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ABSTRACT

For the 2nth order equation, (- 1)nv(2n)+ qv- O, with q continuous, we ob-
tain a Sturm Separation theorem, involving n + 1 solutions of the equation,
which is somewhat analogous to the classical result that the zeros of two linearly
independent solutions of the second order equation separate each other.
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1. Introduction

For the second order equation

(1.1)

with q(x) continuous on [a, oc), we have the well known separation theorem:

Theorem 1.1 (Sturm Separation): Let yl(x) be a solution of equation (1.1) with two consecu-
tive zeros a <_ b < c < cx, Yi(b) Yi(C) 0, and let Y2(X) be linearly independent of yl(x). Then
there exists exactly one point d in the open interval (b,c) with y2(d)- 0.

In this paper we obtain an analog of the above Sturm Separation theorem for the 2nth order
equation

(--1)nV(2n)+qv--0, x E [a, (1.2)

with q continuous in [a, oc). There has been a considerable amount of work leading to numerous

generalizations of Sturm separation and oscillation theorems to fourth order and 2n-order self-
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adjoint differential equations. A number of results, dealing with properties of zeros of two
linearly independent solutions have been given by Leighton and Nehari [11]. With regard to
possible generalizations of the above separation theorem to the fourth order equation, Leighton
and Nehari [11, p. 329] wrote in 1958: "Simple examples show that the zeros of two solutions of
[equation (1.2) above with n 2] do not necessarily separate each other in the same regular
fashion as the zeros of two solutions of [equation (1.1) above]. This is not surprising, since three
zeros of a solution [of equation (1.2) with n 2] may be given arbitrarily, and between two
consecutive zeros of one solution there may therefore lie three zeros of another solution. However,
if account is taken of this and some other peculiarities of the fourth-order case, a considerable
measure of regularity appears." The results of Leighton and Nehari generally deal with two
solutions of the fourth order equation, as opposed to trying to deal with a full set of four linearly
independent solutions.

In this paper we follow the analysis of Chapter 7 of K. Kreith [9], which leads us to a version
of Sturm separation theorem for the 2nth order equation (1.2) which has a slightly different
character than other known generalizations. Particularly, we show that for any given solution of
equation (1.2) having two consecutive n-fold zeros there must exist another solution (from an n-
dimensional subspace) which has an n-fold zero between the two given n-fold zeros. In the
process we also develop some determinental identities concerning Wronskians of 2n functions and
establish a matrix version of the Green’s formula associated with the 2nth order equation. The
key to understanding oscillation theory for 2nth order equations appears to lie in looking at
solution spaces of dimension n and trying to deal as much as possible with a full set of linearly
independent solutions instead of just two such solutions. The present approach helps to underline
some useful analogies of the fourth and 2nth order equations to the standard second order
equation. We also note that the matrix form of the Green’s formula (equation (3.11) below)
which utilizes two sets of n solutions, each being ’conjoined’, does not seem to be widespread in
the literature. The determinental identities in section 4 represent simplifications of identities
obtained by Weyl-Kodaira and Everitt, and simplify further when the two sets of solutions are
taken to be ’conjoined’; this simplification results in a "matrix form of Green’s formula for
equation (1.2) which seems to represent a stronger analogy to the second order equation than the
usual scalar form.

Some results which are related to the Sturm separation theorem of the present paper are the
comparison theorems obtained by G. Ladas [10, pp. 564-565] and K. Kreith [9, p. 71, Theorem
7.4]. We also note that it is possible to give an independent proof of our Sturm separation
theorem (Theorem 5.1 below) which relies on a Lagrange identity associated with a factorization
of the 2nth order operator in (1.2) as a product of an nth order operator and its adjoint; the
identities are from W.A. Coppel [1] and M.S.P. Eastham [2] and the independent proof is due to
M.S.P. Eastham.

It should perhaps also be mentioned that there are more abstract versions of the Sturm
separation theorems which may possibly yield separation theorems for the even-order equation.
We mention, in particular, M. Morse [12], H.M. Edwards [3] and F. Neumann ([13], [14]).
Edwards introduces a "theory of U-manifolds" and obtains an abstract version of separation
theorem which yields the above separation theorem as a Corollary ([3, p. 53]), but he gives no
similar application for higher order equations. Similarly, F. Neumann [13] and ([14, pp. 223-224])
uses a differential geometry approach which enables a proof of the second order separation
theorem to be given, although, as yet, no similar separation theorem for the fourth or 2nth order
equation has surfaced.

For odd order equations, separation theorems are of a different character. The type of
separation theorem obtained in Theorem 5.1 below does not appear to be possible; there is
evidently no analog of the concept of an "n-fold zero". Some oscillation and separation results for
third order equations are given in Neuman [14, Sec. 10.4].
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The Sturm separation theorem of the present paper has also recently been used by the
authors in [6] to given an elementary proof of the equivalence of various definitions of oscillation
at infinity.

2. The Sturm-Picone Identity for the Second Order Equation

The principal tool of this paper is a Sturm-Picone identity for the 2nth order equation
obtained by K. Kreith [9, Chapters 7 and 8]. Since our proof of the separation theorem for the
2nth order equation mimics the classical Picone-style proof of the separation theorem for the 2nd
order equation, we give in this section the 2nd order Sturm-Picone identity and the classical
proof.

We consider the self-adjoint Sturm-Liouville equations

-(pll’)’ + p0l 0 (2.1)

-(qlv’)’+qov=O (2.2)

where P0, q0, Pl, ql, Pl and ql are continuous on some closed interval I and Pl > 0, ql > 0 on I.

Lemma 2.1 (Picone Identity): If u, v and pl u’, qlv’ are differentiable for x E I and v(x) 7 0
in I, then

d u v’’])]-u(pu’)’ u2" ’" 2 u,2-X(VPl tt tql -’ff’(ql v --(Pl --ql)(u’) "- ql(t’- -V (2.3)

Proof: This arises from straight forward differentiation.

Lemma 2.2 (Sturm Comparison Theorem): Let < be two consecutive zeros of a nontri
vial solution u(x) of equation (2.1). Suppose that

(i) 0 < ql(x) <_ pl(x), and

(ii) qo(x) <_ Po(X)
for all x [c,fl]. Then every solution v(x) of equation (2.2) has at least one zero in the closed
interval [o, ].

Proof: If u(x) and v(x) are solutions of (2.1) and (2.2) respectively, and v(x)75 0 for all
x [,/], then the Picone identity (2.3) yields on substitution of (2.1-2),

x(VPlu uqiv)]- (Po q0)u2 + (Pl ql)(U)2 + ql(u- u 2vv). (2.4)

Integrating over [a,/] we therefore have,

[(Po qo)z2 +(Pl- ql)(tt’)2 +ql(tt’---v )2]dx -(VPl

The right-hand side of equation (2.5) evaluates to zero by the assumptions u(a)= u(/)= 0, and

v(a) = 0, v(/)=/= 0. Since ql > 0 in [a,/] the third term of the integrand is nonnegative over

[a, fi]. Hence we must have either

(i)
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or

(it) [(P0 q0)u2 -j- (Pl ql)(U’)2]dx < O.

But Case (it) gives an immediate contradiction since Po- q0-> 0 and Pl
In Case (i) we are also lead to a contradiction since (i)implies

vu’- uv’ d(-)
0 or

v2 dx

u(x)=_h’v(x) for all xE[,/] for some K#0. But then
assumption.

-ql > 0 by assumption.

v(a) v() 0 contrary to

Lemma 2.3 (Sturm Separation Theorem):
solution u(x) of equation (2.1). Let v(x) be any other solution of equation (2.1) which is linearly
independent of u(x). Then v(x) has exactly one zero in the interior of the interval (a,/3). In
other words, the zeros of any two linearly independent solutions of (2.1) interlace.

Let a < be two consecutive zeros of a nontrivial

Since u and v are linearlyProof: Suppose, on the contrary, that v(x) : 0 for all x E (a,/3).
independent it follows that v(a) # 0; for otherwise we would have

W(u,v) =0,

which implies that the Wronskian, Wx(u,v), is zero for all x and that u and v are therefore
linearly dependent. For the same reason we know that v(/3) 0. But when ql Pl and q0 =- P0,
equation (2.5) becomes

j.,lu,- ,i,,.- u .11 ov’ I’o.
Since v(c):/: 0 and v():/: 0 the right-hand side evaluates to zero.
follows that u’ uv O, or

Since Pl > 0 in [a,/3], it

for all x G (a,/3).

W.(v, u) v’- v’ =_ 0

Hence u and v are linearly dependent on (a,/) contrary to assumption. El

3. A Matrix Version of Green’s Formula

The Green’s formula for the second order equation involves the Wronskian of two solutions
on the right hand sidc. The corresponding scalar form of Green’s formula for even order
equations involves the bilinear concomitant (or skew symmetric bilinear form) of two scalar
solutions of the right hand side. But two solutions are not enough to form a Wronskian of 2n
solutions of equation (1.2). The object of this section is to show how the Green’s formula can be
cast in a matrix form so that a ’matrix’-Wronskian of 2n solutions arises on the right hand side.
Following the discussion of determinental identities in Section 4, it will then appear in Lemma 5.1
of Section 5 that the determinant of our ’matrix’-Wronskian coincides, for two ’conjoined’ sets of
n solutions, to the usual scalar Wronskian of 2n solutions; our matrix Green’s formula is therefore
more in line with the Green’s formula for the second order equation.

For simplicity we restrict attention to the simplest form of the 2nth order equation,
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(- 1)nu(2n) + pu 0

where p is continuous on some interval I [a, b]. In terms of the vectors

1)n- lu(2n- 1)(x

_u (x) and _w(x)

(.-1)

equation (3.1)1 may be written as the first order system

1)’- u(2"- 2)(x

u_ A B u_

w Cp D w

where the matrices A, B, Cp, D are defined by

1 if j-i+ 1A -[aij where aij 0 otherwise

(3.1)

(3.1)2

B diag(O,..., O, 1)

Cp diag(p, 0,..., O)

D [dij where dij { -1 if j-i-1
0 otherwise.

The system form (3.1)2 is a Hamiltonian system since the above matrices satisfy the properties

A- DT, B BT, C CT.

We shall also find it helpful to make use of the matrix form for two solutions of (3.1)2 namely

U A B U

W Cp D W
(3.1)3

where

u -[uij]- " 1,j, w -[wij]- 1)"-i. u}2’-i’J,"
q

1 <_ i,j <_ n,

and {Ul, u2,... Un} is any set of n solutions of equation (3.1)1.
For the sake of the generalized Picone identity to be proved in Lemma 5.3 below, we also

introduce a second set of solutions of the above equation with another potential function"

(- 1)nv(2n) + qv O,

v_ A B v_

z Cq D z

(3.2)1

(3.2)2
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and

V A B V

Z Cq D Z
(3.2)3

where

and

z{ 1)"- iv(2"- {)(x)
1,..., n, (3.3)

I 1Z
1)’-ivj(2’ i1

1 _< i, j _< n, (3.4)

and A, B, Cq, D are the same as above with q replacing p.

Lemme .1: If and
Z

are two real-valued solutions of equation (.2)a then the

Wronskian of I/" an

Wx(V1, V2): V1T" Z2 ZlTV2, (3.5)

is a constant matrix.

Proof: Differentiating and employing (3.2)3 we find

AT zTBT).z2 VT1 .(CV ATZ2)-xWx(Vl,V2) (V1 + + 2-

-(V1CT ZiA) V2 zT1 (AV2 + BZ2) O,

making use of the symmetry of B and C. It follows that the Wronskian of V and V2 is constant

for any two solutions ]Vl/and]Vz2o/ ofequation (3.2)3. V1
L J LJ

The above ’Wronskian of two pairs of solutions of equation (3.2)1 is an n x n matrix, while
the ordinary Wronskian of two scalar solutions of the second order equation (1.1) is a scalar; but
both are constant quantities associated with solutions of the same equation. For the nth order
equation the Wronskian is

Wx(Vl, ?92) Vlv Viv2,

so comparing with the above we can view V1, V2 as analogs of vl, v2 and Z1, Z2 as analogs of Vl,
v. In some sense, Z1, Z2 are the "derivatives" (or perhaps the "nth derivatives") of V1, V2.

To underline the analogy of the above concept of Wronskian to the ordinary Wronskian assoc-
iated with the second order equation, we derive the corresponding Green’s formula. For the se-
cond order equation (2.2), the standard Green’s formula is

d-(qlWx(Vl, v2)) v2LvI VlLV2 (3.6)
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where Lvi- (ql v)’ + qovi, i-1,2, or

b

(v2LVl VlLv2)dx ql Wx(Vl, v2)[ a"
a

(3.6)2

For the 2nth order equation the standard Green’s formula for two scalar solutions is

b

i I.,,v.- v..v,l,. -iv..
a

(2n) i- 1 2 and the ’bilinear concomitant’ is defined bywhere Lv i + qvi,

n-1 v?n-k-1)
Ivy, v:](.). -(- )=0(- ) v)

(3.7)

2n

(_ 1)n +1 E (- 1)k- lvk-1 )" v2n k). (3.8)
k=l

But the bilinear concomitant of two scalar solutions is not an appropriate analog of the
Wronskian because it involves only two of a possible set of 2n linearly independent solutions of
the 2nth order equation. Taking

Vi [@i-1)l, 1<_ i, j <_ n, (3.9)1

and

(i-1)]VII vj j n + 1,...,2n, 1 <:

_
n,

in Lemma 3.1, we obtain the following analog of the second-order Green’s formula (3.6)1 which
involves up to 2n linearly independent solutions of the 2nth order equation. First we observe that
by elementary algebra the n x n Wronskian matrix defined in Lemma 3.1 can be written in terms
of the bilinear concomitants in (3.8) as,

[Vl,Vn+l] [Vl, V2n
Wx(VI, VII (3.10)

[Vn’ Vn -t- 1] [Vn’ V2n]

Differentiation of (3.10) yields the Green’s formula in a matrix form by making use of the scalar
form (3.7)"

dWx(VI, VII)-
 vo, vo / ll  vo,
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or

Vn + 1LVl VlLVn + 1

n + 1Lvn vnLvn +

v2nLvI v1Lv2n

V2niVn vnLv2n

b b

I b[v. + jLvi vi.LVn + j]dxl Wx(VI VII) [[Vi Vn + j](X)] 1_ i, j

_
n.

a
a a

(3.11)1

(3.11)2

4. Determinental Identities

The purpose of this section is to relate the n n matrix Wronskian Wx(VI, VII arising in
(3.5) and (3.10) and the matrix version of Green’s formula (3.11)2 to the usual scalar determinant
of 2n functions. Since the identities of this section hold for arbitrary functions with sufficiently
many derivatives, we state all results in terms of arbitrary functions since all proofs are of a pure-
ly algebraic and combinatorial character. Applications of these identities when the functions are

solutions of the differential equations (3.2)1-(3.2)a will be utilized in Section 5.

To this end, let {fl, f2,’",f2n} be 2n real-valued functions, not necessarily linearly indepen-
dent, which have 2n- 1 continuous derivatives let their Wronskian and ’bilinear concomitant’ be
defined by

and

Wx(fl,f2,...,f2n

fl f2n

f2n 1) J2n’(2n 1

(4.1)

2n

[fl,f2](x) 1)n + 1E (- 1)k- lfk- 1) "J2r(2n- k). (4.2)
k=l

The bilinear concomitant (4.2) (or the constant bilinear concomitant in (3.8) associated with the
Green’s formula (3.7) in differential equations) is a special case of a ’skew-symmetric bilinear
form’ which arises as an invariant of a symplectic group (see H. Weyl [15, Chapt. VII).

To establish proofs of the identities below we need the following elementary definitions and
lemmas:

Definition 4.1: A permutation of (1, 2, n) is a reordering of the integers in the form

(il, i2,"-, in) where each integer occurs once and only once.

Definition 4.2: If for a pair of numbers in a permutation (not necessarily consecutive), the
first number is larger than the second one, then we say this pair forms an inverse order. The
total number of inverse orders in a permutation is called the inverse order number of the permuta-
tion. The inverse order number of a permutation (il,i2,...,in) is denoted as v(il,i2,...,in).

Definition 4.3: A permutation which has even (odd) number of inverse orders is called an

even (odd) permutation.



A Sturm Separation Theorem 37

Definition 4.4: An interchange of any two numbers of a permutation is called a transposition.

Lemma 4.1:
transposition.

An even (odd) permutation is changed to an odd (even) permutation by one

Lemma 4.2: Any permutation of (1, 2, n) can be brought back to the natural order by a

sequence of transpositions. Moreover, the number of transpositions to bring an even (odd)
permutation to the natural order is even (odd).

Lemma 4.3:

all a12

anl

aln

ann
E (--1)r(il’i2 in)a, llai22 ainn

(il, i2 n

E (-- 1)r(Jl’J2 Jn)alj
(Jl’ J2 in)

a2j2" "anjn

where (il,"’,in) and (Jl,’",Jn) denote sum over all permutations of (1, 2,. n).
The following theorem was first given by Kodaira [8, p. 504] as an identity involving the

Wronskian and bilinear concomitants in (4.1) and (4.2). But in the more abstract setting of sym-
plectic group theory, it is a special case of the fact that the determinant of n vectors is expressible
as a sum of products of skew-symmetric bilinear forms (see H. Weyl [15, p. 167, Equation (1.8)]):

Theorem 4.1 (Weyl-Kodaira): Let {fl,’",f2n) be any set of 2n functions having 2n-1
continuous derivatives. Then we have the following algebraic identity:

1Wx(fl’f2"’"f2n) 2nn! E n[fil’ fi2]’" "[fi2n 1’ fi2n (4.3)
(i1,i2 ,i2n)

where the sum is over all permutations (il,...,i2n) of (1,...,2n), and

n(n- 1)
(-1) 2 if (il,...,i2n) is an even permutation

gn n(n 1) (4.4)
1) + if (i1,’", i2n) is an odd permutation.

Proof: This theorem is well known But we give a short outline of the proof since some of
the steps will lead to a reformulation of this identity which will enable us to establish its

connection to the Wronskian introduced in (3.5).
Step 1: Putting the expression (4.2) for the bilinear concomitant in (4.3) and performing the

necessary multiplications the right-hand side of (4.3) may be written as

n

2n 2n ,ki-n )f1 E E (- 1) E ;nH f!kj (2n. kj) (4.5)
kn- k1-1 (i1’i2 i2n) j-

’2j2nn!

where kj is the summation index in (4.2) for fl fi2j_
Step 2: Each of the conditions

and f2 fi2j"
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or
ki- kj, i7 j (4.6)1

ki-l-2n-kj, ihj (4.6)2

gives two pairs of equal components in the ’derivative’ vector,
(kI 1, 2n kl, k2 1, 2n k2,..., kn 1, 2n kn). If (4.6)1 or (4.6)2 holds, there are four terms
associated with permutations of the four functions having equal derivatives which exactly cancel
in the inner sum in (4.5). Moreover, the inner sum can be partitioned into sets of four terms of
this type and thus the whole inner sum vanishes.

Remark: For n- 2, for example, we find 4 vectors are ruled out by condition (4.6)1 and 4 by
condition (4.6)2 so that there are only 16- 8- 8 admissible k-vectors.

Step 3: It is clear that the total number of ’admissible’ k-vectors which give a nonzero
contribution for the inner sum in (4.5) is 2nn!.

Step 4: For each of the 2nn! admissible k-vectors in the iterated sums in (4.5) it turns out
that

n

E (-1) lki-nnllli2;,(kj-1)f!2n-kj)=,2j Wx(fl’f2"’" f2n) (4.7)
j=l "(i I ,i2n)

by using Lemma 4.3. By summing over the 2nn! admissible k-vectors in (4.5) we therefore get
(4.5) equal to Wx(fl,... f2n), which proves (4.3).

Step 2 in the above proof leads us in a natural way to the following corollary.

Corollary 4.1: For any set of 2n functions {fl,’", f2n} having 2n- 1 continuous derivatives,
we have

Wz(fl, f2,. f2n) E n[fil’ fi2] [fi2n 1’ fi2n
(il i2n)

(4.8)

where the sum is over all permutations subject to the restrictions

(i) 1;
(ii) i2k-1 < i2k, k- 1,...,n;
(iii) i2k- < i2k + 1, k 1,...,n 1;

or equivalently,

where

Wx(fl,f2,...,f2n E
i2n- < i2n <- 2n

E n 1"" E 1):n "[fi1, fi2]’" [fi2n 1’ fi2n] (4.9)

i21- -< i21 + 1 -< 2n i21- -< i2 -< 2n

and the summation indices in the iterated sums are restricted to satisfy the constraints

(iv) 1;
(V) ij {il,i2,...,ij_l}, J-- 2,’"2n"

Note: The above iterated sums are not true iterated sums because of the constraint (v) which
necessarily rules out some of the integers over which i2g + and i2g can vary. On the other hand,
(4.9) provides a constructive scheme for writing down all the terms.

Proof of Corollary 4.1" The (2n)! permutations in the sum of (4.3) can be grouped into
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(2n)!
2nn!

1" 3" 5-..." (2n-1) classes. Each class consists of 2nn! perrnutations yielding the exact
same terms. That is, for a fixed choice of permutation (il,i2,...,i2n) there are 2nn! equal copies
of ,[fil,fi2 [fi2n_l,fi2,] in the sum of (4.3). This affords a splitting of the (2n)!
permutations into 1 3.5-.... (2n- 1) equivalence classes of 2nn! permutations each. F1

The following two corollaries identify precisely those terms on the right-hand side of (4.8) or

(4.9) which correspond to the determinant of the ’matrix’ Wronskian of

fn+l
and Fii- (4.10)

Jn+l

which we define (corresponding to (3.5) and (3.10)) by

Wx(FI, FII)-[[fi, fn+ j]], 1 < i,j <_ n. (4.11)

Corollary 4.2:

Wx(fl,f2,...,f2n E n[fl’ fi2]"" [fn’ fi2n (4.12)
(i2, i4 i2n)

E n 1""E )tn[fi1’ fi2]"" [fi2n 1’ fi2n]’
i2n- 1 7 n

where the summation indices in the second iterated sums must satisfy the same constraints (iv)
and (v) as in Corollary 4.1, and the first sum is over all n! permutations of the second indices
subject to the restriction that i2j E {n q- 1,...,2n}.

Proof: The additional restriction that i2n + 1 k n in the summation over i2n_ 1 throws out of
the right-hand side of (4.9) precisely those n! terms in the first sum in (4.12). Yl

Corollary 4.3: For any set of 2n functions {fl,’", f2n} having 2n-1 continuous derivatives
we have using the definition (4.11)

det(Wx(Fi, FiI)) E n[fl’fi2] ""[fn’fi2n]
(i2, i4 i2n)

(4.13)

where the sum is over all n! permutations (i2,’", i2n) subject to i2j G {n -+- 1,..., 2n}.

Proof: By Lemma 4.3,

det(Wx(VI’ VII)) E (- 1)r(i2’i4 i2n)[fl’ fi2][f2’ fi4 "’’[fn’ fi2]
(i2,i4 i2n)

where (i2,"-, i2n)is any permutation of (n + 1,n + 2,..., 2n), and

r(i2,. i2n) { even number,

odd number,

if (i2,’" i2n) is even

if (i2,’" i2n) is odd.
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To prove this corollary, we only need to show that n-(-1)r(i2 i2n) for any
permutation (i2, i4," i2n) of (n + 1, n / 2,..., 2n).

We observe that 1 + 2 + + (n- 1) n(n- 1)
transpositions are required for changing (fl

f 2, f2’ fi4" ",fn 1, fi2n 2’ fn, fi2n to (fl, f2,’" f,, f 2, fi4," fi2n 2’ fi2n or vice versa.

n(n- 1).Let’s first assume is even. Then we have:2

1)r(i2 i2n) 1[- 1] iff

r(i2,..., i2n is even[odd] iff

(i2,..., i2n is even[odd] iff

(1, 2,..., n, i2,..., i2n is even[odd] iff

(1, i2, 2, i4,..., n, i2n is even[odd] iff

For the case that n(n- 1) is odd, we only have to replace the last statement by "(1 i2, 2 i4,2
n, i2n is odd[even]". Then the whole sequence of relations still hold, by the definition of n in
(4.4). [3

Remark: The identity (4.12) with the first sum on the right replaced by det(Wx(Fi, Fii))
found an application in the spectral theory of the fourth order differential operator given by
Everitt. In [4, p. 151, Equation (8.2)] Everitt gives a version of (4.12) for n 2 which he uses in
connection with solutions of the fourth order self-adjoint equation which are defined by initial
conditions at each endpoint of the interval; the normalization of those solutions by initial condi-
tions causes his solutions at x a to satisfy [1, 2] 0 and at x b to satisfy [X1, X2] 0 which
makes them ’conjoined’ (Definition 5.1 below), so that the one term arising in the second sum in
(4.12) is zero.

It is of some interest to note that W.N. Everitt [5, p. 148, Lemma 1] gave an identity which
corresponds in the present analysis to squaring both sides of (4.3), (4.8-9) or (4.12). Specializing
his result to 2n arbitrary real-valued functions with 2n-1 continuous derivatives and using the
definition of the bracket quantity in (4.2) we have:

Theorem 4.2 (Everitt): Let {fl,’",f2n} be any set of 2n real-valued functions having 2n-1
continuous derivatives. Then we have

(i)

([fi, fj](x))-- Ol

(--1)n+l 0

(-1)"+2

0 (-1)n+2n

02, (4.14)

for 1 <_ i,j <_ 2n, where

fl
(I)1() )f2n-l’_J

(2n- 1)
2n

f2n
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and
(ii) det([fi, fj](x))- (Wx(fl,f2,...,f2n))2, 1 <_ i,j <_ 2n. (4.15)

The proof of (ii) follows immediately from taking the determinant on both sides of (i).
From Everitt’s theorem and the above corollaries of the Weyl-Kodaira theorem, we have the

following simple corollary:

Corollary 4.4:

(i) det([f fj](x)) (Wx(Yl, f2,’" ",/2n))2

E n[fi1’ fi]"" [fi2n_ (4 16)
(i1,i2 i2n)

l’ fi2n

where the sum over the permutations (il,i2,...,i2n) is subject to the restrictions listed in
Corollary 4.1. Of course, the right-hand side in (4.16) can be replaced by the right-hand sides in
(4.9) or (4.12).

(ii) In the special case that {fl,’",fn} and {fn+l,’",f2n} are conjoined sets of
solutions (Definition 5.1 below), equation (4.16) reduces to

[fl’fn+l] [fl’f2n]

[f,,/, + 1]

[fn + 1’ fl] [fn + 1, fn]

[I,,/1] [f,,f,]

(det(Wx(Fi, Fii)))2 (Wx(fl, f2,...,f2n))2. (4.17)

The results of Corollary 4.4 are immediate. Everitt’s theorem thus provides a simple proof of
the square of the Weyl-Kodaira identity.

5. A Sturm Separation Theorem for 2nth Order Equations

For the basic lemmas needed to prove the separation theorem we rely on the development
given by K. Kreith [9, Chap. 7]. Our lemmas 3.1, 5.2 and 5.3 correspond to lemmas 7.1, 7.2 and
7.3 of [9]; similarly, lemma 7.4 of [9] contains the ideas which led us to Theorem 5.1, although
the formulation as a separation theorem seems heretofore to have been overlooked.

We first need to address the annoying fact that the bilinear concomitants appearing in the se-

cond sum in equation (4.12) which involve [fi, fj] with 1 < i, j _< n or n + 1 < i, j < 2n, need not
be zero for arbitrary choices of linearly independent functions {fl, f2,’", f2n}"

For the second order equation the Wronskian of two solutions is either zero of nonzero on an

interval I according as the solutions are linearly independent on I or not. This property does not
extend directly to the 2nth order equation because the matrix Wronskian (in (3.5)) of a solution
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V
of with itself is not there is resultequation (3.2)3 necessarily However, analogouszero. an

Z
associated with 2n linearly independent solutions, provided they are normalized so that two sets
of n solutions each have matrix Wronskians with themselves equal to zero. We therefore make
the following definition:

Definition 5.1" A solution

z
)._ (:_ )(-1 vj

l<_i,j<_n,

of equation (3.2)3 is called ’conjoined’ if and only if

[Vl,Vl] [Vl,Vn]
Wx(V,V -0. (5.1)

[Vn, Vl] [Vn, Vn]

Remark: We note that the n solutions {Vl,...,Vn} which make
linearly independent. I VI conjoined may be

Z

We can now show that if the determinant of the matrix Wronskian of two ’conjoined’
solutions of (3.2)3 is zero, then the corresponding 2n solutions of (3.2)1 are linearly dependent.

Lemma 5.1: Let and be two conjoined solutions of equation (3.2)3 on [a,b] where
z, z,ij

VI, VII are defined in (3.9) and Zi, ZII correspond to them as above. Then for the matrix
Wronskian of (3.10) we have det(Wx(Vi, Vii))=O on [a,b] if and only if {Vl,...,V2n} are

linearly dependent on [a,b].
Proof: Since VI and VII are conjoined we have that [vi, vj](x) 0 whenever 1 < i, j < n or

n + 1 < i, j < 2n. Apply Corollary 4.2 with {vi} in place of {fi} and it follows that the second
sum in equation (4.12) vanishes, since every term must involve at least one factor of this type; all
terms in which the factors v and vj belong to the sets {Vl,...,Vn} and {Vn+l,...,V2n}
respectively, are isolated in the first term of (4.12). Hence, by Corollaries 4.2 and 4.3 we have

Wx(Vl,..., V2n) det(Wx(Vi, VII)).

Hence {Vl,... V2n} are linearly dependent whenever det(Wx(Vi, VII))= O. V!

Note: For conjoined pairs of solutions of equation (3.2)3 the n x n Wronskian matrix in (3.5)
and (3.10) is evidently a fairly true analog of the Wronskian of the second order equation.

Lemma 5.2: Let be a conjoined solution of equation (3.2)3 on [a,b] and suppose
Z

det(V(x)) # 0 for x E [a,b]; this ensures {Vl,...,Vn} are linearly independent on In, b]. Then
ZV-1 is a symmetric matrix on [a,b].
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Proof: Since
Wx(V V) vTz zTv O,

we have
Z- (VT)- I ZT V,

and therefore
ZV-1 (V-1)T. zT_ (Z. V-1)T

We are now ready to prove the following generalization of the Picone identity (2.3)"

Let ]vzI be a conjoined solution of equation (3.2)3 on [a,b] and supposeLemma 5.3: that

det(Y(x))O on [a,b]. Let I.. be a solution of equation (3.1)2. Then we have (analogously to
(2.4) with Pl- ql- 1)"

dd-x[(tt Tw_ tt TZV 1 ] t T(Cp Cq)_ + y___ T.B.y (5.2)

where y" Bw_ ZV- ltt. (5.3)

Proof: Since V- 1 exists it readily follows from VV- 1 I that (V- 1), V- 1V,V-
Using this and equations (3.1)2 and (3.2)3 we obtain

(uTw_ -u__Tzv-lu_] (u_T)’.w_ + uTw_’--(u_T)’.ZV-1 "?2

u_TZ’v- ltt + tt Tzv-1v’v- ltt u_TZV- lu_’

u_ T(Cp Cq)u_ + w_ T. Bw_ w_TBZV 1u u_ TZV- 1Bw_ + u_ TZV- 1BZV- lu_.

Since B2- B and ZV-1 is symmetric by Lemma 5.2 the above readily converts to the form
(.2). Ca

We can now make use of the generalized Sturm-Picone identity in Lemma 5.3 to obtain a

Sturm separation theorem similar to Lemma 2.3. The appropriate analog of a "zero" of a

solution is a point where all n-components of _u in equation (3.1)2 are zero. We therefore make
the definition (see Glazman [7])"

Definition 5.2: A solution u of equation (3.1)1 is said to have n n-fold zero at x-a if and
only if u(a) u’(a) -...- u(n- 1)(a) 0.

For the second order equation the zeros of two linearly independent solutions interlace; this is
not true for equations of order 2n, n >_ 2. On the other hand, if we take a solution u of the 2nth
order equation (3.1)1 which has two consecutive n-fold zeros at b and c, b < c, then for any a <
b < c there exists a solution v having an n-fold zero at some point d E [b,c]. More precisely we

have the following Sturm Separation Theorem"

Theorem 5.1" For any a [a, oc) we define

Sa {v Iv(a) v’(a) --...- v(n- 1)(a) 0 and (- 1)nv(2n) + qv 0}.

Then Sa is an n-dimensional subspace of the solution space for equation (3.2)1 so we may let
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{Vl,... Vn} be a basis consisting of n linearly independent solutions in Sc. Let

V [v 1)] and Z [( 1)" (2- i)
vj ], l<_i, j<_n,

be the corresponding matrix solutions of equation (3.2)3. Let u be any solution of equation (3.2)1
having two consecutive n:fold zeros at b and c, i.e. u(b)--u’(b)- ..-u(n-1)(b)-O and
u(c) u’(c) u(n- 1)(c) O. Take any real a satisfying a

_
< < c. Then there exists

v E Sa and d [b,c] such that v has an n-fold zero at d, i.e., v(d) v’(d) -...- v(n- 1)(c) 0.

Proof: Case 1" Suppose u Sa. Then we may take d b.
Case 2" Assume u is linearly independent of Vl,...,vn.

x e [b,c]. Since Y(a)- O, we have by Lemma 3.1 that
Suppose det(V(x)) :/: 0 for all

where

Wx(V V) vT(x)Z(x) ZT(x)V(x)

VT(o)Z(o)- ZT(o)V(o) O,

is conjoined on x [a, c]. Applying Lemma 5.3 with Cp Cq

d[ Tw_ T -1
d-- u_U_ u__ ZV u y_ TBy_

y Bw_ ZV- lu_.

we have

(5.4)

Integrating this over [b, c] and making use of the assumptions _u (b) _U_U (c) 0 yields

which implies Yn(X) 0 for all x G [b, c]. Thus

Yl -{zv-lu}I

Y ()
{ZV lu}n

0 0

Multiplying both sides of (5.5) by B and replacing B_w and BZ using (3.1)2 and (3.2)3 we obtain

Bw BZV- ltt

u,_V,V-lu.

Multiplying by V- and using V- 1V,U- (V- 1), we get
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v-l_’@(V-1)’tt (v-ltt)’(x) 0

for all x E [b, c]. Hence V-l_u is a constant vector, say

V l(x)tt (x) g.

Then
v1 vn k1

(n-l) (n-l)
Vl Vn n

for all x E [b,c]. But kl,...,kn are not all zero because of the assumption that _u(x)# 0 for
x (b, c) and det(V(x)) 0 for x [b, el. It follows that u(x) is linearly dependent on {Vl,...,
which is contrary to assumption. Hence there must exist d [b,c] such that det(V(d))- O. It
follows that the system

]vn-l)(d) v(nn l)(d) ozn 0

n
has a solution with {1,’", OZn} not all zero, and therefore that the solution v(x) aivi has an

n-fold zero at x d. 1
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