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ABSTRACT

B.S. Razumikhin’s concept in the qualitative theory of systems delay is
clarified and discussed. Various ways of improvements of stability conditions are
considered. The author shows that the guiding role of Lyapunov functions and
demonstrates Razumikhin’s method as a practical case of continuous version of
the mathematical induction. Several examples demonstrate the obtained results.
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1. INTRODUCTION

B.S. Razumikhin proposed in 1956 [41] a method to investigate stability of solutions of
systems with delays. This method is based on application of Lyapunov functions in combination
with the general concept of “impossibility of the first breakdown” (see Section 7). This method
was developed later both by Razumikhin himself (in the most explained form in monograph [38])
and by other authors (see, in particular, J. Hale’s books [13,14]). Sometimes this method is
regarded as more superior to N.N. Krasovskii’s method of functionals that seems to be unjustified
(see Section 9).

Razumikhin’s method essentially extends stability theorems in Lyapunov’s sense. In this
case, it is necessary to pass from ‘“guiding Lyapunov’s functions” to arbitrary guiding functions.

These and related questions will be considered in the paper. Since only basic concepts will be
discussed, the statements will be presented not in a general form and without detailed proofs.

2. GUIDING FUNCTIONS FOR SYSTEMS WITHOUT DELAY

Let the state of some autonomous system be defined by the point z = (x,, :--,z,) of n-
dimensional domain D, whereas its evolution is governed by the differential law, i.e. by the
system of ordinary differential equations (ODEs)
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& = f(z) (1)

with smooth (i.e. continuously differentiable) right-hand side. The solutions t—z(t) of this
system are interpreted naturally as trajectories in the phase space D.

Let V:D—R be a given smooth function, i.e. V(z) is a scalar characteristic of a physical
system considered at state x. Then the change rate of this characteristic at state z is a derivative
of the composite function and is equal to:

dV(z(t))/dt = Z:; lei(m):bi = (grad V(z),z) = (grad V(z), f(z)),

where grad V(z):= (Vxl(‘”)”"’ V_ (z)), and (-,-) means a scalar product of vectors. This

x
n
derivative is called the derivative of the function V taken by virtue of system (1); we shall denote

it by .
V(l)(m) = (grad V(z), f(z)).

(Index (1) in the left-hand side indicates the system of equations by virtue of which the derivative
is taken.)

Thus, if the value z(t) of the solution is known for some t, then it is possible to get the value
dV(xz(t))/dt for this ¢ directly, without solving system (1). This simple property is crucial for
application of guiding functions and, in particular, guiding Lyapunov functions.

We shall call a smooth function V: D—R a guiding function for the system (1) if V(l)(x) <0
in Dj in other words, if it is a decreasing function in the weak sense (i.e. it can have intervals of
constancy) along any trajectory of this system. The guiding function for a physical system is like
a wind which drives it from the states with higher levels (of values of V(z)) to the states with
lower levels; in any case, this level can remain constant, but cannot increase. It is natural that
the knowledge of the guiding function for some system allows us to make essential conclusions
about the character of its evolution.

It was A.M. Lyapunov who for the first time began to apply systematically guiding functions
in his famous studies [31] of stability theory and it is usual to call such functions Lyapunov
functions. We are going to use this term in a wider sense: namely, we call a Lyapunov function in
R™ any scalar smooth function V, defined in some neighborhood G of the origin 0 € R™, such that
V(0)=0, V(z) >0 (Vz € G \{0}).

Let us recall Lyapunov’s theorems on stability and asymptotic stability for system (1).
(Lyapunov proved them for the general case of non-autonomous systems of ODEs.)

_Theorem 1. Let 0 € G, f(0) =0 and assume a Lyapunov function V:G—R ezists, for which
V(l)(:c) <0 (Vz € G) (i.e. which is guiding for (1)). Then the solution z(t) =0 of system (1) is
stable in the sense of Lyapunov.

Theorem 2. Assume, in addition to the conditions of Theorem 1, that V(l)(m)<0

(Vz € G\{0}). Then the solution z(t) =0 of system (1) is asymptotically stable in the sense of
Lyapunov.

These statements have a simple interpretation. The level surfaces of Lyapunov function V
(i.e. surfaces in R™ defined by the equation V(z) = const.) are similar to the family of concentric
spheres with center 0 and any sufficiently small radii. It follows from the negativeness of V !
that all those surfaces intersect trajectories of system (1) towards the interior. (If v <0 then
the trajectories can slide along the level surfaces). Hence, the validity of the theorems mentioned
becomes intuitively clear.

M.A. Krasnosel’skii was the first in 1958 to apply guiding functions for studying different
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problems of the qualitative theory of ODEs. Let us give one example of such an application for
system (1).

Theorem 3. Let a function f be defined on R™ and let the smooth function V:G—R exist in
some neighborhood G of mfznzty (i.e. G contains all points z with sufficiently large |z|) such
that V(z)—o0 as z—oo and vV (z) <0 (V2 € G). Then system (1) is dissipative, i.e. there exists
an >0 such that any solution of system (1) belongs to the sphere |z | <r, starting at some
instant dependent on initial conditions.

The intuitive interpretation of this theorem is similar to that of Theorems 1 and 2 mentioned
above, but level surfaces are similar now to the family of spheres of any sufficiently large radius.

It should be noted that in some papers, guiding functions with values in some ordered vector
space are also considered; e.g. Lyapunov vector functions successfully applied by V.M. Matrosov.
Throughout this paper, we shall consider only scalar guiding functions.

3. FUNCTIONAL DIFFERENTIAL EQUATIONS OF RETARDED TYPE

These equations (briefly RDEs) and their systems describe processes whose evolution rate is
defined at any instant of time by their state not only at that instant but also at preceding
instants. In other words, we consider processes with lags (concentrated delay) or with aftereffects
(distributed delay). RDEs are widespread now in different mathematical applications such as
control problems, population dynamics, and in other branches of science such as biology,
medicine, economics, viscoelasticity, etc.

Let us investigate an autonomous system of the 1st order RDEs with single discrete constant
delay:
&(t) = f(z(t),z(t —h)), h =const. >0 (2)

Here, z(t) takes values in R", whereas the function (z,y)—f(z,y) with 2n scalar arguments is
defined for all z,y € R™ and is smooth. However, all considerations can be extended mutatis
mutandis to other forms of RDEs.

Let us assume that we apply RDE (2) beginning with some initial instant ¢t = ¢,. Since we
have t —h € [ty — h, t,] for t € [ty, ty+ h], and since z(t — h) is present in system (2), the values
of the unknown solution z(-) must be given on the interval [ty — h, t;] as an initial condition, a
kind of prehistory.

It can be proved that, for any continuous initial function t—x(t) (tg—h <t <tg), the
corresponding solution of system (2) exists and is unique on some interval t; <t <T ( < o0)
where T depends on the initial function. This solution depends continuously (in a sense of
uniform deviation) on the initial function on any interval [t,, T,] C [t;, T). A smoothing of the
solution takes place as t increases: it is smooth for ty, <t < T if T > ty+ h, then it is twice as
smooth for ty+h <t <T;it T >ty+2h and f is twice as smooth, then z(-) is thrice as smooth
for ty+2h <t < T and so on. Besides, if T < oo, then | z(t)|—oo for t—T ~

An important peculiarity of RDEs should be noted: if the initial condition is given, the
solution exists generally speaking in the direction of increasing t only; the problem of solution
construction is found to be incorrect in the direction of decreasing ¢.

According to what has been said, it is natural to take the space of all continuous functions on
some closed interval of length h valued in R™ and a norm of the uniform deviation as phase space
corresponding to system (1); N.N. Krasovskii was the first to propose this in 1956 [28] and it is
generally accepted now. One usually takes [— h, 0] as such an interval. Then, the corresponding



236 ANATOLY D. MYSHKIS

space is denoted by (C[—h, 0])"; it is sometimes called Krasovskii’s space associated with the
system of RDFEs (2).

The trajectory in the space K :=(C[—h, 0])" corresponds to each solution t—z(t)
(to—h <t <T) of system (2) by the following rule: each ¢ € [0,T) corresponds to the function
O—z,(0):=z(t+0) (—h <0 <0) as an element (point) of K. Exactly one trajectory starts at
each point ¢ € K. It corresponds to the solution of system (2) with initial function

z(t) =d(t—1y) (tg—h<t<ty), (3)

and the same trajectory corresponds to different values of t; but passing with translation in time.
Thus the phase space K and the trajectories in it for system (2) are similar in many aspects to
the phase space R™ and the trajectories for ODE (1); but an important distinction still exists: the
space K is infinite-dimensional.

The concepts of stability and asymptotical stability of the solution of problem (2),(3) in the
sense of Lyapunov, are introduced quite similar to the system of ODEs (1). In what follows, we
shall omit the words *“in the sense of Lyapunov.”

4. GUIDING FUNCTIONALS FOR SYSTEMS OF RDES

Let the scalar functional P: K—R be given in the space K = (C[— h,0])", i.e. the number
P(¢) €R corresponds to any ¢ € K. We shall consider only continuous functionals, i.e., it is
assumed that the uniform convergence of the sequence @', ¢2, --- implies the convergence of the
numerical sequence P(d)l), P(¢2), ---. Then it is easy to verify that if the function z:[t,—h,
T]-R" (t, < T) is continuous, then the function t—P(z,) (t; <t < T) is also continuous.

The derivative of the functional P taken by virtue of system (2) is defined analogously to
that of system of ODEs (1) in Section 2. Namely, if ¢ € K and 2% is a solution of system (2)
under the initial condition (3), then

p@)g) :.-.AE{O . 27[P@E L a)— P (4)

Here mm_)o + means the largest of the limits as 0 < At—0 (it may be a nonunique limit of

this value). P s a generalized functional K—RU { — 00,00} in the sense that it can assume
+ oco along with finite values.

From formula (4) and the autonomy of system (2) it follows that the solution x(-) of
problem (2), (3) satisfies the equation

. 1 . (9
A1t1:n0+m [P(z, 4 ae) = P(z)] = PP(z,) (t,<t<T).
The limit on the left-hand side is called upper right derivative of the function t—P(x,). The
simple known lemma below makes use of this derivative.

Lemma 1. If the function g: [, B]—R (a < B) is continuous and its upper right derivative
g“"(t) <0 (resp. >0) for a <t < f, then the function g is nonincreasing (resp. nondecreasing)
on [a, B]. If in addition the set {t: 3“"(t) = 0} does not contain intervals, then the function g is
decreasing (resp. increasing) on [a, B].

Analogously to ODEs, the functional P is called a guiding functional in some domain H C K
for some system of RDEs (2) if P(z)(¢) <0 (V¢ € H). By virtue of Lemma 1, P is then a
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nonincreasing function of ¢ along any arc of the trajectory of system (2) entirely contained in H.

Guiding “Lyapunov functionals” are an important example of guiding functionals; such
functionals were introduced by N.N Krasovskii ([28], see also [27]) and were successfully used by
him and other authors in the theory of RDEs. We shall cite Krasovskii’s theorems, which are
analogous to Lyapunov’s theorems pointed out in Section 2 and are adapted to system (2).

Theorem 4. Let f(0,0) =0 and assume there exists a functional P in some neighborhood H of
the zero function ¢ =0 for which P(0) =0, P(¢) >0 (¢ #0), and for each € >0 there is a 6 >0
such that | P(¢)| < § implies that |$(0)] < ¢ and PP ($) <0 (Vg € H). Then the solution a(£) = 0
of system (2) is stable.

Theorem 5. Assume that, in addition to the conditions of Theorem 4, sup{P(2)(¢):
P(¢) > 6} <0 for any sufficiently small §>0. Then the solution z(t) =0 of system (2) is
asymptotically stable.

The efficiency of Lyapunov’s functionals in RDEs stability, for general and particular cases,
was confirmed in [13, 14, 25, 26].

The following theorem can be used, for example, as an analog of Theorem 3.

Theorem 6. Let the functional ¢—P(¢) be defined for all $ € K with sufficiently large |¢(0)|,
P(¢)—o0 as |¢(0) |—»oo, and sup{i’(2)(¢): P(¢) > M} < 0 for any sufficiently large M. Then there
exists 7> 0 such that the solution of problem (2),(3) will be contained in the sphere |z|<r for
any initial function, beginning at some t.

5. DIRECT APPLICATION OF LYAPUNOV FUNCTIONS TO RDES

Prior to N.N. Krasovskii’s papers on Lyapunov’s functionals, L.E. El’sgol’ts [6] considered the
stability problem of the solution z(t) =0 of RDEs exactly as that for ODEs by proving that the
function t—V(xz(t)) is decreasing. Here V is some Lyapunov function and z(-) is any perturbed
solution. He showed that it is only possible in some comparatively rare special cases.

We shall show this on the example of system (2) with f(0,0) = 0 for n =1, i.e. when it turns
into a scalar equation. Let us assume that V(z) = 22 which is a typical Lyapunov function for
n =1. Then we have for any solution z( - ) of equation (2) that

[V (2(®)] = 22(t)&(t) = 2(t) f (2(), 2(t - }))-

For the validity of inequality [V (z(t))] <0, we need to require that zf(z,y) be nonpositive for all
sufficiently small |z | and|y|. It follows then that f(0,y) =0 which essentially restricts the
class of equations considered.

It should be noted that the function t—V(z(t)), with a given V, can be written in the form
t—P(z,), if we define the functional P by P(¢):= V(4(0)), because P(z,) = V(z,(0)) = V(z(t)).
We get for this functional P(3)(¢) = (grad V(4(0)), £(#(0),$( — h))).

6. THE MAIN IDEA OF B.S. RAZUMIKHIN

The method proposed by B.S. Razumikhin [41] allowed to ‘rehabilitate’” an application of
Lyapunov functions to RDEs to a considerable extent. This application was found in some cases
simpler and more visual than an application of general functionals.
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The example from Section 5 helps understand easily the idea of Razumikhin’s method. We
need the inequality [V(z(¢))]’<0 in order to prove that a solution starting in a small
neighborhood of the zero function remains in it in the future. However, it does not require for the
latter that the value of V(z(t)) be decreasing (or at least nonincreasing) all the time; it is
sufficient that the trajectory, which corresponds to the solution, will not cross the boundary of
this neighborhood. Hence, if a neighborhood has the form V(z) < § (6 = const. > 0), it would be
sufficient to require that [V(z(t))]' <0 when V(z(t)) =6 and V(z(t—h)) <, because the last
inequality holds when the trajectory reaches the boundary for the first time. We show later that
the inequality V < 0 can be replaced here by V < 0. Thus, for stability of the zero solution, the
inequality zf(z,y) <0 need not be valid for all ¢ and y with sufficiently small modulo, but only
for those with |y| < |z|. This (weaker) restriction extends considerably the number of cases
for which stability of the zero solution of equation (2) can be proved by Lyapunov functions.

Let us consider, as a particular case, the scalar RDE
z(t) = azx(t) + bz(t —h) (a,b = const.). (5)

Stability of the solution z(t) = 0 is guaranteed by approach in Section 5, with V(z) = z%, only in
the trivial case b =0 and a <0. Using Razumikhin’s method, we conclude that the stability is
ensured if z(ax +bz) <0 for |y| < |z ]|, i.e. always when |b| < —a. (Of course, as for any
linear system of RDEs, from stability of some solution of equation (5) it follows the stability of
any other solution, i.e. here it is natural to consider the stability of this system; the asymptotic
stability of linear systems is analogously considered.)

7. “IMPOSSIBILITY OF THE FIRST BREAKDOWN?”

The idea of Razumikhin’s method can also be explained in more general situations. Let us
consider a continuous evolution of some system, starting from some instant, and we wish to prove
that it possesses some property S all the time. Let this property be stable, i.e. if the system
possesses it in some state, then it would do so for all sufficiently close states.

Two ways can be used to prove, by contradiction, the presence of property S. First, it can be
assumed simply that the property S is absent at some instant, and try to arrive at a contra-
diction. Second, it can be proved that S takes place at the initial instant, and then deduce a con-
tradiction considering the first instant of breakdown of this property. It is clear that if we are
able to prove that the first breakdown is impossible, then it would always be impossible.

The second approach is in some sense analogous to the mathematical induction method for
continuous processes. It is effective for the cases when the assumption about the validity of the
property S at all instants preceding the considered one, gives an information which facilitates to
get a contradiction. Of course, this approach was used by many authors in different branches of
mathematics. It is crucial for Razumikhin’s method along with the idea of a guiding function.

8. PRECISE FORMULATION

To apply Razumikhin’s method, one can use the following lemma, which is a refinement of a
particular case of J. Kato’s theorem [21], but can easily be proved independently.

Lemma 2. Let the function g: [a — h,3]—R be continuous for some h >0, a < g < oo, and
g“"(t) <0 for all values t€[a,B) for which g(s)<g(t) (Vs€[a—h,t)). Then g(t)
< max, [a_h’a)g(s) (e <t < p).
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Applied to system (2) with f(0,0) = 0, this lemma leads to the theorem:
Theorem 7. Assume the Lyapunov function V: G—-R ezists with z,y € G, V(y) < V(z) imply

(grad V(z), f(z,y)) <0. (6)
Then the solution z(t) = 0 of system (2) is stable.

For a proof, one must set g(t) = V(x(t)), where (- ) is any solution of system (2) with initial
function ¢ sufficiently close to zero, and apply Lemma 2. We see that even a stronger
statement for such solutions holds: V(:c(t))gmax[to_h tO]V(d)). However, in general, the

monotonicity of the function ¢—V(z(t)) does not hold true, unlike the situation arising under
conditions of Theorem 1. Thus the function V turns out to be not a guiding function in the
restricted sense, but a ‘“ barrier” function.

It should be noted that the function t—g(t), defined in the proof of Theorem 7, is smooth for
t>a:=t; Lemma 2 follows easily under this additional assumption from the following
particular case of A. Sard’s theorem: a set of stationary values of a smooth function of a single
argument has the everywhere dense complement.

Theorem 7 is directly extended with natural modifications to any autonomous systems of 1lst
order RDEs, both with discrete and continuous delays, and to the non-autonomous case; see e.g.
Section 5.4 of [13] and the references therein. Besides, if a non-autonomy of the system appears
only in the dependence of the delay on t or even on the unknown solution, then no changes in the
formulation and the proof of the theorem are required.

9. CONNECTION BETWEEN RAZUMIKHIN’S METHOD AND LYAPUNOV FUNCTIONALS

Let-a smooth function V:R"—R be given. Define the functional P: K—R as follows
P(6) = s, V#(0) (V6 € K).

It is not difficult to verify that

O if V(4(0)) < P(4),
= max{(grad V(#(0)), F(¢(0),6( ~ h))), 0}, if V(4(0)) = P(9)-

Thus, P®)($) > 0 if only if

V($(0)) = _ max_ V(¢(9)) and (grad V(4(0)),f(¢(0),4(~h)))> 0. (7)

The function V can be defined on some domain G C R™. The functional P is then defined for
¢ € K with values in G. Its properties, pointed out here, remain valid.

If the function V is such as in Theorem 7, then relations (7) are inconsistent. Indeed, if they
are valid for some function ¢ € K, then we could obtain the inequality V(¢(—h)) < V(4(0))
making ¢ arbitrarily small. At the same time, the second relation in (7) remains valid. It
contradicts the condition of Theorem 7. Hence P (qS) <0 for all ¢. So, if f(0,0) =0, then all
the conditions of Theorem 4 are satisfied and therefore, the solution z(t) =0 of equation (2) is
stable.

Thus, Razumikhin’s method can be considered as a particular case of the method of
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Lyapunov functionals. But this particular case possesses a feature which makes its independent
study quite natural. This feature is based, first of all, on the possibility to apply the guiding
functions in R™ (with n = 1,2 etc. in many examples) which is well elaborated for ODEs.

10. ASYMPTOTIC STABILITY

Asymptotic stability of system (2) zero solution can be proved under a stronger assumption
than that of Theorem 7. Consider an example of such statement.

Theorem 8. Assume, in addition to the conditions of Theorem T, that for any sufficiently
small p > 0, there exists ¢ > p such that, if V(z) = p, V(y) < g, then (grad V(z), f(z,y)) <0. Then
the solution z(t) = 0 of system (2) is asymptotically stable.

Indeed, if the solution t——z(t) of system (2) is modulo sufficiently small and does not tend to
zero as t—oo, then we denote p:=Ilim;_,,V(z(t)), and apply the additional condition of
Theorem 7 which leads to the contradiction.

In particular, we obtain for n =1, taking V(z)=«?% that the condition |b| < —a is

sufficient for the asymptotic stability of equation (5).

Remark. If the function V is defined on the whole R™ in Theorem 8, and V(z)—oo as
| z| —00, and p >0 can be arbitrary, then the solution of system (2) tends to zero as t—oo for
arbitrary initial function.

11. REFINEMENT OF ESTIMATIONS

Razumikhin also notes that many parameters estimates of RDEs, which guarantee stability,
can be made much more accurate by constructing a set of points where the validity of inequalities
(6) is required. Let us formulate a relevant theorem for system (2) with £(0,0) = 0.

Theorem 9. Assume that the Lyapunov function V: G—R and a number N> 0 exist such
that the inequality

(grad V(2(0)), f((0),z( - h))) <0, (8)

holds true for any continuous function z(-):[ —(N + 1)h,0]=G for which z(t) € G, V(z(t))
<V(z(0)) (=(N+1)h<t<0),and which satisfies system (2) for —Nh<t<0. Then the
solution z(t) = 0 of system (2) is stable.

Indeed, let € >0 be given with {z: |z| <e} CG and ¢€ K, V(¢(t))<é (—h<t<0),
where 6 >0 is sufficiently small. Then the inequality V(z(t)) <e (¢, <t <ty+ Nh) for the
solution z( ) of problem (2), (3) follows from continuous dependence of the solution on the initial
function. The impossibility of the breakdown of this inequality for ¢t > ¢, + Nh can be justified as
in Theorem 7.

12. EXAMPLE

Let us show how Theorem 9 can be applied to the scalar equation
&(t) = —bx(t—h) (b= const.>0), 9)

with V(z) = 2. We are following Razumikhin’s presentation with some refinements.
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The application of Theorem 7 gives nothing in this example that can be seen from the
consideration of equation (5) in Section 6. Let us apply Theorem 9. Observe that inequality (8)
takes the form

[22(0)]] = bz( = h)] <0, i.e. z(0)x(—h)> 0. (10)

Let us take at first N = 1; then inequality (10) must be proved for any continuous function
z(-):[ —2h,0]-R, for which|z(t)| < |z(0)| (—2h<t<0), and equation (9) is satisfied for
—h<t<O0.

If £(0) =0 then the validity of (10) is obvious. Therefore, let z(0) >0 (if z(0) < 0, we can
multiply z(-) by — 1, which does not affect (10)).

It follows by virtue of equation (10) from inequality |z(t)| < z(0) (—2h <t < —h) that
&(t) < bx(0) (—h<t<0).

Now integrating it from —h to 0, we obtain z(0)—z(—h)<bz(0)h. Hence, z(—h)
> (1 —bh)z(0).

We see that if bh < 1, then inequality (10) holds true, and therefore, the condition bh <1 is
sufficient for the stability of equation (9).

This restriction can be essentially weakened, if we put N =2. Inequality (10) must be
verified now for any continuous function z(-):[—3h,0]-R, for which|z(t)| < |=z(0)]|
(—3h <t <0), and equation (9) is satisfied for —2h < ¢ <0.

We can assume again z(0) > 0. Let us assume that (10) is not fulfilled, i.e. z( —h) < 0; then
bh > 1 by virtue of considerations carried out for N =1. We obtain by integrating (9) from any
t € [—2h, — h] to — h that

|a(—h)—a(t) | <ba(0)(~h—1) (—2h<t< —h).
It follows from here that
z(t) > max{ —z(0), z( — h) = bz(0)(—h—1t)} (—2h<t< —h). (11)

Let t = g be the value for which both quantities under max equal each other, i.e.

g::—h—%-—%—(-—o’;l (12)

Since bh > 1, then —2h < g < — h and therefore inequality (11) can be rewritten as follows:

x(t)z{ — 2(0), (—2h<t<g),
z(—h)+bz(0)(h+1), (g<t< —h).

Using this estimation we obtain by integrating both sides of equation (9) from — h to 0 that
g -h
2(0)—x(—h) = —b[ [~ 2hac(t)dt + fg z(t)dt]

< —b{ — 2(0)(g + 2h) +2(— h)(— h — g) + b=(0)] — 5(h + g)°I}.
Substituting it into the right-hand side of (12) for g and grouping similar terms, we get:

2(0) =2~ h) < = bha(0) = 52(0) =~ 2( ~ ) = sl — AL,
from which

(3/2 = bh)z(0) < — Qxl(o)[z( —n)?<0.
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Hence, the described situation can occur only if bh > 3/2, and for bh < 3/2 condition (10) is
satisfied, i.e. equation (9) is stable. This statement was proved in [13] in a different way, also on
the basis of Razumikhin’s method.

Thus, the transition from N =1 to N =2 widens to one and a half the interval of values b
for which the stability of equation (9) is guaranteed with a given h. It should be noted that the
precise estimate, for which stability takes place, is bh < w/2, which can be obtained by consider-
ing the corresponding characteristic quasipolynomial. Thus Razumikhin’s method gives an
estimate in this example which differs from the precise one by less than 5%.

It could be shown that the transition to N = 3,4 etc. leads to further refinements of the
estimate. However, this transition would require an essential complication of arguments and
apparently noone did it until now.

The point is that the foregoing discussion of the cases N =1 and N = 2 is valid for the RDE

(1) = —ba(t —hy(t)) (13)

with 0 < h;(t) <h as well. (And it is a strong aspect of Razumikhin’s method, because the
method of characteristic quasipolynomials is no longer applicable to equation (13).) However, it
appears (see [34], §38) that the continuous function h,(-) could be constructed for any b > 3/2h
for which equation (13) is unstable, i.e. the estimate bh < 3/2, obtained by Razumikhin’s method
and guaranteeing stability, is best possible for this equation. A refinement of the estimate
bh < 3/2 requires arguments which use essentially the constancy of the delay or at least the
impossibility of its considerable decrease in comparison with the estimating value.

13. TRANSFORMATION OF A SYSTEM OF RDES

We can see from Section 12 that, although an application of Theorem 9 even for N =1 leads
to more precise estimates than Theorem 7, it requires essentially more complicated arguments and
therefore is poorly algorithmized. For this reason, Razumikhin applied a method of preliminary
transformations of the system of RDEs, after which an application of Theorem 7 leads to refined
estimates. This transformation, based on Lagrange formula, was applied for other aims also, and
now, it is difficult to find out who proposed it first. We shall demonstrate it for RDE (5) from
Section 6.

First of all, note that the sufficient condition of stability obtained in Section 6 for equation
(5) by Theorem 7, can immediately be extended to the equations
k
&(t) =ax(t)+ D bz(t—h;) (k>1, all h;>0)
i=1

and has the form Zle |b;] < —a.
Transform now equation (5) using Lagrange formula as follows:
&(t) = (a+b)z(t) — b[z(t) — z(t — h)] = (a + b)z(t) — bhi(t — &),
where 0 < € < h. Substitute the value & in the right-hand side to get from equation (5),
#(t) = (a + b)z(t) — abhz(t — €) — b2ha(t — h — €).

From here we obtain, by virtue of the previous paragraph, the sufficient condition for the stability
of equation (5):
a+b+ |ab|h+b2h <O0. (14)

Two remarks have to be made with respect to this reasoning. First of all, the value £ is not
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constant; but we have already mentioned that the conclusion of Theorem 7 remains valid for
nonconstant delay also. Further, the function z(-) must have a derivative on (t—h, t) for
application of Lagrange theorem, which is guaranteed for ¢ >t;,4+h. Thus, we do not apply
Theorem 7 but Theorem 9 with N =1. However, no individual properties of equation (5) are
used here, except that it is an equation of retarded type.

Inequality (14) determines the domain on a,b— plane, which is bounded by the line b
= —1/h and the hyperbola a = b(bh + 1)/(bh —1); this domain is shaded steeply in Figure 1.
Together with the domain of stability, known from direct application of Theorem 7 (it is shaded
slantingly in Figure 1), we obtain an essential extension of the latter domain. The exact domain
of stability is shown on Figgure 1 for comparison; it is bounded by dashed lines - straight line
a+b =0 from above and line a + b cos(h\v/b? — a%) = 0 from below (see [24], Section 3.2.3).

VD

=
S

Figure 1

Some applications of Razumikhin’s method to determine stability conditions of RDEs can be
found in book [38].

14. OTHER APPLICATIONS OF RAZUMIKHIN’S METHOD

In this section, we consider some examples of application of Razumikhin’s method for other
problems.

The following theorem concerns a property similar to exponential stability of the solution
z(t) = 0 of system (2) with f(0,0) = 0.

Theorem 10. Assume that the Lyapunov function V: G—R and a number p >0 exist such
that

V(y) < e”hV(x), (z,y) € Gl1=[(grad V(z), f(z,y))+pV(z) <0].
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Then for each € > 0 there is a 6 > 0 such that

[2(t)] <6 (tg—h St < o) V((D) <ce™ Pt (1< 1< o0)].

The proof is based on the formulas

[V(2(t))e?] = [(grad V(a()), F(x(t), z(t — h))) + pV (2(1))]e?",
[V (2(t = b)ePt =R < V(z(t)eP |V ((t ~ b)) < V((#))e?M,

and on application of Lemma 2 to the function t—V(z(t))eP".

It follows from Theorem 10, for instance, that equation (5) is exponentially stable if
o] < —a.

Theorems like Theorem 9 can also be proved about boundedness of solutions and dissipativity
of equation (2).

Theorem 11. Let the smooth function V: R"—R ezist such that V(z)—oo for |z |—oo and
(grad V(z),f(z,y)) <0 for V(y) < V(z) if |z|is sufficiently large. Then (YM >0) (3N > 0): if
pEK,|¢(0)| <M (—h<0<L0), then we have |z(t)| <N (tg <t <oo) for the solution of
problem (2),(3).

Theorem 12. Let all the conditions of Theorem 11 be wvalid and for any sufficiently large
p >0, there exists ¢ > p, such that (grad V(z), f(z,y)) <0, if V(z) =p, V(y) < ¢q. Then system
(2) is dissipative.

Remark 1. A similar idea can be applied to prove that for any solution z(-) of a system of
1st order RDEs, the point z(t) remains, for t; <t < oo, in a given part of the space if values of
the initial function belong to it. Consider e.g. system (2). Let the function V:R"—R be smooth,
V(z) <0 in some (connected open) domain G and V(z)=0 on its boundary OG. Let
$(0) €G:=GUOG (—h<0<0)and

(z € 8G,y € G)=>(grad V(z), f(z,y)) <0. (15)

Then, from lemma 2, it follows that z(t) € G on the whole interval of existence of the
solution z(-) of problem (2),(3). If ¢(8) € G (—h <0 <0) and condition (15) is satisfied, then
z(t) € G on this whole interval.

For example we obtain for the scalar RDE (2), taking V(z) := z, that if ¢(8) <0 (resp. <0)
for all 6 € [ —h,0] and f(0,y) <0 for all y <0, then z(t) <0 (resp. <0) for t > ¢, on the whole
existence interval of the solution z( - ) of problem (2),(3).

This remark means in essence that any guiding function for an ODE can be used as a guiding
function for an RDE under appropriate assumptions about right-hand sides of both systems. E.g.,
if applied to systems (1) and (2), the condition (grad V(z), f(z,y)) < 0 must be replaced by

[V(y) < V(2)]=((grad V (), f(z,y)) < 0].
Of course, refinements are possible here in the fashion of Theorem 9.

Remark 2. Razumikhin’s method adapted to difference equations (DcEs) turns into a variant
of the usual method of mathematical induction. Let us illustrate this on the example of DcE
Ty g2 = f(&p Ty 1) (Mm=0,1,...), where f:R™ x R"—R".

Let the function V:R"—R be given. We want to prove that V(z,, ) <0 for all m > 0. Then,
taking into account discreteness of m, the natural analog of Razumikhin’s method is the
following: we must check that V(x,,) <0 (m =0,1), and in addition prove that
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V(z) £0, V(y) < 01={V(f(z,y)) <0] (Ya,y €RT).

But, if we substitute z =z, y ==, . here, we obtain the method of induction.

The refinement of estimates in Section 11 can be useful for DcEs as well. Let us consider, for
example, the scalar equation

T yo=0aT,+bz, (m=01,.), (16)
for which the stability domain is

la] <1,]8] <1-a. (17)

The direct approach described in the previous paragraph, with V(z)= |z| or with
V(z) = 22, gives the smaller domain:
la|l +[b] <1 (18)

Let us iterate equation (16) to widen this domain. It gives
T y3=(a+ bz)xm+ 1 +abz,,.
We obtain from here a condition on a,b which is sufficient for stability of equation (16):
la+b%| + |ab| <1.

It is not difficult to verify that the (a,b)-domain, defined by this inequality, is wider than that of
(18), but nevertheless narrower than the exact domain (17).

15. SUPPLEMENT

Let us cite some papers [1-5, 7-12, 15-20, 22-23, 29-30, 32-33, 35-37, 39-40, 42-48], not
indicated in [13], where Razumikhin’s method is developed and applied, and related problems are
considered. (We do not claim that this list of references is complete.)
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