive Banach space. Furthermore

if X is a Hilbert space, then W(T) is too, with inner product (x,y)W(T):(:L‘,y)LQ(X)-i-

(:'c,g'/)L2(X*),x,y € W(T). Note that the elements in W(T') are up to a Lebesgue-null subset of T,
equal to an X*-valued absolutely continuous function, and, therefore the derivative &(-), is also
the strong derivative of the function z:T—X*. Also, it is well-known that W(T) embeds
continuously into C(T', H). Thus, every equivalence class in W(T'), has a unique representative in
C(T,H). Furthermore, since we have assumed that X—H compactly, we have that
W(T)—L*H) compactly. Recently, Nagy [3] proved that if X is a Hilbert space too, then
W(T)—C(T,H) compactly. For further details on evolution triples and the abstract Sobolev
space W(T') we refer to the book of Zeidler [9] and, in particular, chapter 23.

Let Z and V be Hausdorff topological spaces. A multifunction G: Z—2V\{0} is said to be
upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)), if for every open set U C V,
the set G 7 (U) = {z € Z: G(2) CU} (resp. the set G ~(U) = {z € Z:G(z) NU # 0}) is open in Z.
Other equivalent definitions and further properties of such multifunctions can be found in the
book of Klein-Thompson [2].

3. Existence Theorems

Let T'=[0,r] and (X, H, X™) be an evolution triple of spaces with all embeddings assumed to
be compact. We will be considering the following second order nonlinear evolution inclusion:

{ #(t) + A(t, &(t)) + Ba(t) € F(t,z(t)) a.e. }
(*)

r(0)=z,€ X, 2(0) =z, € H.

By a solution of (*), we understand a function z € C(T,X) such that & € W(T') and an
fESiﬁ(_J(.)) such that Z(t)+ A(t,z(t)) + Bx(t) = f(t) a.e. with 2(0) =z, and z(0) = z,.

Recall (see Section 2), that W(T)—C(T,H) and so the initial condition #(0) =z, € H makes

sense.

First we prove an existence theorem for (x), for the case where the multivalued perturbation
term F(t,z) is convex-valued. To this end, we will need the following hypotheses on the data of

(%)-
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A:T x X—X* is a map such that

(1) t—A(t,v) is measurable,

(2) v—A(t,v) is monotone, hemicontinuous (i.e. for all v, v' € X, (A(t,v) — A(¢,?'),
v—1v') >0 (monotonicity) and for all vectors v, y,z€ X, the map
A—(A(t,v + Ay),z) is continuous on [0,1] (demicontinuity)),

(3)  (A(t,v),v) >c||v| % a.e. with ¢ >0,

(4) || A(t,v) ]|, <a(t)+b|lv]| ae witha(-)€e L% ,b>0.

Be (X, X™), §Bl’ y) =(x,By) for all =z,y€X (ie. B is symmetric) and

(Bz,z) >c'||z || © with ¢’ > 0.

F:T'x H—P; (H) is a multifunction such that

(1) t—F(i,z) is measurable,

(2) z—F(t,x)is u.s.c. from H into H,

(3) | F(t,z)| = sup{|v|:ve F(t,x)} <a(t)+by|z| ae witha ()€ L+, by > 0.

We will denote the solution set of (x) by S(zq,z,) C C(T,X).

Theorem 3.1: If hypotheses H(A), H(B), H(F), hold and xq € X, x, € H, then S(xy,z,) is a
nonempty and compact subset of C(T, X).

Proof: First we will derive some a priori bounds for the solutions of (x). Let z(-)€
C(T, X) be such a solution. Then, by the definition, for some f € 5’%1(. o(-))y Ve have

(1) + A(t,&(1)) + B(2(t)) = f(t) a.e

it yields (B(1), £(1) + (AL, (), 2(1)) + (Ba(t), (1)) = (£(2), (1)) a.e. (1)

Since & € W(T), from proposition 23.23 (iv), p. 422 of Zeidler [9], we know that

(1), a(0) = & [ (1) | 2 (2)

Also because of hypothesis H(A) (3), we have that

(At,&(1),&(1)) > ¢ || #(1) || ae. 3)

Using the product rule and the symmetry hypothesis on B, we get

%(Bﬂf(t),w(t)) = (B&(t),2()) + (Bz(1), &(1))
= 2(Bz(t), &(t)). (4)

Substituting (2), (3) and (4) into (1) above, we finally have

2 1E@ 124 6 () 112+ 5 2Ba(t),2() < (F(1), (1)) ae

Integrating the above inequality, we get that

1

2

|¢(t)|2_%|x1|2+6/ 1 (5) || 2ds +H(Ba(t), 2(1)) — 5 Bag, 20) < / (f(s),(s))ds
0 0
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it yields
t t
617+ 2 [ 113(6) 125+ 212 < M +2 [ (1(5) (s ®)
0 0
where M = 2, |2+ | Bl 3 Il
Applying Cauchy’s inequality with ¢ > 0, we get
t t
[ u@enass [ 156)1- 1561 ds
0 0
t t
<g [ 156 1Pas+k [ 13617
0 0
t t
<§ [ CalsP+28212(6) s+ [ 1305)1%ds
0 0
t t
<c [ @@ +8126) s+ [ 62112) 112
0 0
where 3 >0 is such that | - | <] - ||. It exists since by hypothesis X—H continuously. So,
we have
t
601242 [ 13(6) 1 %5+ e’ 2(0) |
0
t t
2 12 2, B - 2
<Macla 3+ a? [ 1a6) |25+ [ 1136) )%,
0 0
52 52
Let 5- = 2c¢ implies that ¢ = 3. Then we have:
2 2 t
12012+ 12012 < M+ oy 13+ 5588 [ 15012 (+)
0
From (*) by neglecting | (t) |2 and using Gronwall’s inequality, we get
2
By B g
|.1:(t)|25(?_M+W||al ||% ez p 4cc}r =M2 teT. (6)

Using (6) and neglecting ;—; | 2(t)| % in (x), we obtain
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2
5012 < M+ 0, 13+ E0tmEe = M3, ce . (7)

Coming back to (5) and using estimates (6) and (7) above, we get

111 2y < oM + 211 oy 13+ M3+ M) = 3, ®)

Finally, from (5) and (8), we deduce that

l2(t) 1> < (M + 21l 0y 1|3+ 267 M3r + M3r) = M3, 9)

Finally, let p € L?(X) and denote by ((-,)), the duality brackets for the pair (L¥(X),
L3(X*) = LA(X)* ). Also let A: L*(X)—L%(X*) be the Nemitsky operator corresponding to the
map A(t,x); i.e. (Am)(t) A(t,z(t)). Then we have:

((#,2))o < | ((A(&),2))o| + | (Bz,p))o | +((f,P))o
SUIA@ 2 my + 1B 2 m + 1 2] 1211 2

<Ullally+ oMyt || BI oMo+ 8 oy [l g+ 80 Mar P

where ' > 0 is such that || - ||, < 8| - |. It exists since H—X™* continuously. Since p € L%(X)
was arbitrary, we deduce that there exists My > 0 such that for all z € S(z,x,), we have

1812 gey < Ms: (10)

From (8) and (10) above, we deduce that the set
S'(zg29) = {2 € W(T):z € S(xg,7q)}

is bounded, hence relatively weakly compact in W(T).

Now introduce the following modification of the original orientor field F(t,z):
F(t,z) if |z| <M,

F(t,z) = e
F(t,TfT) if |z| > M,.

Observe that I?’(t,x) = F(t,pM2(x)), where pMz( -) is the M,-radial retraction in H. Since
pM2( +) is Lipschitz continuous, we have, using hypothesis H(F'),, that t—Af’(t,m) is measurable
while z‘——»f’(t x) is u.s.c. from H into H,. Furthermore, note that | ﬁ(t,a:) | <a(t)+bM, = ¢(1)

a.e., with ¢( )€ L2 . Let K ={he L*H):h(t)| < ¢(t)a.e.}. This set, endowed with the rela-
tive weak L? (H)- topology, is compactly metrizable. In what follows, this will be the topology con-
sidered on K. Let v: K—C(T,X) be the map which to each h € K, assigns the unique solution of
the initial value problem Z(t)+ A(t,&(t))+ Bz(t) = h(t), z(0) = zy, &(0) =z, (see Zeidler [9],
theorem 33.A, p. 224). We claim that y(-) is continuous. To this end, let h,—h in K and let

= 7y(h,).- Recall that {z_}, >1C W(T) is relatlvely weakly compact. Hence, by passing to a
subsequcnce if necessary, we may assume that & ——»y in W(T). Let z =+v(h). We need to show
that y =z. We have:
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(#,(t) = 8(1), &,(2) — (1)) + (AL, 2 ,(2)) — AL, 2(1)), £ ,,(1) — (1))
+ (an(t) - B.’L‘(t), xn(t) - :L’(t))

= (h,(t) — h(t), &, (t) — & (1)) a.c.

Exploiting the fact that A(t, -) is monotone and using the integration by parts formula for
functions in W(T') (see Zeidler [9], proposition 23.23, p. 422), we get

L1, (6)  (8) |2+ (Bap(8) = (), (1) — (8)) < (hp(t) = h(2), &, (1) — (1)) ace.

But, as before, exploiting the symmetry of the operator B, we have

(Bl (1) — 2(1)), (1) — (1)) = § S(B(a,(1) = 2(0)), 2, (1) - ().

5 18 =5 |2+ 5 LB (2,(8) = 2(1)), 2,(8) — 2(8)) < (hp(t) = h(8), & (1) = (1)) ace.

Integrating and recalling that x,(0) = z(0) = =, &,(0) = £(0) = z,, we have:

t

$1,(0) = 3(0) |+ HB(a, (1)~ 2(0) 2, ()= 2(0) < [ (o)~ h(5),.,(5) — i(s))ds

0

which yields
t

Slan® =017 < [ (h(s) = hs)(5) — 3()ds

0

which yields
t
l2u®) =212 <2 [ (h(6) — hs),,(6) — ().
0
Note that h,“%h in L*(H) and &, %y in W(T). Since W(T)—L*(H) compactly, we have that
.5 . 2
&,—y in L*(H). Thus we have:

/ (ho() = h(s),&(5) — (5))ds
0
t t

= / (hn(s) = h(s),&,(s) —y(s))ds + / (h,(s) — h(s),y(s) — &(s))ds—0 as n—oo.

0 0

So z,,(t)>z(t) in X yields & =y € W(T). Now note that

lea()) = 2O 1% < 2 b =Rl 2 W= 1 2

Since h,~>h in K, we have || h, —h || L2(H) < N for all n > 1 and some N > 0. Thus
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[ 2a(t) = 2(t) || < ~N &, -2 | -0

L2(H)
which implies that 4(-) is indeed continuous as claimed.

Let R: K—2X be the multifunction defined by

Rh) = F( Y(R)(-))

First we will show that R(-) has nonempty values. Let s, () be simple functions such that
s5,(t)>v(h)(t) a.e. in H. Then because of hypothesis H(F)(1), for each n > 1, t—F(t,s a(1)) is
measurable Apply Aumann’s selection theorem to get f, :T—H measurable such that f (1) €
F(t,:vn(t)) a.e.,, n>1. Note that |f (t)| < é(t) a.e. with ¢(-) € L2 . Hence by passing to a
subsequence if necessary, we may assume that f,=f in L*(H). Then theorem 3.1 of [6], tells us
that

£(t) € Tonw w-lim{f (1)}, >

C conv w-limF(t,s,(t))

C F(t,7(1)(1)) ac.

The last inclusion follows from the fact that F(t, -) is u.s.c. from H into H,, and since s, (t)>

¥(h)(t) a.e. in H. Therefore f € SF( p(B)(-)) and so we have established that the values of the

multifunction R(-) are nonempty. Also since F'(t,z) is Py.(H)-valued, it is clear that for every
h€ K, R(h)€ P;(K). Furthermore using theorem 4.2 of [6] and recalling that y(-) is
continuous on K lnto C(T,X), we get that R(-) is u.s.c. Apply the Kakutani-KyFan fixed point
theorem to get h € R(h). Then = y(h) is a solution of (x), with F(t,z) replaced by F(t,z).
But as in the beginning of the proof, with the same a prior: estimation, we can show that
| z(t)| < M, for all t € T implies that F(t, z(t)) = F(t,z(t)) and this yields that z(-) solves (x).

Finally to establish the compactness of S(zy,z,) in C(T,X), note that S(zy,z,) C y(K) and
the latter is compact in C(T', X) since y: K—C(T, X) is continuous. So it suffices to show that
S(zg,x,) is closed in C(T,X). So let {z.}, 5, C S(zg ;) and assume that z,—z in C(T,X).

Then by definition z,, = y(f,) with f, € SZF( )z, () Note that because of hypothesis H(F'),(3)

[ f(t)] <ay(t)+by N, where N =supllz, |l o 7, X) So we may assume that f_*3f in L*(H)
implies that y(f,,)—7(f) in C(T, X) which yields = y(f) and from theorem 3.1 of [6], we have
that f(t) €conv w—lim {f, (1)}, >1 € conv w—limF(t,z(t)) C F(t,z(t)) a.e. which yields
r € S(zg, ). Q.E.D.

Now we consider the case where the multivalued perturbation term F(¢,z) is not necessarily
convex-valued. We will need the following hypothesis on the orientor field F(t,x).
H(Fy): F:TxH—Py(H)is a multifunction such that
(1) (t,z)—F(t,z) is graph measurable; ie. GrF = {(t,z,y)€e TxHxH:y€
F(t,z)} € B(T)x B(H), with B(T) (resp. B(H)), being the Borel o-field of T
(resp. of H) (recall that measurability of F(-, -) implies graph measurability).
z—F(t,2) is Ls.c.
| F(t,z) | = sup{|y|:y € F(t,x)} < ay(t)+b, | ¢| ae. with a(+)€ L,
by > 0.

Theorem 3.2: If hypotheses H(A), H(B), H(F), hold and zo € X, x, € H, then S(zg,z,) #

—
oo b
~ ~—
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Proof: As in the proof of theorem 3.1, let F(t,z) = F(t, Pu, (z)) (it is clear that the same a

priort estimation is valid in _the present situation). Then given that Ppr. () is Lipschitz contin-
uous, we have that (1, :c)-»F(t z) is graph measurable, :c—»F(t z) is l.s.2. and furthermore note
that | F(t,z)| < ay(t) +b My = ¢(t) a.e. with ¢(- )EL2

Let V C LY(H) be defined by V = {h € L'(H): | h(t) | g #(t) a.e.}. From proposition 3.1 of
[5], we know that V, equipped with the relative weak L'(H)- topology, is compact metrizable.
Consider the multifunction T V—»Pf(Ll(H)) defined by I'(h) = F( YR It is easy to check

using the continuity of y(-) and theorem 4.1 of [6], that I'(-) is ls c. ( note that if h,5h in
V C L'(H), then h,“h in L?(H), since ¢(-) € L* +)- So, we can apply Fryszkowski’s continuous
selection theorem [1] to get k:V—V continuous such that k(h) € R(h). Applying the Schauder-
Tichonov fixed point theorem, we get h € V such that h = k(h). Then z = p(h) solves (*) with
F(t,z) replaced by F(t,z). But as before we can check that |z(t)| < M, which implies
F(t,z(t)) implies that F(t,z(t)) which yields x € S(zg, z,). Q.E.D.

4. An Example

In this section we present an example of a nonlinear hyperbolic partial differential inclusion
illustrating the applicability of our work.

So let T =[0,r] and Z a bounded domain in RY, with smooth boundary T = 8Z. We will
consider the following initial—boundary value problem of hyperbolic type with multivalued terms.

1=1
z | TxI = 0,z(0,2) = wo(z),xt((),z) = zy(2).

{ Lo Ao= 3 Dkt | Doy 1D,z € Ly (1212t ) ot 212(0,2)] } "

N
Here D, = a—az— i=1,..,N, Dz=(Dqzq,...,Dyz)=grad(z), DzDy :,ZlDi‘”Diy and
1=

| Dz|? = Z | Dy | 2.

We w1ll need the following hypotheses on the data of (*x):
H(k): kT xR, —R_ is a function such that
(1) t——>k(t, u) is measurable,

(2)  p—k(t,p) is continuous,
(3) 0 <k(t, ,\2)<Lforall (t,\) € T xR, with L >0 and k(t,0) =0,
(4)  k(t, A2)A —k(t, u?)p > d(A— p) for all A\, u € R, ,X > p and for some d > 0.

H(f):  fy,fy:TxZxR—-R are measurable functions such that z—f,(t,2,z), f2(t z,&) are
lsc and | fi(t,z,2)| <ay(t,z)+by(2)|z| ae i=1,2 with (-, )€ L¥T x2),

by(- )€L°°(Z) and f1<j;2
A ()EH(Z) z,(+) € L(2).
In this case, = HY\Z), H=1*Z) and X*=H}Z)*=H " '(Z). We know that

(X,H,X™) is an evolution triple with all embeddings being compact (Sobolev embedding
theorem). Consider the following Dirichlet forms:

a,(t,z,y) = / Z k(t, | Dz | %)DzD jydz = /k(t, | Dz | ) Dz Dyd=
1=1

and ay(z,y) / Z D;zDydz = /Dnydz

Zi:l
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for all z,y € HY(Z).
Using hypothesis H(k) (3), we get

a,(t,x <L|lx .
la(t )| <Ll 1

So there exists a nonlinear operator A:T x X— X* such that

(A(t’ 2)7 y) = al(t’ T, y)'

From Fubini’s theorem we have that t—a,(t,z,y) is measurable which implies that t—A(¢,z)
is weakly measurable. But H ~!(Z) is a separable Hilbert space. So the Pettis measurability
theorem tells us that t—A(t,z) is measurable. Also if z_ —z in H}(Z), then by passing to a
subsequence if necessary, we will have that | Dz, (2)|?—|Dz(z)|? a.e. and since by hypothesis
H(k)(2) k(t, -) is continuous we have k(t, | Dz, (z)| %)—k(t, | Dz(2)|?) for all t € T and almost
all z€ Z. Also Dz, %D in L*(Z). Thus [k(t, | Dz, |*) Dz, Dydz— [k(t, | Dz |%)DzDyd>

Z Z

implies that A(t,z,)—A(t,z) which yields A(t, -) is demicontinuous, this hemicontinuous. Also
we have

(4(t,2) = Altw) =3 = [ (k(t, | D2 | Dz~ K, | Dy | )Dy)(Dz — Dy
VA
Then, because of hypothesis H(k)(2) and lemma 25.26 (b), p. 524 of Zeidler [9], we have
A(t,z) — A(t,y),z—y)>cl|lz— 2 ,c>0
(At,2) - Albyhe = 2cllz=yll} 4
which yields that A(t, -) is strongly monotone.

Also since k(¢,0) =0 (by hypothesis H(k)(3)), we have A(¢,0) =0 yields that A(t,-) is
coercive; i.e., (A(t,z),z) > c|l z|| ?—II(Z)' Thus, we satisfied hypothesis H(A).
0
Next note that by the Cauchy-Schwartz inequality, we have

So there exists a continuous linear operator B: X— X™* such that

(B.’L', y) = a2(1:, y)'

Clearly (Bz,y) = (z, By); i.e. B is symmetric and by Poincaré’s inequality, we have (Bz, ) >
x| iII(Z)’ ¢’ > 0. Therefore, we satisfied hypothesis H(B).
0

Next let F: T x L*(Z)—P;(L*(Z)) be defined by

F(t,z)={h € Lz(Z):fl(t,z,:c(z)) < h(2) < fy(t,z,2(2)) ae.}.

Let m:T xZxR—P; (R) be defined by n(t,z,z) = [f1(t,z,2), fo(t,2,2)]. Because of hypo-
thesis H(f), we deduce that n(-, -, -) is measurable while 7(t,z, - ) is u.s.c. (see Klein-Thompson
(2], p. 74). Note that F(t,z) = S%(t () So, from theorem 4.2 of [6], we have that F(t, -) is

w.s.c. from H into H,, while clearly t—F(t,z) is measurable. Also, | F(t,z)| = sup{|y| L2z :

w? )

VEFUD) < B0 4Ty 2] o, with 3y(0)= ol ) a0 D= (18] oy Thus, we
satisfied hypothesis H(F'),. Finally, let Z, = zy(-) € H{(Z), 2, =x,(-)€ LY(Z).
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Rewrite (**) in the following equivalent nonlinear evolution inclusion form:

{ i(t) + A(t, & (1)) + Bz(t) € F(t,z(1)) }
()’

2(0) = &g, 2(0) = 2.

Theorem 4.1: If hypotheses H(k), H(f) and H, hold, then (%) has a solution €
2 -
C(T,HY(2)) such that §% € LT, H}(Z2))n C(T,L*Z)) and gT;eLZ(T,H Y(Z)). Also, the
solution set is compact in C(T, H)(Z)).

Now suppose that (%) corresponds to an optimal control problem; i.e.
fi(t,z,z) = f(t,z,x)uy(2)
and folt z,2) = f(,2,x)uy(2)
with a function f:T'x Z xR—R , such that (t,z)—f(t,z,x) is measurable, x— f(t,z,z) is contin-

wous and | f(t,z,z)| <ay(t,2) +b,(2)x ae., with a;(-,-)€ L} (T xZ), by(-)€ L®(Z). The
control constraint set is defined as

U(t,z) = {v € Riuy(2) < v < uy(2)}
with 0 < uy(2) < uy(z) < M a.e.
b
We are also given a cost functional J(z) = [ [ L(t,zx(t,2))dzdt to be minimized over all ad
0z

missible trajectories. Assume that L:T x Z x R—R = RU { 4 0o} is a measurable integrand such
that L(t,z,-) is lsc. and ¢(t,z)—M(z)|z| < L(t,z,z) ae with ¢(-, )€ LT x2Z2),
M(-)e€ L% (Z). Then, J(-)is l.s.c. on C(T,H}(Z)), and so, using theorem 4.1 above, we deduce
that this distributed parameter optimal control problem has a solution. Analogous results for
parabolic systems can be found in [4].
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