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ABSTRACT

The existence of random fixed points for nonexpansive and pseudocontractive
random multivalued operators defined on unbounded subsets of a Banach space is
proved. A random coincidence point theorem for a pair of compatible random
multivalued operators is established.
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1. Introduction

Random fixed point theorems for contraction mappings in Polish spaces were proved by
Spacek [20], Hans [7, 8] and many others. For complete survey, we refer to Bharucha-Reid [3].
Itoh [10, 11] established several random fixed point theorems for various commuting single and
multivalued random operators. Afterwards, Sehgal and Singh [18], Papageorgiou [17] and Lin
[15] proved different stochastic versions of well-known approximation result of Fan [4] and
obtained some random fixed point theorems. Recently, Beg and Shahzad [2] studied the structure
of common random fixed points and random coincidence points of a pair of compatible random
multivalued operators in Polish spaces. The purpose of this paper is to prove some random fixed
point theorems for random multivalued nonexpansive and pseudocontractive operators defined on

closed convex unbounded subsets of a Banach space. Section 2, is aimed at clarifying the termino-

logy to be used and recalling some necessary definitions, in Section 3, the existence of random
fixed points for nonexpansive random multivalued operators defined on an unbounded closed
convex subset of a Banach space is established. A random fixed point theorem for Lipschitzian
pseudocontractive operators is also proved. Section 4 contains a random fixed point theorem for
a (a)-firmly nonexpansive random operator in separable Banach spaces. Section 5 deals with

random coincidence point theorems for a pair of compatible random multivalued operators satis-
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fying a contractive type condition.

2. Preliminaries

Throughout this paper, (fl, A) denotes a measurable space. Let (X,d) be a metric space,
(X) the family of all subsets of X, %(X) the family of all nonempty compact subsets of X,
%(X). the family of all nonempty closed bounded subsets of X and %(X) the family of all
nonempty closed bounded convex subsets of X. A mapping T:(X) is called measurable if
for any open subset C of X, T- 1(C) {w E f: T(w)gl C # } E A. A mapping : f--,X is said
to be a measurable selector of a measurable mapping T:f--,(X) if is measurable and for any
c0 f, (co) T(w). Let M be a subset of X. A mapping f:fxM--X is called a random
operator if for any x M, f(.,x) is measurable. A mapping T:fxMe%(X) is a random
multivalued operator if for any x M, T(. ,x) is measurable. A measurable mapping : f---M is
called a random fixed point of a random multivalued (single-valued) operator T:f x M--,e%(X)
(/: f x MX) if for every a E f, (o) T(o, (o))((o) f(0, (o))). A measurable mapping
: f--,M is a random coincidence point of T: f x Me%(X) and f: f x M---,X if for every w f,
f(w,((c0)) T(co,((o)). A mapping T: M---,e%(X) is upper (lower) semicontinuous if for any
closed (open) subset C of M, T-1(C) is closed (open). A mapping T is called continuous if T is
both upper and lower semicontinuous. A mapping T:M--,E%(X) is called Lipschitzian if
H(Tx, Ty) < k d(x,y) for any x,y M, k > O, where H is the Hausdorff metric on %(X),
induced by the metric d. When k < 1 (k 1) then T is called contractive (nonexpansive). A
mapping T: M---,C%(X) is pseudocontractive if for any x, y M, u Tx, v Ty, r > 0, we have

II - y II < II(1 + r)(x- y)- r(u- v)II-

A random operator T: f x MC%(X) is pseudocontractive if T(w, is pseudocontractive for each
0 e a (in this case, r:a[0,oc)is a measurable mapping). Following Itoh [10], a measurable
mapping L:a---,[0, oc) is called Lipschitz measurable mapping of T if, H(T(co, x),T(w,y)) <_
L(co)d(x,y). Let T:f x M--,E%(X) be a random operator and {,,} be a sequence of measurable
mappings n:f--M. The sequence {n} is said to be asymptotically T-regular if d(n(co),
T(co, n(co)))--0 for each a e a. Mapping T: M--,e%(X) is said to be demiclosed if the conditions
that xn converges weakly to x,yn converges to y, and Yn Txn’ imply that y Tx. For any
A e %(X), we denote with CD(A) the closed convex hull of A.

3. Pudom Fixed Points for Random Multivalued Operators Defined on Unbound-
ed Sets

In 1978, Goebel and Kuczumov [5] proved that, if X is a closed convex subset of 2 and
T:XX is nonexpansive for which there exists a point x X such that the set

LS(x, Tx; X): {z e X: <z x, Tx x) >_.0)

is bounded, then T has a fixed point in X. Kirk and Ray [13] have shown that if X is an un-

bounded closed convex subset of a uniformly convex space and T:XX is a Lipschitzian pseudo-
contractive mapping for which the set

(, Tx; x): (z e X: II z- Tx II II z- x II}

is bounded for some x E X, then T has a fixed point in X. Subsequently, Marino [16] extended
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these results to the multivalued case and improved some known results.

Let X be a real Banach space and let K be a nonempty convex subset of X. We set (for any
x, y E X)

r(z,y): lim II + tu II II II
tO +

Following [16] we define, for z, y E X, e > 0, A C_ X,

LS(x, y; K): -{zGK:v(x-z,y-x)<0}

and

LS(x,A;K)" -{zK’3aGA:v(x-z,a-x)<0}

U LS(x,a;K)

LS(x, A, ; K): -{zK’qaEA:r(x-z,a-x)<}

[.J
cEA

The aim of this section is to establish random fixed point theorems for nonexpansive and
pseudocontractive random operators defined on unbounded sets in Banach spaces.

Theorem 3.1: Let X be a separable closed convex subset of a real Banach space, and let
T: f2 x X---%(X) be a nonexpansive random operator. Suppose that for some bounded set W C_ X
the set LS(W,T(w,W);X): LS(z,T(w,z);X) is bounded for each w f2. Then there .exists

zW
a bounded sequence {n} of measurable mappings n:f2---X which is asymptotically T-regular.

Proof: Choose an element y X and a sequence icon} of measurable mappings an" D(0, 1)
such that cn(w)-l as n--< pointwise in w. For each n, define a contractive random operator

Tn: f2xX---+%(X) by Tn(w,x)"-(1-(w))y+an(w)T(w,x). Then by Itoh [10], T, has a

random fixed point n" Assume that the set {n(W)}n e N is unbounded. Then it is possible to
choose k @ N such that for each w

sup H({y},T(w,z)) < d(k(w),W (1)
zW

and
sup IlPll < lick(w) ll" (2)

p @ LS(W, T(w, W); X)

We will prove that for any z E W and D, there exists xz T(,z) such that 7(z-
z) < 0. Indeed, by .k() (1 ak(w))y + ak()T(, k()), it follows that

k(w)- (1- ak(w))y + alc(w),k(w), rlk(w

for each w E f. (The existence of measurable maps r/k: f/-X is due to Kuratowski and Ryll-Nard-
zewski [14].) From the nonexpansivity of T, there exists xz e T(w,z)such that for any w e a,
II ()- z II _< II ()- z II and therefore r(z ,k(w), xz z) < 0 for each w a [16, see proof
of Theorem 2]; that is, k(w) LS(W,T(w,W);X), contradicting (2). Thus, M(w)’-
sup{ N)< o for all weft, (the mapping M’a---N + is measurable)and
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moreover,

(i-an(w)) (i-an(w))d((n(w T(w, n(w))) < II n(w) y II < M(w)---O

Theorem 3.2: Let X and T be as in Theorem 3.1.
W C_ X and e > O, the set

Suppose that, for some bounded set

LS(W, T(w, W), ; X)" f’ LS(z, T(w, z), ; X)
zEW

is relatively compact for each w E . Then T has a random fixed point.

Proof: Let y G X and A(w): sup{ II Y x II:x G T(w, W)}. Then, for each sequence {an} of
/

mappings an: --(0, 1) such that for any w G , an(w G I(w): ,( A(w,l- ,) (0, 1)measurable

and an(w)0 as n, we define a contractive random operator Tn:xX%(X by
Tn(w,x): (1-an(w))y + an(w)T(w,x). As in Theorem 3.1, Tn has a random fixed point n,
that is, n(w) T(w, n(w)) for each w . For any z W, there exists xz T(w,z), such that

II n(w) Xz II <- H(Tn(w, n(w)), T(w, z)),

for w e ft. Therefore, 7(Z-n(W),Xz-Z < e [16, see proof of Corollary 3]. Hence, n(W)
LS(W,T(w,W),;X) for each w . By Theorem 3.1, we have d(n(w),T(w,n(w)))0 as

ncx. For each n, define Fn:12%(X by Fn(w ce{i(w): i_> n}, where c(6) is the closure of
C.. Let F’---%(X) be a mapping defined by F(w)- Fn(w). The mapping F is measurable

by Himmelberg [9, Theorem 4.1]. Thus by Kuratowski and Ryll-Nardzewski [14] there is a mea-
surable selector * of F. Fix wE arbitrarily, then some subsequence {k(w)} of {n(W)}
converges to *(w). Thus * is a random fixed point of T.

Corollary 3.3: Let X be a separable closed convex subset of a reflexive (real) Banach space,
T:Qx X---,%(X) be a nonexpansive random operator, and for each w , I-T(w,.) be demi-
closed on X. Suppose that, for some bounded set W C_ X the set LS(W,T(w,W);X) is bounded

for each w . Then, T has a random fixed point.

Proof: As in the proof of Theorem 3.1, there exists a bounded sequence of measurable
mappings n: ---,X such that

n(w) (1- on(w))y + an(w)rin(w with rln(w

for each w a, {tin(w)} is also bounded, and II n(w) fin(w)II (1 -an(w))II ’()II-0 s
nc. Fix w E . By reflexivity, there exists a subsequence {k(w)} of {n(w)} such that
converges weakly to (w), where :--.X is a measurable mapping. Since n(w)-r/n(w (I-
T(w,. )), both (n(w) and n(w)- n(w) converge to 0. Since I- T(w,. is a demiclosed mapping,

Corollary 3.4: Let X,T,W be as in Theorem 3.1 and suppose that there exists > 0 such
that LS(W,T(w,W),;X) is relatively compact for each w . If I-T(w,.) is demiclosed on

X for every w , then T has a random fixed point.

Corollary 3.5: Let X, T, W, LS(W, T(w, W); X) be as in Theorem 3.1. If the Banach space
is reflexive and satisfies Opial’s condition (that is, if zn converges weakly to z and z v),
liminfllzn-z]l <liminfllZn-Vll) then T has a random fixed point.

Corollary 3.6: Let X, T, W, LS(W, T(w, W); X) be as in Theorem 3.1. If Banach space is uni-

formly bounded, then T has a random fixed point.
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Theorem 3.7: Let Y be a reflexive real Banach space which satisfies Opial’s condition. Let
X be a separable closed convex subset of Y and let T:f x X---,%(Y) be a Lipschitzian pseudocon-
tractive random operator which satisfies the inwardness condition: for any x E X, T(w,x) C_
Ix(x), for each w G f2. Suppose that there exist xo G X and e > 0 such that LS(Xo, Co(T(W, Xo)),
; X) i8 boltnded for each co ft. If Z(co, X)(-1Br is compact for any Br {z G X: II II _< )
then T has a random fixed point.

Proof: Let L be a Lipschitz measurable mapping of T.
2(0, oe) such that

Select a measurable mapping

0 < a(co) < min(L- l(w),e(2H({xo},T(w, Xo))+ L(w)e)- 1).

Then, for any y G X, define a contractive random operator Tu’f x X--,%(Y) by Tu(w,x -(1-
a(co))y+c(co)T(co, x). The operator Tu satisfies the inwardness condition" for any z e X
Tu(co z) C_ Ix(x for each co e a.

Consider the mapping G:fxX--.(X) defined by G(w,y)- {x:x G Tu(w,x)}. For any
y e X, G(.,y):ft--2(X) is measurable [11, see proof of Theorem 3.1]. Also G(w,y)is nonempty
and closed for every y G X and co G ft. It is easy to verify that

G(w, y) c_ (1- a(w))y + a(w)T(w, G(w, y)) (3)

and
(w) e G(co, (co)) iff (w)e T(co,(co)) (4)

for each co e a (where c: a---X is a measurable map). For u, v ( X (fixed),

II a- b II II u- v II for any a e G(co, u) and b e G(co, v), for each co ft. (5)

Indeed a

_
G(w, u) and b

_
G(w, v)imply that

a (1 c(w))u + c(w)rl, r]

_
T(w, a), (6)

( ()) + (), e T(, ), (7)

and so, from pseudocontractivity of T, from (6) and (7) and choosing r(co)< a(w)/(1- a(w)) for
each co Eft,

II a b II I1(1 + r(w))(a b) r(w)(r (,)II

II (1 + r(w))(a- b)- r(w).
a(.w)[a (1 a(w))u b + (1 a(w))v] It

r()II (1 + r(co))(a b) a,w,[(at) b) (1 a(w))(u v)] II

II (1 + r(w)- r(w)(a-b)- r(w)(
(), (), ())( v)II

< (i + r(co) r(w) r(w)( 1 ()) I1 v II.(), II a- b II +
Therefore r(co)(1 --C(co))C-l(co)II a-b II < r(co)(1 --C(co))C- l(co)l] tt--V il, proving (5).
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It follows, in particular, that G(w,y) belongs to N(X) for any y E X and w E . Besides,
T(w,G(w,y)) is bounded (since T is Lipschitzian), and by (3) we can conclude, under the
hypothesis, for each w G, T(w,X) VBr is compact for any r, that, for any y G X,
a(,y) e %(X). From

H(G(w, x), G(w, y)) <_ sup{ II a- b II a e G(w, x), b e G(w, y)),

and from (5)it follows that the random operator G:ax X--.%(X)is nonexpansive, and by (4),
has the same random fixed point of T. The set LS(xo, G(w, Xo);X is bounded for each w

[16, proof of Theorem 8], Corollary 3.5 implies that G has a random fixed point.

4. Random Fixed Points of Firmly Nonexpansive Random Operators

Let C be a nonempty subset of a Banach space X, and let A ( (0,1).
T: C--,X is said to be A-firmly nonezpansive if

Then, a mapping

II Tx- Ty II <_ II( 1 A)(x- y)+ A(Tx- Ty) II (8)

for all x, y C. In particular, if (8) holds for every A (0, 1), then T is said to be a firmly nonex-

passive mapping. It is clear that every A-firmly nonexpansive mapping is nonexpansive. Con-
versely, with each nonexpansive mapping T:C--+C ..one can associate a firmly nonexpansive
mapping with the same fixed point set, whenever C is closed and convex [6]. A random operator
T:a x C-C is said to be A(w)-firmly nonexpansive for some measurable mapping A:f--,(0, 1), if
T(w,.) is (w)-firmly nonexpansive for each w E 12. The aim of this section is to obtain a

random fixed point theorem for a A(w)-firmly nonexpansive random operator which is a stochastic
analogue of theresult by Smarzewski [19].

Theorem 4.1: Let X be a separable uniformly convex Banach space, and let C’--@(X) beta

measurable mapping defined by C(w)-(.J Ck(W), where Ck’f---CC(X are measurable
k-1

mappings for each 1 < k < n. quppose for any w f, T(w, ): C(w)--+C(w) is A(w)-firmly nonex-

pansive for some measurable map A:---(0, 1). Then T has a random fixed point.

Proof: Let :f--+X be a measurable mapping such that (w) C(w) for each w a, and let
{((w)} be the unique asymptotic center of the sequence {Ti(w,((w))} for each w eft with respect
to (1 _< _< n). In other words, by the uniform convexity of X, the measurable
maps k: f--+X, such that k(w) E Ck(co for each w f, are uniquely determined by the identity

x--- inf f(w,x), (9)f(w,k(w))
e ck()

where for x X, the convex measurable map f(.,x):ft--+[0, oo)is defined by f(w,x)- limsup

II x- Since T is a nonexpansive random operator, we have

11T(co, k(a)))- T + l(c0, ((.o))11 <_ [[ k(c0)- Ti(co, (a)))11.

Hence,

f(, T(, k(w)))

_
f(w, k(w)) (10)

for all k and c0 f. Now, if T(co,k(co)) Ck(co for each w E a and for some k, the uniqueness
of an asymptotic center, in conjunction with (9) and (10), yields that T(co,(lc(w))- (k(co) for
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each w E f. Otherwise, if T(w,,k(w Ck(w for all k and w E f, then there exist integers {ni,
n2,.. nm}C{1 2.. n} (m>2) such that T(w,nk(w))GVnk (w) (k--1 m-l) and

Y(w, nm(W)) G Cnl() for each w G . Clearly, without loss of generality, one can rearrange the

sequence of measurable mappings Ck:(X in such a way that nk k for all k. Hence one

can combine (9) and (10) in order to get, for each w .G ,
f(w,l(W)) <_ f(w,T(W,m(W))) <_ f(w,,f,m(W))

<_ f(w,Z(w,m_l(W))) <_ f(W,m_l(W))...

<_ f(w,2(w)) <_ f(w,T(W,l(W))) <_ f(w,,l(W)).

Thus, we have

f(w,T(w, (,k(W))) f(w, ,5,k + 1(0))

for w G f. This, in view of the uniqueness of asymptotic centers k: f--X, yields that

k + 1(0) T(w, k(w)) for each w e f and k (1, 2,..., m). (11)

Here we denoted m + 1(c) 1(c) for the simplicity. Hence we readily derive for co e a,

II - 1(60) k(cO) II II T(,k())- T(w,k + 1(co))II

l] T(w,k- I(W))- T(w,k(w))II

< II - 1(w) k(60) II for every k,

and

II 1(co) -,2(co) II II ()- 3(ca) II -,

II m- 1(6) m(co) II II 1,() m(,o) I1 (), (12)

where 7: f-N + is a measurable map.

Clearly, if 7(w)=0 for each ea, then l(w)={2(w)= T(W,{l(W)) by (11). Thus it

remains to show that the inequality 7(c0)> 0 for each w G f, is impossible. Since T is

firmly nonexpansive for some measurable map 1:a---,(0, 1), it follows from (11) that

-< [I (1 ,())(k(w)- k- l(w)) + 1(w)(k + 1(co) k(ca)) II
_< (1 ,(w))I[ k(w) k- 1(co) II + ()II + 1(co) k(co) II

().

Therefore, in view of the uniform convexity of the norm, we get
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k((0)- k-- 1((0) Ok((0)(k A- 1((0)- k((0))

(2 k

_
m,m +,1((0) 1((0)) for any w E a,

for some non-zero real-valued measurable map a. Moreover, by (12), we have lak(w) 1 for
all k and co E f. Hence, the following two cases may occur.

Case I: If ak(w 1 for each (0 ( a and for some k, then k- 1((0) k A- 1((0)" Therefore,
one can apply the definition of a ((0)-firmly nonexpansive operator and (11) to get, for each
weft,

[I k((0)- k- 1((0)[[ It T((0’k- 1((0))- T((0,((0))I[

I1(1 ())(_ 1((0)- k((0)) -[- ")((0)(k((0)- k- 1((0))II

II 1 2 ((0)II II < II 1(09) II"
This contradiction shows that 7((0) 0, for each (0 f.

Case II: If a/c(w) 1 for each (0 f and for all k, we have

2((0) (1((0) + 3((0))/2’ 3((0) (2((0)-4- 4((0))/2

rn- 1((0) (rn- 2((0) -" rn((0))/2, rn((0) (1 ((0) -[- rn- 1((0))/2"

Clearly, the first m-2 identities mean that the points 2((0),3((0),’’’,m-1((0) divide the
interval [1((0), m((0)] into rn 1 subintervals [tk((0), (k + 1((0)] (1 < k < rn 1) of same length
7((0) > 0 for each (0 ( f. But this leads to a contradiction with the identity (m((0)- ((1((0)+
m--1((0))/2 for each (0 (5 . Hence we have always 7((0)- 0 for (0 , which completes the
proof.

5. A Random Coincidence Point Theorem

Jungck [12] gave the notion of compatible single valued mappings. Subsequently, Beg and
Azam [1] introduced th notion of compatible multivalued mappings and proved various Banach
type fixed point theorems for multivalued mappings. In this section we obtain a random coinci-
dence point theorem and random fixed point theorem for random operators satisfying a contrac-
tive type condition.

Throughout this section, let (X,d) be a Polish space, that is, a separable complete metric
space. Mappings T: X---,e%(X) and f: XX are compatible if, whenever there is a sequence {xn}
in X satisfying nli_,rnfxn enlimTxn (providedn_olimfxn exists in X andnli_,rnTxn exists in %(X)),
lim H(fTx, TZxn)- O. For details we refer to Beg and Azam [1] Random operators f.ax
X--,.X and T: a x X--,e%(X) are compatible if f((0,. and T((0,. are compatible for each (0 e f.
(See Beg and Shahzad [2].)

Theorem 5.1: Let T:f2x XC%(X) be a random multivalued operator and let f:f2xXX
co.ti..o.   .eom

compatible and for all x,y G X and

H(T(w, x), T((0, y)) < A(w)d(f(w, x), f(w, y)) (13)
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(where A:2--(0, 1) is a measurable map), then there is a random coincidence point of f and T.

Proof: Let 0:f---X be an arbitrary measurable mapping. Let l:f---X be a measurable
mapping such that Ya: fX defined by Yl(W) f(w,l(W)) E T(W,o(09)). The existence of a

measurable map ya:f---X is due to Kuratowski and Ryll-Nardzewski [14]. Using Itoh [10, Pro-
position 4] and the fact that T(w,X)C f(09, X) for every w E f, we may choose a measurable
mapping 2: f--X such that for each w G f, it holds true that

y2(w)- f(w,2(09))e T(W,l(W))- Al(W

and
d(Yl(W),y2(w))- d(f(w,l(W)),f(w,2(w))

<_ H(T(w, o(W)), T(co, a(09)) -t- A(09).

Since for each w f, T(w,X) C_ f(w,X) by [10, Proposition 4], there exists a measurable selector
f(" ,3(" )) Y3: f--,X of T(., {2(" )) such that for any w 6 f,

d(y2(09), Y3(09)) d(f(w, 2(w)), f(w, 3(09)))

<_ H(T(W,l(W)),T(w,2(w)) -F

By induction, we form sequences of measurable mappings such that for each w E f and n > 0,

yn(W) f(w,n(w)) e T(w,n 1(09)) An- 1(09)"

Furthermore, for any

d(Yn -F 1(09), Yn -F 2(09)) d(f(w, n + 1(09))’ f(w, n + 2(w)))

<- H(T(w,(n(w)),T(w,(n + 1(09))) - An q- 1(09)

and
d(Yn + 1(09)’ Yn + 3(09)) d(f(09,n + 2(09)),f(09,n + 3(09)))

<_ H(T(09,n + l(09)),T(09,n + 2(09.0))) -t- An + 2(09).

Hence,

d(f(09, n + 1(09)), f(09, , + 2(09))) -< A(09)d(f(09, n(09))’ f(09’ , + 1(09))) "+" An + 1(09)

<_ A(09){H(T(09,n l(09)),T(09,n(W))) + An(co)} -F An + 1(09)

<- A2(w)d(f(09, n 1(09)), f(09’ n(09))) + 2"kn + 1(09)

nan + 1(09). (14)
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Similarly,

d(f(, n + 2(w)), f(w, n + 3(0)))) -< An "4- (w)d(f(w, 1(w)),

f(, 4:())) + (n + 1)An + 2(w). (5)

Hence, {yn(W)} is a Cauchy sequence. Indeed, let w EFt be an arbitrary fixed point, let rn < n.

Then,

d(Ym + l(w),Yn(W)) d(f(w,m + l(W)),f(W,n(W)))

<_ d(f(w,m + l(W)),f(W,m + 2(w)))

+ d(f(w,m + 2(w)), f(w,m + 3(w))) +""

+ d(f(,n ()), f(, n(W))).

Now, (14) and (15)imply that

d(Yrn + l(W), Yn(W))

_
{Am(w)d(f(w,:,(w)),f(w,2(w))) + rnATM + l(w))

+ {ATM + l(w)d(f(w,l(W)),f(w,2(w))) + (m + 1)ATM + 2(w)}

+ {An- 2(w)d(f(w,l(W)),f(w,2(w))) + (n 2)An- l(w)}.

It further implies that
n--2

d(Ym + l(w)’Yn(w)) <-- E [Ai(w)d(f(w’l(W))’f(w’2(w))) + iAi + l(w)]"
i--m

Thus, {yn(w)} is a Catchy sequence. By completeness of the space, there exists 7(w)E X, such
that for each w G , d(yn(w),7(w))--O as n--oc. (The mapping 7:--X is a pointwise limit of
the measurable mappings {Yn}, therefore it is measurable.) The continuity of f implies that

d(f(w, yn(w)), f(w, 7(w)))-0.

It further implies that

H(T(w, yn(w)), T(w, 7(w))) _< A(w)d(f(w, Yn(W)), f(w, 7(w)))

< d(f(w, Yn(W)), f(w, 7(w)))---O.

Inequality (13) and the fact that {f(w,n(w)) } is a Catchy sequence imply that there exists

A(w) G C%(X)such that T(w,n(w))----A(w). (By Itoh [10, Proposition 1], A is measurable.)
Furthermore, for each w G ,

d(7(), A()) =lLrnd(y(), An(w)) <li__,rnH(A, (), A,(w)) O.

It further implies that



Random Fixed Point Theorems for Nonexpansive Contractive-Type Random Operators 579

noelimf(w, n(w)) 7(w) e A(w) =lirnT(w, .(co)).

Hence by compatibility of f and T, we have

nlirnH(f(w, T(w, n(w))), T(w, f(w, n(w)))) 0,

for each w E f2. Therefore

limd(f(w, y, + (w)), T(w, y,(w))) 0.

Hence, d(f(w, 7(w)), T(w, 7(w))) 0 for every w E f. That is, f(w, 7(w)) T(w, 7(w)), for each

Corollary 5.2: If in addition to the hypothesis of Theorem 5.1, the following condition is satis-

fied: for each w ,
f(w, 7(w)) ( T(w, 7(w)) implies

nlirnf(w ,.)/(w))n t(w),

then t is a common random fixed point of f and T.

Proof: By Theorem 5.1, there exists a measurable map 7"--X such that f(w, 7(w))
T(w, 7(w)) for w . Obviously,

f(whli__,mf(w, 7(w))n) f(w, t(w)).

Thus, t(w) f(w, t(w)).for each

Therefore, by [2, Remarks 3.3], we have

f(w, 7(w))n + T(w, f(w, 7(w))n)

for any w . It further implies that t(w) T(w, t(w)) for each
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