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ABSTRACT

Sufficient conditions for the complete controllability of nonlinear perturba-
tions of Volterra integrodifferential systems with implicit derivative are establish-
ed. The results generalize the results of Dauer and Balachandran [9] and are ob-
tained through the notions of condensing map and measure of noncompactness of
a set.
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1. Introduction

The controllability of perturbed nonlinear systems has been studied by several authors [2-4, 7-
9] with the help of fixed point theorems. Dacka [6] introduced a new method of analysis to study
the controllability of nonlinear systems with implicit derivative based on the measure of noncom-
pactness of a set and Darbo’s fixed point theorem. This method has been extended to a larger
class of perturbed systems by Balachandran [2, 3]. Anichini et al. [1] studied the problem
through the notions of condensing map and measure of noncompactness of a set. They used the
fixed point theorem due to Sadovskii [11]. In this note, we shall study the controllability of non-
linear perturbations of Volterra integrodifferential systems with implicit derivative by suitably
adopting the technique of Anichini et al. [1]. The results generalize the results of Dauer and Bala-
chandran [9].

2. Preliminaries

We first summarize some facts concerning condensing maps; for definitions and results about
the measure of noncompactness and related topics, the reader can refer to the paper of Dacka [6].
Let X be a subset of a Banach space. An operator T: X—X is called condensing if, for any
bounded subset E in X with u(E) # 0, we have u(T(E)) < u(E), where pu(E) denotes the mea-
sure of noncompactness of the set E as defined in [11].

We observe that, as a consequence of the properties of p, if an operator T' is the sum of a com-
pact and a condensing operator, then T itself is a condensing operator. Further, if the operator
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P: X—X satisfies the condition |Pz— Py| <k|z—y| for z,y € X, with 0 <k <1, then the
operator P has a fixed point property. However, the condition |Pz— Py| < |z—y]| for
z,y € X is insufficient to ensure that P is a condensing map or that P will admit a fixed point
(Browder [5]). The fixed point property holds in the condensing case (Sadovskii [11]).

Let C,(J) denote the space of continuous R" valued functions on the interval J. For
zeC,(J)and h>0,let
6(z,h) = sup{ | z(t)—z(s)|; t,s €J with |t—s| <h},

and write 6(E,h) = sup 6(z,h), so that 8(E, -) is the modulus of continuity of a bounded set E.
z ek

Set 6,(E) = llm B(E k). Assume that Q is the set of functions w: R —R* that are right contin-

uous and nondecreasmg such that w(r) <r, for r > 0. Let J = [t,t,].

Lemma 1: [11] Let X C C,(J) and let B and vy be functions defined on [0,1, — t,] such that
lin(z)ﬂ(s) = lin(z)'y(s) =0. If a transformation T: X—C, (J) maps bounded sets into bounded sets
8§— §—

such that
O(T(x), ) < w(0(z, B(h)) + (k) for all k€ [0,¢, — to]
and z € X with w € Q, then T 1s a condensing mapping.

Lemma 2: [1, 11] Let X C C,([ty,t4]), let I =[0,1], and let S C X be a bounded closed con-
ver set. Let H:IxS—X be a continuous operator such that, for any o € I, the map H(e, - ):
S—X is condensing. If ¢ # H(a,z) for any « € I and any = € 0S (the boundary of S), then
H(1,-) has a fized point.

Finally, it is possible to show that for any bounded and equicontinuous set E in C}l(J), the
following relations holds:

“c;(E) = m(E) = w(DE) = p¢g_(DE)

where DE = {&;z € E}.

3. Main Results

Consider the nonlinear perturbations of the Volterra integrodifferential system of the form

t
£(t) =g(t,z) + / h(t,s,z(s))ds + B(t,z(t))u(t)
to

+ F(t,2(t), (1), (Sz)(),u(t)), ... tEJT = [tg 1] (1)

z(ty) =y, where the operator S is defined by

(Sz)(t) /ktsm ))ds.

Here, 2(t) € R", u(t) € R™ and the functions g, h,f, B and k satisfy the following hypotheses:
i) g:J x R"—R" is continuous and continuously differentiable with respect to x.
i1) h:J xJ x R"™—R"™ is continuous and continuously differentiable with respect to x.
iit)  B(t,z(t)) is a continuous family of matrices on J x R".
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iv) f:JxR"xR"xR"xR™—R" is continuous.
v) k:J xJ x R"™—R"™ is continuous.

Let z(t,t,,1,) be the unique solution of the equation

t

&(t) = g(t,x) + / h(t,s,z(s))ds

t
existing on some interval J. 0
Define
G(t, 10, Tg) = g4(t, (1,10, o))
and H(t,s,ty,x9) = h,(t,s,2(s,tg, ).

Then X(t,t4,%) = 5-‘2—.7:(75, ty, o) exist and is the solution of
0

i
i(0) = Gt toy20)u(t) + [ H(t,53t 30)u(s)ds
t
such that X(t,,t,,2) = I. 0

Then the solution of the equation (1) is given by [10]

x(t)zﬁ(tato,xo)ﬁL/ X(t,s,2(s))[B(s, z)u(s) + f(s,2(s), &(s), (Sz)(s), u(s))]ds
to

t ot
+t/ Z[X(t,‘r,:c(’r))——R(t,r;s,m(s))]h(r,s,:c(s))d‘rds
0

where R(t,s;t,,x,) is the solution of the equation
t

%_f(t, 83 80) o) + R(1, 530, 20)G(5, tg, Tg) + / R(t, 75 tg, 2o) H(T, 810, €)dT = 0

8

such that R(t,t;ty,zy) = I on the interval t; <s <t and

R(t,tp;tg,2o) = X(t, g, ).

203

We say the system (1) is completely controllable on J if, for any z,,z; € R", there exists a
continuous control function u(t) defined on J such that the solution of (1) satisfies z(t,) = ;.

Define the matrix W by
t
W(t, ty,z) = / X(t,s,2(s))B(s,z(s))B*(s,z(s)) X *(t,s,z(s))ds,
to

where the star denotes the matrix transpose. Further define

t ot
q(t,to,:c):/ /[X(t,r,:c(r))—R(t,r;s,x(s))]h(r,s,x(s))drds.

to
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The main results concerning the controllability of the system (1) is given in the following
theorem.

Theorem: Let the system (1) satisfy all the above conditions (i) to (v) and assume the addi-
tional conditions
| f(t’x7y7517“) |

(a) limsup El =0,
| z | —o0
Q) there exists a continuous nondecreasing function w: R T R, with w(r) < r, such that

| f(t,z,y,Sz,u) — f(t,2,2,52,u)| <w(|y—=z]|) for all (t,z,y,Sz,u) € J x R3"x R™
(¢)  there exists a positive constant § such that
detW (tg,ty,2) > 6 for all x.

Then the system (1) is completely controllable on J.

Proof: Define the nonlinear transformation

T:C, (J)x CL(J)=C, (J)x CL(J)

T(u,z)(t) = (Ty(u,2)(t), Tolu,z)(t))
where the pair of operators T'; and T', are defined by

Ty (u,z)(t) = B*(t,2)X*(ty, t,2)W ~ (b}, tg, @)[zy — (b1, g, T)
ty
- ‘I(tl’ tO’x) - / X(tl,s,x(S))f(s, :L'(S), i(s)> (Sz)(s),u(s))ds]
to

Ty(u,z)(t) = 2(t, g, 2y) + q(t, g, ) + / X(t,s,2(s))B(s,x(s))T(u,z)(s)ds
t o
+/ X(t,5,2(5))f(s,2(s), &(5), (S2)(s), Ty (v, 2)(s))ds.

to

Since all the functions involved in the definition of the operator T' are continuous, 7' is contin-
uous. Moreover, by direct differentiation with respect to ¢, a fixed point for the operator T' gives
rise to a control u and a corresponding function z = z(t), solution of the system (1) satisfying
z(ty) = 2y, x(t;) = z;. Let

1° = (u%,2%) € C,u (1) x CH()
1= (uz)#0€CWJ) xCLJ)
and consider the equation

n° =n—aT(n),

where o € [0,1]. This equation can be equivalently written as
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u=u+ aT(u,z) (2)
z = 2%+ oTy(u, ). (3)

From condition (7), for any € >0 there exists R >0 such that if |z| > R then | f(¢,z,y,
(S)(z),u)| <e|z|. Then from (2 ) we get

lul < 18|+ [al |BIIX|IW ™ {[1zg] + |2ty tg,20) |
+ la(tytoz) | + [ X |e|z| 6]
<1 +ky+ I BIIX |2 IW e8]z (4)
where 6§ = ¢, —t; and
ky=[B||X| |W_1|[|‘L'1| + [z(ty,tg, %) | + | a(tystg,2) | ).
From this inequality and from (3), by applying the Gronwall Lemma, we obtain
|z | <[1®] + la(t,tg20) | + | Ty(w,) | | X | | B8+ |q(t tg,z) | lexp (| X | €b)
<[] + L2t toze) | +(ky+ | B | X |2 [W ™ e8|e|)| X | |B|§
+ 4(t 5, 2) | lexp(| X | €6). ()
Taking the derivative of (3) with respect to ¢, we obtain
b =92 4 a(T,(u,2)(1)

di dt

and that results in
t

l&| < 1&°] + |g(t,2) ] +/ | h(t,s,2(s)) | ds + [ B(t,2(1)) | | T1(w,2)(1) |

tg

+ [ f(t,2(t), 2(2), (S2)(1), u(?)) |

<1801+ o(ta) | + [ [hts,a(e) 1 ds+ | BIlky+ | BIIXI2[W etz ]+¢] 2]

to

= [+ ky+ || [| B2 X [2|W T eb+¢] (6)

where k, = | g(t,z) | +6 | h(t,s,z(s))| + | B| |k |.
From (4)

|u|—|B|[X|2[W_1|66|:c|_<_|u0|+/c1 (7)
and from (5)

|z |[exp(— | X )= | BI?| X [2|W ™ et?)< | 2] +hy (8)
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where ky = | a(t,g,50) | +&; | X| | B|6+ | a(t,t,2) | and from (6)
|| — |2 |[IBI?|X|2|W ™ eb+e] <ky+ 0] (9)
Taking the sum of all the inequalities (7), (8) and (9), we obtain
lul = e[ {IB| | X|?|W ™ es—exp(— | X|eb)+ | B|?| X |?|W 1 ]|e?
+ 1B X|2|W = e +eh+ ] < [u0] + [20] + |4°] +F
where k = ky + ko + k3.
That is,
lul =Mz + 2] < [u] + (2] +2°] +&
where A= | B| | X |2|W ! |e6{1+ |B| | X |6+ | B|}+ec—exp(— | X|e0).
Then, for suitable positive constants a,b,c we can write
lul —lea—exp(—eb)]|z| + [&] < [«®] + [2°] +[2°] +¢,

so we divide by |u| + |z| + || and from the arbitrariness of ¢, we get the existence of a ball
Sin C, (J)x CL(J) sufficiently large such that

|p—aT(n)| >0 for n = (u,z) € 8S.

We want to show that T is a condensing map. To this aim, we note that T':C, (J)—C,.(J)
is a compact operator and then, if E is a bounded set, u(T;(E)) =0. Then it will be enough to
show that T, is a condensing operator. For that, let us consider the modulus of continuity of
DT y(u,z)( ). Now, for t,s € J, we have

t
| DT'y(u,z)(t) — DT o(u,z)(s) | < [ g(t,2()) - 9(s,2(s)) | + | /h(i,T,x(T))dT
E t()
- / h(s,7,2(T))dr | + | B(t,z(t))T(u,z)(t) — B(s,2(s))T(u,)(s) |
to
+ [ f(x(t),&(2), (Sz)(), Ty (u,z)(t)) — f(5,2(s), &(s), (Sz)(5), T'1(u,z)(5)) | -

For the first three terms of the right hand side of the inequality, we may given the upper
estimate as fFy(|t—s|) with ’llin})ﬂo(h) =0 and it may be chosen independent of the choice of

(u,z). For the fourth term, we can given the following estimate:
| f(t,2(t),&(t), (Sz)(t), Ty (u, 2)(t)) = £(5,2(s), &(5), (Sz)(5), Ty (u, 2)(5)) |
< [ (t),2(1), (S2)(1), T (u, 2)(1)) = £, 2(1), &(s), (S2)(1), T (u, 2)(1)) |
+ [ F(ta(t),&(s), (Se)(t), Ty(u,2)(t)) = f(5,2(s), &(s), (Sz)(s), T1(w,z)(s)) |-

For the first term we have the upper estimate w( | Z(t) — &(s)|) whereas for the second term,
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we may find an estimate
Bu(1t=s|) with Jim 8 (k) = 0.
Hence
O(DTy(u,), ) < w(B(DE, h) + A(h)
where 8 = 8,4 ;. Therefore, by Lemma 1, we get

0o(DT,(E)) < 0y(DE).

Hence, from
20, (T3(E)) = 2u(DT3(E)) = 0(DT,(E)) < 0o(DE))
= 2u(DE) = 24,(F),

it follows that p,(T'y(F)) < py(E). Then the existence of a fixed point of the operator T follows
from Lemma 2. In other words, there exists functions u € C,,(J) and z € C}(J) such that

T(u,z) = (u,z)
and
u(t) = Ty(w,z)(), @(t) = Ty(u,)().
These functions are the required solutions. Further, it is easy to verify that the function z(-)

given by the systems (1) satisfies the boundary conditions z(t,) = z, and z(¢;) = z,. Hence, the
system (1) is completely controllable.
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