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ABSTRACT

In this paper we confirm the validity of some recent results of Hu, Lakshmi-
kantham, Papageorgiou [4] and Papageorgiou [13] concerning the existence and re-
laxation for nonlinear evolution inclusions. We fill a gap in the proofs of these re-
sults due to the use of incorrect Nagy’s compactness embedding theorem.
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1. Introduction

Recently Hu, Lakshmikantham and Papageorgiou [4] studied the properties of the solution set
of nonlinear evolution inclusion driven by a time dependent maximal monotone coercive operators
defined on an evolution triple (V,H,V’). However, the main existence theorem of their paper
(Theorem 3.1 in [4]) as well as the relaxation theorem (Theorem 3.2 in [4] have a gap in their
proofs and therefore, in our opinion, these proofs are incorrect. The same remark concerns the
proof of another result on existence of solutions to differential inclusion due to Papageorgiou (see
Theorem 3.1 of [13]). Namely, in [4] and [13] the authors have exploited several times the result
of Nagy (see Theorem 2 in [7]), which says that tr (the space where the solution of the inclusion
is sought) is compactly embedded into C(O,T;H) (the space of continuous functions from the
time interval [0, T] into H); see the notation in Section 2 below. Very recently, the author of this
paper gave an example (see [6]) which shows that the above result of Nagy is false. For this rea-

son, the proofs of existence and relaxation theorems cannot follow directly from arguments pre-
sented in [4] and [13].

The purpose of this paper is to fill the gap due to the use of Nagy’s incorrect result and to
establish in this way the validity of some earlier results of [4] and [13].

As the referee noticed, it is important to observe that the proofs of Theorems 3.1 and 3.2 in

[4] and Theorem 3.1 in [13] remain valid (even without assuming V to be a separable Hilbert

space) provided x0 E V, i.e., when the initial condition is more regular. In this situation, the
result of Nagy [7] can be omitted. Indeed, in this case the solution set of the evolution inclusion
is sequentially compact in C(O,T;w-V) (see [1] or [10]). Hence Corollary 4, p. 85 of Simon [15]
guarantees the compactness of this set in C(0, T; H).

In he light of the above observation, the present paper shows that it is not necessary to
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restrict x0 in V, that is, we will prove that even if the initial datum is nonsmooth the solution set
remains compact in C(0, T;H). We note that the new mathematical argument of this paper is
based on the fact that the solution map (which assigns to the right-hand side the solution) of the
associated evolution equation is sequentially continuous from ’ endowed with its weak topology
into C(O,T;H) (see Proposition 3.1). Nonetheless, for the sake of completeness and clarity, we

will give (following [4] and [13]) the main steps of the proofs of two existence theorems and a re-

laxation theorem established in [4] and [13] indicating places where the mentioned above result of
Nagy has to be replaced by Proposition 3.1. Note that Theorem 3.1 has been already established
for p q 2 in [12], while Theorem 3.2 can be found in a more general setting in [14]. Another
relevant work is [11], where a controlled evolution inclusion with control constraints was examin-
ed.

2. Prehminaries

Let H be a separable Hilbert space and let V be a subspace of H carrying the structure of a

separable reflexive Banach space, which embeds into H densely and continuously. Identifying H
with its dual, we have the Gelfand triple (see e.g., [2, 5, 16]) V C H C V’, where all embeddings
are continuous and dense. Moreover, we assume in this paper that these embeddings are also com-

pact. We denote by (-, the duality of V and its dual V’ as well as the inner product on H, by

I1" II, I" and I1" ]1 y’ the norms in V, H and Y’, respectively. Given a fixed real number
T > 0 and 2 < p < +cx, we introduce the following spaces T’-LP(O,T;V), -LP(O,T;H),
:’- Lq(O,T;H), i"- Lq(O,T;V’), (i/p+ 1/q 1) and {w E T’lw’ E V’}, where the deri-
vative is undcrstood in the sense of vector valued distributions. Clearly qr C T" C C T". The

T
pairing of V and V’ and the duality between and :’ are denoted by (If, v))- f (f(s), v(s))ds.

0
Given a Banach space , the symbols w-, s- are always used to indicate the space
equipped with the weak and the strong (norm) topology, respectively.

Let (,E,#) be a measure space, X be a separable Banach space. By ](c}(X) and

(wlk(cl(X) we denote respectively the family of all nonempty, closed, (convex) subsets’of X and
the family of all nonempty, (weak-) compact, (convex) subsets of X. A multifunction F defined

Xon with values in the space 2 of all nonempty subsets of X is called measurable if F-(E):
{w : F(w)N E :/: } E, for every closed set E C X. F is called graph measurable if GrF:
{(w,x) X:x F(w)} E %(X) (here %(X)is the family of all Borel subsets of X). We de-
note by S (1 < p < cx) the set of all selectors of F that belong to LP(;X) i.e.,
LP(; X): f(w) F(w) # a.e.}. We know that S # 0 if and only if wHinf{
L_. The set S is said to be decomposable (see e.g., [9]) if A e %() (the Borel r-field of
and fl, f2Sz imply XAfl +(I_-XA)f2S Let (Y, 7y), (Z, 7Z) be Hausdorff topological
spaces. A multifunction G: Y---2z is said to be "(ry- rz) upper semicontinuous (u.s.c.) (respect-
ively, lower semicontinuous (1.s.c.)), if for every C C_ Z closed in vz topology, G-(C) (respect-
ively, G + (C): {y Y’G(y) C_ C}) is closed in -y topology in Y.

3. Existence and Relaxation Theorems

In this section we examine the continuity properties of the solution map of the Cauchy
problem for the evolution equation associated with the following nonlinear inclusion"

2(t) + A(t,z(t))e F(t,x(t)) a.e. E (0, T),
(3.1)

(0)- o"
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Then we will present concisely the proofs of existence and relaxation results by Hu, Lakshmikan-
tham and Papageorgiou [4] and Papageorgiou [13].

We introduce the following.

Definition 3.1: A function x E 4r is called a solution of (3.1) if and only if

&(t)+ A(t,x(t))- f(t) a.e. E (0, T) in V’,

*(0)- x0
(3.2)

with f S(.,x(.)).
The following hypotheses will be used in the sequel.

H(A):
(1)
(2)

(4)

A: [0, T] VV’ is an operator such that
tA(t, v)is measurable from [0, T] to Y’,
v---A(t, v) is monotone and hemicontinuous from V to V’,
II A(t, v)II v, < a(t) + b II v II p- 1,a.e. G (0, T), ]v E Y with a E Lq+ (0, T), b > 0,
(a(t, v), v) >_ c II v II a.e. E (0, T) with c > 0.

H(F)I:
(1)

(a)

F: [0, T] H2Ic(H is a multifunction such that
(t, x)F(t,x) is graph measurable,
GrF(t,. is sequentially closed in H (w- H), a.e. t (0, T),
IF(t, x) < al(t) + bl(t) lx 2/q, a.e. t E (0, T) with al, bI Lq+ (0, T).

H(F)2:
(1)
(2)
(3)

F:[0, T] x H-PI(H is a multifunction such that

H(F)I(1 holds,
xF(t,x) is 1.s.c.,
H(F)I(3 holds.

The hypotheses H(A), H(F)I H(F)2 for p q 2 coincide with the ones of [13] and [4].

It is well-known (see Theorem 4.2, p. 167 of Barbu [2] or Theorem 1.2, p. 162 of Lions [5])
that if H(A) holds, f ’ and z0 H, then evolution equation (3.2) admits a unique solution in. We consider below the solution map r::E’+ for (3.2) defined by r(f)= x, where z denotes
the solution to (3.2).

Proposition 3.1: If hypothesis H(A) holds and xo G H, then the solution map for (3.2) is

continuous from w- 3’ into w- qtlr and from w- ’ into C(O, T; H).
Proof: Let fn, f E ’ be such that

fnf in w- ’ (3.3)

and let xn r(fn) qlr be the sequence of unique solutions to (3.2) corresponding to fn" From
the classical a priori estimates of the solutions to parabolic equation (see Chapter 2.1 of Lions

[5]), it follows that {xn} remains in a bounded subset of W. By extracting a subsequence, if ne-

cessary, we may assume that

xn-x in w- it, (3.4)

for some x 14r. Since qr C compactly (see Theorem 5.1 of Lions [5], p. 58), we have also

xx in s- X. (3.5)
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Consider the convex set Wx0 {w E W" w(0) x0}. This set is closed and hence weakly closed in

W, in virtue of the fact that W C C(0, T; H) continuously (see Proposition 23.23, p. 422 of Zeidler
[16]). Since xn gXo from (3.4) we deduce that

(3.6)
We claim that

limnSUp((A(xn),xn -)) <_ O, (3.7)

where by A:V--+r’ we have denoted the Nemitsky op_.erator corresponding to A, i.e., (Av)(t)-
A(t,v(t)) for a.e.t. Multiplying the equation icn + A(xn)- In in duality by xn- x, using the
integration by parts formula (see e.g., [1], [16]) and (3.6), we obtain

((ie,xn x)) +1/2 xn(T) x(T) 2 + ((2(xn),xn x)) ((f,x x)). (3.8)

From (3.3), (3.4) and (3.5), by taking the limit in (3.8) and dropping the positive term, we get

limnSUp((A(xn),Xn x}} <_ linm(((fn, Xn X}) (([e,Xn X})) O.

This proves the claim.

We are going to show now that by extracting further subsequences, we may assume that

xn-+x in C(0, T; H). We set On(t)- IA(t, xn(t))- A(t,x(t)),Xn(t -x(t)l for every n and a.e. t
(0, T). Applying Fatou’s Lemma to functions On (by H(A)(2)we know that On are nonnegative),
and using (3.4)and (3.7), we have that

T T T

0<_ j liInninfn(s)ds <_ limninfj n(s)ds <_ limnSUp / n(s)ds
0 0 0

T T

<_ limsup / (A(s, Xn(S)) Xn(S x(s))ds -linm J (A(s, x(s)), Xn(S x(s)lds
0 0

limnSUp((A(xn),Xn -x)) <_ O.
T

From these inequalities, we deduce that lim f )n(s)ds- 0 which clearly implies that On--+0 strong
0

ly in LI(0, T). Therefore, we may assume, by taking a next subsequence, that

n(t)--.O a.e. t e (0, T). (3.9)

Using hypothesis H(A)(3)(4), for a.e. e (0, T), we get

cOn(t) C ]] xn(t ]] P-b ]] X(t) ]] ]] Xn(t ]] p-1

II xn(t)[I (a(t) + b II x(t)II p 1) a(t)II x(t)II + c II (t)II
From the above inequality and (3.9), it follows that { [[ Xn(t II} is bounded for a.e. (0, T) and
n >_ n0. Thus we have shown that the sequence {Xn} belongs to a bounded set of L(O, T; V).
Moreover, since {2n} lies in a bounded subset of c, and V C H compactly, we deduce by a ver-

sion of the Arzelg-Asc01i theorem (compare Corollary 4, 8 of Simon [15]) that x--+x in
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C(O,T;H).
As in the proof of Theorem 3.1 in [13], we show that x- r(f) is a solution to (3.2). From

the uniqueness of solutions to (3.2), we infer that the whole sequence {x,} converges to x in both
w- and C(0, T; H). This completes the proof of the proposition.

Theorem 3.1: (The convex case) If hypotheses H(A), H(F)I hold and xo E H, then (3.1) ad-
mits a solution.

Proof:

Step 1. Every solution x E oz to (3.1) satisfies the following a priori estimates"

I (t) M1, ’t C [0, T], (3.10)

II II w -< M2’ (3.11)

where M > 0 for i- 1,2.

Step 2. The multifunction : [0, T] x H2H given by

F(t,x) if x < M1

() (3.12)g(t,z) M if Ix > M1F

is ](H)-valued. It satisfies H(F)I(1)(2 and I(t,x) <ff (t), a.e. t, where Lq+ (0, T).

Step 3. The multifunction zJ:----2LI(o’T;H) defined by

%(f)- S (3.13)
(,, r()(. ))’

where % {f ’: If(t)] < ff (t) a.e. t}, is )lc(%)-valued. By Theorem 4.2 of Papageorgiou [8]
and Proposition 3.1, % is (w-’) (w-’)u.s.c. on %.

Step 4. One applies the Kakutani-Fan fixed point theorem to the multifunction % finding
f* % such that f* E %(f*). Then x*: r(f*) solves (3.1) with F in place of F. The same esti-
mate as in Step 1 and (3.12) implies (t,x*(t))- F(t,x*(t)) for a.e. t, which means that x* is a

solution to (3.1). This completes the proof of the theorem.

From Theorem 3.1 and (3.11), we obtain the following.

Corollary 3.1: If hypotheses of Theorem 3.1 hold, then the solution set of (3.1) is a nonemp-
ty, weakly compact subset of qr and a compact subset of C(0, T; H).

Theorem 3.2: (The nonconvex case) If hypotheses H(A), H(F)2 hold and xo H, then (3.1)
admits a solution.

Step 1. As in the proof of Theorem 3.1, we get for the solutions a priori bounds (3.10) and

(3.11).
Step 2. One verifies that the multifunction defined in (3.12) is graph measurable,

I(t,x) < (t), a.e. and (t,.) is 1.s.c. from s- H into ](H).
Step 3. By using Theorem 4.1 of Papageorgiou [8] and Proposition 3.1, one obtains that the

multifunction %’%2wk(LI(O,T;H)) defined by (3.13)is 1.s.c. from % (endowed with

topology) into s- LI(0, T; H). Moreover, the images of (. are decomposable sets (see [9]).



148 S. MIGRSKI

Step 4. Applying the selection theorem of Fryszkowski [3], we get a continuous map r/: %--,%

such that r/(f)E %(f) for all f E %. Then, by the Schauder-Tikhonov fixed point theorem, one

finds f* % such that f*= rl(f* ). As in the proof of Theorem 3.1, it is easy to check that
x* r(f*) solves (3.1) This completes the proof.

Finally, we consider the following "convexified" version fo the Cauchy problem (3.1)"

&(t)+ A(t,x(t)) e-d-dF(t,x(t)) a.e. t e (0, T),

(0)-
(3.14)

Denote by S(Xo) the solution set of (3.1) and by Sc(xO) the solution set of (3.14). The relaxation
theorem stated below shows that S(xo) is dense in Sc(Xo) for the C(O,T;H) topology. As regards
the orientor field, we need now a hypothesis which is stronger than the ones considered previously.

H(F)3: F’[0, T] HI(H is a multifunction such that
(1) F(. ,x)is measurable on [0, T], for all x G H,
(2) h(F(t, x), F(t, y)) <_ v(t) x- Y I, a.e. t with t e LI+ (0, T),
(3) H(F)I(3 holds,

where h(.,. denotes the Hausdorff metric.

Theorem 3.3: Under hypotheses H(A), H(F)3 and xo G H, we have S(Xo)- Sc(Xo) where
the closure is taken in the C(O, T; H) norm topology.

Step 1.
converse.

From Corollary 3.1, it follows that S(Xo)C Sc(XO). It is sufficient to prove the

Step 2 Let >0 and XSc(Xo). So (3.2) holds with fSF(.q
z(.))" As in the proof of

Theorem 3".1, one defines the set % and gets If(t) <_’ (t) a.e.. Due to Theorem 4.1 of Papageor-
1 and a symmetric weak neigh-giou [10] and Proposition 3.1, it is possible to find fl SF(. ,x(. ))

borhood U of the origin in ’ such that f- fl E U fl% implies II x- zI II C(o,T;H)--, where
Z1 r(fl).

Step 3. By virtue of the Aumann selection theorem, we construct by induction a sequence

{fn} C_ ’ such that

f + 1(t) e F(t, zi(t)) a.e. t,

/t )i-1fi + 1(t)- fi(t)] <- (i- 1)!
0

z r(fi) (here z0 x G Sc(Xo) ),

for every >_ 1.

Step 4. From Step 3, again by Proposition 3.1, we deduce that zn -r(fn)---,r(f -"’ in

C(0, T; H) and next that F S(Xo). Furthermore, due to the inequalities

vg(s)ds Vi > 1Zi+l(t)-zi(t)l <_-.
0
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we obtain II II c(o, T; H) exp II o II L1)" Since > 0 is arbitrary we conclude that
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