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ABSTRACT

This paper deals with the limiting behavior of a harmonic oscillator under
the external random disturbance that is a process of the white noise type.
Influence of noises is investigated in resonance and non-resonance cases.
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1. Imntroduction

We investigate the harmonic oscillator as a system of motion described by a linear differential
equation of the second order

mii(t) + ku(t) = ¢(¢) while m > 0 and k > 0,

where ¢(t) is an external disturbance force. In the case, where ¢(t) is a nonrandom periodic
function, the instantaneous energy of the oscillator 6(t):%[lcu2(t)+mi12(t)] is bounded if

the period of the function ¢(t) is not equal to 27y/m/k and e(t) ~ t? as t—oo if period of function
q(t) is equal to 2wy/m/k (resonance).

A model of the random harmonic oscillator with €(¢) ~ t as t—oo was considered by Papanico-
lau [8] for the case when ¢(t) is a stationary random process; a model in which Ine(t) ~ t—oo was
considered by Bendersky and Pastur [1] for the case when ¢(t) =0 and k = k(t) is a stationary
random process; a model in which e(t) ~ \/t as t—oo was considered by Kulinich [7] for the case
when ¢(t) = g(w(t))w(t), with w(t) as a “white” noise, g(z) a nonrandom function and 9%(z)
integrable over R.

In the present paper, we consider the external random disturbance of the type gq(t)
= f(t)g(w(t))w(t), where f(t) and g(z) are nonrandom functions and f%(t) is a periodic function
with the period 2L.

The limiting behavior (for t—o0) of the joint distribution of the random variables (u(t),%(t))
the distribution of the random variable ¢(t) is investigated in the following cases:

1) 2L # 2ny/m/k; 2) 2L =2m\/m/k.
It is shown in particular that e(t)~t if g% (z)~b#0 as |z|—oco (Theorem 1) and
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a+1
Ee(t)~t 2 if g%(z) ~b(z)|z|® "1, while @ >0 and b(z) =b, for >0, and b(z)=b, for
z < 0 (corollary of Theorem 2).
Let u(t) be the distance of a particle from its equilibrium position. We assume that the

particle has mass m and that it is fastened to an immobile support by a spring with the
coefficient of stiffness k. Then u(t) satisfies the following equation:

mii(t) + ku(t) = g(t) while u(0) = uy and (0) = g (i = Su). (1)

Here ¢(t) is an external force, u is an initial position and 1 is an initial velocity of the particle.
We assume, then, that uy =0, it = 0 and ¢(t) = f(t)g(w(t))w(t), where w(t) is a Wiener process.
In this case, equation (1) can be considered as a system of stochastic It6 equations:

{ mdi(t) = — ku(t)dt + £(t)g(w(t))dw(t)

du(t) = u(t)dt @)

t
Lemma: Let function f(t) satisfy the condition, | ff(s)ds| < C for every finite t, and let

g(z) have the second derivative ¢'(z) almost everywhere while f |g"(v)|dv="0(|z|%) as
|z | —oo with & > 0. Then,
_a +1 t
Jimt™ 2 E| [ fo)g(us)ds| =0,
0
where w(t) is a Wiener process.
Proof: Since the functions f(¢) and g"(z) are integrable over every bounded domain, because

t
of Krylov [5], we can apply 1t5’s formula to the process ®(t,w(t)), where ®(¢,z) = [ f(s)dsg(z),
and obtain 0

t t t 8
[ 16tutends = [ se)isatue) - [ 1] sdslo’wis)duts)
0 0 0 0

t s

L[ 1] s lows))ds = 14(0) + 1a(0) + )

0 0

It is easy to see that the following inequalities hold true:
_a+1 _atl
t T E|L(t)] <Ct 2 E|g(w?)]

a+1 t K]

E(t"TI2(t))2=t_(“+1)E/ [/ f(s1)dsy g’ (w(s)))ds
0 0
<t~ @HDE [ (g(u(s))ds (3)
[

_a+1 a+1 t
t" 2 E|I4t)] <10t 2 F / | "(w(s)) | ds.
0
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Next, applying the ItG formula to the processes ®(w(t)) and ®,(w(t)), where

O(z) =2 Z m[ [(g'(u))%v]dz and ®,(z) = 2 Z x[ Z z| ¢"(v) | dvldz,

we obtain the equations
t
t~(e+tVE / g/ (w(s))PPds = t~ (T DE@(w(1))
0

and (4)
_at1 ot _atl
Lol E/ lg"(w(s))|ds=1t 2 E®(w(t)).
0

The conditions of the Lemma require that g(z) = o( |z |** 1), ®(z) = o(|z|2**!) and ®,(z) =

1
o(|z|**t!). When we take into account that w(t)t 2 for every t>0 is standard normal

] t
it is easy to ensure that E‘% -0, E %‘—% — 0 and E 1:3_(1)) —0 as t—oo. These con-
t 2 t 2
vergences along with (3) and (4) yield the Lemma. |

In what follows, we assume that f(t) in the equations is a continuously differentiable function
and that f2(t) has period 2L. Let us denote

2L 2L
a =7 / FWdt, =4 / F2(t) cos (2/FTm 1)dt,
0 0 oL
a;=ag+cy ay=ay—cy and az= ?llf/ F4(t)sin (24/k/mt)dt.
0

Theorem 1: Let the function g(z) in equation (2) have a second derivative with

lim % g2(v)dv=b  and lim % | g'(v) + g(v)g"(v) | dv = 0.
0

| x| —o00 | z | =00

1. Suppose 2L # nmy/m/k for any n=1,2,... or 2L =nym/m/k and at the same time,
cg =0 and a3 =0. Then the following hold:

a) The joint distribution of the random variables (u(t)//t,u(t)/\/t), as t—oo, converges

b anb

to the distribution of ( %?n—cl,—m—o(:z), where (; and {, are independent standard normal
random variables.

b) The distribution of the random variable t ~ (), as t—oo, converges to the exponential
distribution with the parameter m(agh) ~ 1.

2. Suppose 2L = ngmy/m/k and that cy # 0 or ag #0. Then the following hold:

a) P{i\%)_< Ty, f‘\(/_tz)< z,} — Fy(zy,2,)—0, where for each t>0, F(zy,zy) is bivariate

normal with the density:

1

1 2 2
py(zy,9) = ————— ezp{ — ————| Az} — 2Bz z, + Cz3]}, (5)
w2 27r0'10'2\/1—r2 2(1“7'2) ! v ’
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where
sinfo sino cosa |, costa sSino cosa sin*a — cosa | sina cosa
A= 2 T oo, t- 3o B=- 2 T oy0y 2
1 09 91 02

2 2
cos“a sino cosa sm a
C="55=-r%—5 + ,
o2 102

r= ‘71 = a;b, 0'2 = ayb and

= \/ala
a=+/k/mt.

b) The distribution of the random variable t~1e(t) converges to the distribution with the
density:

zm(a, + a
o(z) = (2L
b\/a1a2 —aj 2b(a;a; — a3)
I zm l _ 2+ 2 , >0’ 6
° (b(a1a2_a:23) ) ©

where I(x) is the modified Bessel function of the first kind with zero indexr and p(z) =0, when
z<0.

Proof: We can write the solution of equation (2) in explicit form [2]:

=L s)g(w(s))sin m(t —s))dw(s
t)—\/m{f()g( (s)sin(/ETm(t = 5))du(s)

t
(0) = [ F)g(w()eos(/FTm(t = 5))dus).
0
Let us introduce the parameter T' > Ty > 0 and denote

up(t) = u(tT)/v/T,ip(t) = 4(tT)/+/T and wyp(t) = w(tT)/\/T.

Then,
up(t) ﬁ'yg)(t sin(y/k/mtT) — 7¥)(t)cos Vk/m tT)]
and
p(t) = 7 t)cos(v/ETmiT) + 1@ (t)sin(/BTmiT)), )
where
t
W = [ o(wrlo)VT)S(T)os(/FfmsT)dwr(s)
0

and

t

VDW= [ olwg)VT)Tyin(y/FmsT)dws ().
0

Since each process 7g)(t) for i = 1,2 is a martingale with respect to the o-algebra, o(wp(s),
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s <'t), and since each satisfies the Skorohod condition of compactness of random processes [9], we
can assume, without loss of generality, that 'yg,- (t)—-vy (t) for i =1,2 and wT(t2—>w(t) in proba-
bility as T—oo at every point t > 0, where w(t) is a Wiener process and each v (t) is a martin-
gale with respect to the o-algebra o(w(s),s < t).

Thus, (7) implies the convergencies
up(t) — #7(1)(t)5in(\/k/mtT) — v ®(t)cos(y/k]mtT) |-
m
and (8)

ip(t) = vV (t)cos(y/EmtT) + 13(t)sin(/kmtT) |0

in probability, as T'—oo.

Consider now characteristics of martingales:

vty = / a (wp(s)V/T) FA(sT)cos (/k[msT)ds

0
(752)(0) = / 92(wT(S)\/T)f2(ST)Sin2(\/k‘/msT)ds
0
t
(@, 7PW) =1 [ Pwre)VDTsin/FmsT)ds.

0

Suppose that for the function f2(t) the first assumption of Theorem 1 is satisfied. It is easy
to verify that, in this case,

FA(t)cos?(\/k/mt) = ay+ ay(t), f2(t)sin®(y/k/mt) = ay + ay(t),

and ©
172 (sin(2/k/mt) = ay(t),

2L
where a, = &!Ef f2(s)ds, and there is a constant C' > 0 that for all ¢ > 0 satisfies the inequality,
0
t
I / ai(s)l <C, i=12,3.
0

Then (12(0)) = ap [ P (wr(s)/T)ds + ' uwr(s)y/DaysT)ds = Ly ()+ T2()

Kulinich [6] 1mplles Ip(t)—p(t) in })robability as T—oo, where B(t) = aybt, and due to the
Lemma, E | Jp(t)| —0. Therefore, (y}’(t))—agbt in probability as T—oo for i =1,2. And for

the joint characteristic of martingales 731) and 7¥)(t), we have the equality,

t
AP = [ Plwre)VTag(sT)ds,

0
which, due to the Lemma, implies the convergence,

E | (v#)(0),78)(8)) | -0 as t—oo.
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Hence, for characteristics of the limit martingales we have

(Y1) = aght, i =1,2 and (yM(t),7H(2)) = 0. (10)

It is easy to see that martingales 7(1)(15) and 7(2)(11) are continuous with probability 1. There-
fore, due to [3], there are independent Wiener processes w!!)(t) and w(2)(t) such that

yO(t) = \fagbw(t) and yB(t) = \fagbw ) (2).
Thus, taking into consideration convergencies (8), we have

Plup(1) <2y, p(l) < z,}

/ b agh
_.P{ %OECS}) < m]v\{n—?_ Cg?) < $2}—>0 as T—oo,

where (11)

¢® = wM(1)sin(/k/mT) — w®(1)cos(y/k/mT)

and

(g?) = w(l)(l)cos(\/k/mT) + w(z)(l)sin\/k/mT).

Independence of the normally distributed random variables w(l)(l) and w(z)(l) implies that
they have a bivariate normal distribution. Hence, due to [4], Cg) and ng) are also bivariate
normal for every T.

It is easy to verify, that for every T,
E¢® =0, DY) =1and E¢HeP =o.

Therefore, the random variables, (&1) and Cg,?), are independent standard normal. Convergence
(11) yields the proof of statement 1a) of Theorem 1.

Since for instantaneous energy €(t) in system (2) we have the equality,
T 1e(T) = (PP + P )P), (12)
then, for all ¢ > 0,
Jim PAT~'e(T) <2} = PES (MWL) + [P )P < 2},

According to Gnedenko [4], the random variable [w(l)(l)]2 + [w(2)(1)]2 has a x? distribution with
two degrees of freedom and it coincides with the exponential distribution with parameter 1/2.
Hence, the distribution of the random variable T ~¢(T), as T—oo converges to the exponential
distribution with parameter m[ayb] ~ . This proves statement 1b) of Theorem 1.

Next, suppose that 2L = nym/m/k and that at least one of the constants, ¢, or ag, is not
equal to zero. Then (9) can be represented in the form:

F2() cos®(v/k/mt) = a; + @y (2), F(1) sin®(y/k/mt) = ay + ay(t)

and L7 (W)sin(2y/kmt) = ag + ag ().
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Therefore, in this case we have

t t

() =a; [ PlurVTds+ [ dHwrW/Das(sT)ds, i=1,2
0 0

and
t

t
WD) =05 [ PorGT)s+ [ Hwr(s)/Thay(sT)ds.

0 0

As in the proof of statement 1 of Theorem 1, we obtain characteristics of the limit martingales:
(YO (8) = arbt, (1) = apbt and (yI(2),yP(1)) = agbt.
Also,
7O(t) = Vb w (1) + b)), i=1,2,

where w(l)(t) and w(z)(t) are independent Wiener processes and (b;;,b;,) is the i-th row of the

matrix Bl/z, where B=( “ “ ). The independence of the Wiener processes, w(l)(t) and
a a

w(2)(t), implies that random variables 7(1)(1) and 7(2)(1) have normal distributions with

parameters (0,0’?), where cr% = ayb and 0% = a,b are bivariate normal with the coefficient of corre-

lation 7 = az(a;a,) ~ 1. Hence, according to Gnedenko [4], the joint density of the random

variables,
7(1)(1) sin(y/k/mT) — 7(2)(1) cos(y/k/mT)

and

7(1)(1) cos(y/k/mT) +7(2)(1) sin \/k/mT),

is of the form (5) with ¢t =T. To complete the proof of statement 2a) of Theorem 1, we use
convergencies (8). Equality (12) implies that the limit distribution of the random variable
T ~'¢(T) coincides with the distribution of the absolute value of a bivariate normal random
vector. .

Corollary: Under the conditions of Theorem 1,
Jim (Bt~ e(t)) = 52(a; +ay);
: “1n_ b2, 2 , —0.
t{g(r)zth e(t) = W(al + a3), while ag = 0;
: -1 b2 2,3 2 : —0-
tﬁrgth e(t) = 2—T?(a0 +§a3), while ag # 0 and ¢y = 0;

. - b2 2 .
Jim Dt Le(t) = -27n—§(a1 + a2 +3d2 4 B), while a3 #0 cy# 0 and

242
B= (—al—_%;)z{‘lag[a‘ll - a%\/ a1 — (ay — ay)* - %(“1 ~ a5)°]
- [a‘l1 - (a% - a%) a‘l1 —(aq - az)z]} + 2(a1<12a3)2 + a%.

In this case we can change the order of limit and expectation (variance). We use the latter,
the explicit form of the limit value 7(')(1) for every i and equality (12) to prove the statement. [
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Theorem 2: Let the function g(z) in equation (2) have a second derivative almost everywhere
and for some o > 0 satisfy the conditions:

T
im | s [ ¢*(v)dv—b(x) | =0, with b(z) = b w20
s [ 9°(v)dv—>b(z) | =0, with b(z) =
| z | —ool IIL‘l A b2’ z<0
an
T
i oo_l'mll_" / [ 9'(v) + g(v)g"(v) | dv = 0.
0
Then

t i (t ,
P{t(au_f_ 1))/4 < ml,t(auf 1))/4 < mz}— P{uv(t) < z,,9(t) < 2,}—0 as t—oo,

where v(t) is the position and v(t) is the velocity of the homogeneous harmonic oscillator

mi(t) + kv(t) =0, t>0 (13)
with the initial condition
v(0) = ‘\72—7,,7(2)“) and 9(0) = 77 (1).

Here each 7(i)(t) is a martingale with respect to the o-algebra o(w(s),s < t) with characteristics:

() = a8(1), i=1,2 and (YO0, 7P () = a38(1),
t
while B(t) = a/ | w(s) | *~ 1b(w(s))sign w(s)ds.
0
Proof: The proof is similar to that of (8) in Theorem 1, with the difference that, in this case,

up(t) =T~ @Dy, ap(t) =7~ @+ D401,

t

YWty = 7 -/ / 9(wp(s)V/T)f(sT) cos (/k]msT)dwr(s),
0
and

t
AP0 = 10V [ gy ()T T)sin (VETmST)dw (5
0

with characteristics
t t

0) =070 =2 [ ug(e)yTids + 702 [ Pug(s)y/ThasT)ds, i=1,2
d ° ’
t t
(Y0, 7P(0) = agrt =/ / gA(wr(s)y/T)ds + T! =)/ / g2 (wr(s)v/T)ag(sT)ds.
0 0

Due to the Lemma,
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t
400 =1~V [ e/ Tods+o01)

0
and

t
(0, 20) = 70 =2 [ Pug()y/Tyds +0(1),
0

where o(1) is such that E | o(1) | =0 as T—oo for all ¢ > 0. Next, Kulinich [6] established that
t
7=V [ g (s)yTds—8(1)

0
in probability as T'—oo, where
w(t) t
py=20 [ Tolob)o— [ [uls) | bu(s)dus))
0 0
Since a > 0, using Itd’s formula, we have
t
B(t) = a/ | w(s) | * ™ 1b(w(s))sign w(s)ds. (14)

0
Hence,

(P @)—aB(1), i =1,2 and (Y0, 7P(0)=a38(0)

in probability as T—oo. Thus, we obtain convergence (8), where each 7(i)(t) is a continuous,
with probability 1, martingale with respect to o(w(s),s < t), with characteristics:

(1) = a;8(2),i = 1,2 and (D)), 7)) = a3(1),
where ((t) has the form (14). Using convergence (8) for ¢ =1 and an explicit form of the solu-
tion of problem (13), we complete the proof of Theorem 2. O
Corollary: Under the conditions of Theorem 2,

1
Jim Bt~ @ F D 2e() = S‘E%T-:_“_?l / E | w(s) | ®~ b(w(s))signw(s)ds.

This equality is a consequence of the following statements:
1) the equality (12);

9) the equality E[«,Q(t)]'»2 E(§ ()
3) the possibility to change the order of limit and expectation.

Remark: Let q(z,,2z,) be a joint density of the distribution of 'y (1) and ¥ 2)(1) and
pe(zy,2,) be a joint density of the distribution of the position v(t) and the velocity ¥(t) at the
moment ¢, described by (13). Then,

pi(xy,z3) _q[:l:lx/_sm k/mt) + zymcos (1/k/mt),
—:L'I\/I%cos( Ic/mt)+:c2msin(\/k/mt)]m\/l%. (15)

Using the explicit form of the solution to equation (13) we get
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(1) = v(t)\/kmsin (y/E/mt) + (t)mcos (/k/mt)

and

Y@(1) = = v(t)v/kmcos (/k/mt) + v(t)msin (y/k/mt)
which yields (15). 0
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