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ABSTRACT

Existence of nonnegative solutions to superlinear second order problems of
the form y"' + pg(t)g(t,y) = 0 is discussed in this paper. Here p > 0 is a paramet-
er.
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1. Introduction

This paper has two main objectives. In section 2 we establish existence of a nonnegative solu-

tion to Y+ pg(t)g(t,y) =0,0<t<T
y(()):aZO (1.1)
y(T)=b>0

where p > 0 is a constant suitably chosen. We are interested mostly in the case when g is super-
linear. Problems of the form (1.1) have been examined by many authors, see [1-7, 12] and their
references. Usually it is shown that (1.1) has a nonnegative solution for 0 < p < p where pg €
(0,00]. For example, in [4] Erbe and Wang show that (1.1) with g(¢,y) = g(y) and a = b =0, has
a nonnegative solution for all y > 0 if

limM =0 and lim M =00

y—0 Y y—oo Y
This paper presents a new existence argument [2], based on showing that no solutions of an appro-
priate family of problems lie on the boundary of a suitably open set, to problems of the form
(1.1). This argument differs from the usual a priori bound type argument [7]. It has connections
with the “forbidden interval” type approach introduced in [1]. In particular, we will show in this
paper that (1.1) with g(¢,y) = g(y) and @ = b = 0, has a solution for all x>0 if

Z_ — co.
[0,0ya(@) ~ *°

In section 3 we examine boundary value problems on the semi-infinite interval, namely
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v+ pg(t)g(t,y) =0,0 <t < oo
y(0)=a>0 (1.2)

y bounded on [0, 00) or lim,_, y(t) exists or lim,_, y'(t) = 0.

Very little seems to be known about (1.2) when g(t,a) >0 for ¢ € (0,00) and g is superlinear; see
[13, 14] for some initial results. To discuss (1.2) we will use the ideas in section 2, the Arzela-
Ascoli theorem and a diagonalization argument. This diagonalization type argument has been
applied before in a variety of situations; see [8, 10] and their references.

The arguments in this paper are based on the following fixed point theorem.

Theorem 1.1: (Nonlinear Alternative [6, 8]). Assume U is a relatively open subset of a convez
set K in a normed linear space E. Let N:U—K be a compact map with p € U. Then either
(%) N has a fized point in U; or
(%)  thereis a u € OU and a X € (0,1) such that u = ANu+ (1 —A)p.

Remark: By a map being compact we mean it is continuous with relatively compact range.
For later purposes, a map is completely continuous if it is continuous and the image of every
bounded set in the domain is contained in a compact set in the range.

2. Finite Interval Problem

This section establishes the existence and nonexistence for the second order boundary value
problem

y'+pg(t)g(t,y) =0,0<t<T
y(0)=a>0 (2.1)
y(T)=b2>a.

Here p > 0 is a constant.

Remark: For convenience, in writing we assume b > a in (2.1). However, in general, it is
enough to assume b > 0.

By a solution to (2.1) we mean a function y € C[0,T]N C%(0,T) which satisfies the differen-
tial equation on (0,7) and the stated boundary data. We begin by presenting two general exis-
tence results for problems of the form (2.1).

Theorem 2.1: Assume
T

g€ C(0,T) with ¢ >0 on (0,T) and / q(s)ds < o0 (2.2)

0
d . . .
an 9:[0,T] x [a,00)—[0,00) is continuous and there exists

a continuous nondecreasing function f:[a,00)—[0,00) such that (2.3)
f(u) >0 for u>a and g(z,u) < f(u) on (0,T) % (a,00)
are satisfied.

Case (a): Suppose

q is bounded on [0,T]. (2.4)
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Let
K, =sup { ___ﬂ__i_l_ ____ii_u__l}
where € (broc) [ [F(c) - F(u)]? [ [F(c)— F(u)]?
F(u) = / f(z)dz
and 0
K3

Ho= 2T2[3“P[0, T]‘I(t)]-

If 0 < p < pg then (2.1) has a nonnegative solution.
Case (b): Suppose

q is nonincreasing on (0,T).

C
- du
K, = sup / _—
! c€ (b,oo){ %}

a [F(c)—F(u)]

Let

where F is as in (2.6), and
K?

(o]

H =

If 0<p< py then (2.1) has a nonnegative solution.
Case (c): Suppose

q is nondecreasing on (0,T).

Let

c

K, = sup / —du i
Bl \ % [F(e) - PP
where F is as in (2.6), and

2
A2

(o)

Ho =

If 0 < p < py then (2.1) has a nonnegative solution.
Remark: The supremum in (2.5), (2.8), (2.10) is allowed to be infinite.
Proof: Consider the family of problems

y' +Apg(t)g*(ty) =0,0<t<T
y(0)=a>0,y(T)=b>a

277

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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for 0 < A < 1. Here g*:[0,T]x R—[0,00) is defined by

. g(t,a)+a—y,y<a
g*(t,y) =
9(t,y)y > a
We first show that any solution y to (2.11), satisfies
y(t) > afor t €[0,T]. (2.12)

To see this suppose y — a has a negative minimum at ¢, € (0,T). Then y'(¢;) = 0 and y"(¢,) > 0.
However

Y'(to) = = Ang(t)g™(te, y(te)) = — Aug(ty)l9(tg, @) +a—y(ty)] <0,

a contradiction. Thus (2.12) is true.

For notational purposes let
Yo = sup y(t).
[0,T]

Case (a): Suppose (2.4) is satisfied.
Fix p < pg. Then there exists My > b with

M, M, ?
f du ; + f du .
a 2 b )]5

[F(c) - F(u)] [F(c) - F(u

= v4 < lo- 2.13
2T [suppg 7ya(0)] To=Ho (219)

p<

Suppose the absolute maximum of y occurs at t; € [0,T). If t;=0 or T we have y, <b. Next
consider the case when ¢y € (0,T) and y,>b. In this case y'(t;) =0 with y' >0 on (0,t,) and
y' <0 on (ty,1) (since y” <0 on (0,T)). Now for t € (0,t,) we have

—y'y" = Aug(t)g(t,y)y’

and integration from (¢ < t,) to t, yields

y(to)
OF <2 ax @) [ ).
Hence, v
v() 1<, /28 max g(z)] for t € (0,1y)
[F(yo) — F(y(1)))? '
and integration from 0 to ¢, yields
Yo
du
/ <t 2 [I&aﬁ q(z)]. (2.14)

i
@ [F(yo) — F(w)?



Nonnegative Solutions to Superlinear Problems of Generalized Gelfand Type 279

On the other hand, for ¢ € (¢y, T') we have

y'y" = Aug(t)g(t,v)(—y')-

Integrate from %, to ¢ and then from t; to T to obtain

%< (T —tp) \/W (2.15)

Yo

[F (yo) F(u)]
Combine (2.14) and (2.15) and we obtain

Yo Yo

du du
— ———-—-————isT 2] max q(z)]. (2.16)
Let / [F(yo) — F(u)]2 { [Fy) - [F(u)? o.1]

U= {UEC[O)T]: |u|0< Mo}’E: K :C[O’T]

where |u] o =supg 7] |u(t)|. Now solving (2.11), is equivalent to finding a fixed point of N:
C[0,T]-C[0,T] w ere

T
b—a)t .
Ny(t) = a+( Ta) +u/ G(t,8)q(s)g™(s,y(s))ds
0
with
M) 0<t<s<T
G(t,s) =
2D g<s<t<T.

Notice N:C[0,T]—C[0,T] is continuous and completely continuous (by the Arzela-Ascoli theo
rem). If condition (i7) of Theorem 1.1 holds, then there exists A € (0,1) and y € U with y =

ANy +(1—X)p; here p=a+ (b }a)t. Thus y is a solution of (2.11), satisfying |y |, = M| i..,
Yo = My Now since M > b, (2.16) implies

M, M,

2 2

a  [Flyo)-F(w)]? b [Fly)— F(u)

a contradiction since p < 7,. Hence N has a fixed point in U by Theorem 1.1. Thus (2.11); has
a solution y € C[0,T] with a <y(t) <M, for t€[0,T]. It follows easily that y € co, T]ﬂ
C?(0,T). Hence y is a solution of (2.1).

Case (b): Suppose (2.7) is satisfied.
Fix p < py. There there exists M, > b with

M, 2
[F(c) - F(w)?

r< T =715 M-

({ viow)
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Suppose the absolute maximum of y occurs at t; € (0,7) and y, >b. Then y'(t;) =0. For
t €(0,t,) we have

—y'y" = Aug(t)g(t,y)y'

and integration from (¢ < ty) to t, yields o(t)
0
WOF <2at) [ S
since (2.7) holds (and y' > 0 on (0,1;)). Hence vt
VO < /oD for te (0,t)
[F(yo) — F(y(t)]?

and integration from 0 to ¢ yields

Yo

/—————<\/—/ \/q(_xd:l:

Let 0 [F(yo) - F(w)]?

U={ueC0,T} |ulo< M;}, E=K=C[0,T).

Essentially the same reasoning as in case (a) guarantees the existence of a solution y to (2.1) with
a<y(t)< M, fortel0,T)

Case (c): Suppose (2.9) is satisfied.
Fix p < py. Then there exists My > b with

M, 2
— F(u)2
F@-F@E) _

2 ( {T\/dey S

p<

Suppose the absolute maximum of y occurs at t; € (0,T) and y, > b. Multiply the differential
equation by y', integrate from ¢, to ¢(t > t;) and then from ¢, to T to obtain

/

i
b [F(yo) F(u)]2

As in case (a), there exists a solution y to (2.1) with a < y(t) < M, for t €[0,T). O

<\/—/\/q(_:cd:c

Remark: Notice in the proof of Theorem 2.1 we only showed that any solution to (2.11), sat-
isfies yy # M;. We do not claim (and indeed it is not true in general) that any solution of
(2.11),, satisfies yy < M,
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Theorem 2.2: Assume (2.2) and

9:[0,T] x[a,00)—R is continuous, g(t,a) >0 for

t € (0,T) and there exists a continuous nondecreasing function

(2.17)
f:la,00)—[0,00) such that f(u) >0 for u>a
and g(t,u) < f(u) on (0,T) x (a,o0)
are satisfied. Let
(T t t T
= S [ sq(s)ds + [ (T - s)q(s)ds
and let pg satisfy
(2.18)

c
sup ——\> 1.
¢ € (b,0) (b + :uOf(c)QT)
If u < p < pg then (2.1) has a nonnegative solution.
Remark: The supremum in (2.18) is allowed to be infinite.

Proof: Let y be a solution to (2.11),. Exactly the same reasoning as in Theorem 2.1 yields
y(t) > afort €[0,T]. Fix p < py Let My > b satisfy
MO
T > 1
b+ pf(Mo)Qp

Suppose the absolute maximum of y occurs at t,. If ¢, =0 or T we have y, <b. Next consider
the case when t, € (0,7T") and y, > b. For t € [0,T] we have

(2.19)

t T
y(t)=a+ (b —Ta)t + Ap ((T; t)/ 5q(s)9*(s,y(s))ds +%/ (T - s)q(s)g™(s, y(s))ds)
0 t

< b+ pQrf(yo)-
Consequently,
Yo
T | 2.20
b+ pf(yo)Qr ~ (220
Let

U={ueC[0,T}: |u|,< M}, E =K = C[0,T].

Essentially the same reasoning as in Theorem 2.1, case (a) guarantees the existence of a solution y

to (2.1) with a < y(t) < M, for t €[0,T]. o
Example 2.1: Suppose (2.2) holds. In addition, assume (2.17) is satisfied with f either
1 oy

fly)=e Y (see [9]) or f(y)=e*TY where a >0 is a constant (see [11]) or f(y)= Ay?+ B
where A >0, B>0 and 0 <3 <1 are constants. Then (2.1) has a nonnegative solution for all
p > 0. This follows immediately from Theorem 2.2 since for any p, > 0 we have

oo > 1.

ce b, oo)(b + /‘Of(C)QT)
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Example 2.2: The boundary value problem

y'+puy*+e)=0,0<t<T
y(0)=y(T)=0,a>1and e >0

8 10—1
o — a
o<u< 2] T =

This follows immediately from theorem 2.2 since

has a nonnegative solution if

o=2
su £ = su c 8 (a1}
c€ (01?00)(/“0[60 + C]QT) Tzl‘o cE€ (OI,)oo)[ca +e] O‘T2/10\ ‘ )

if py < 7.

Example 2.3: Suppose (2.2) and (2.7) holds. In addition, assume (2.3) is satisfied with
a=0,b>0and f(y) =y* a>1. Then the boundary value problem (2.1) with ¢ =0, b > 0 has

a nonnegative solution for all
1 2
j‘ dw
1
0 [1-w® + 1]2

2a +1]p> 1 ( {T\/Kr—)dx)z.

0<u<

This follows immediately from Theorem 2.1 case (b), since

K, =sup /_d_u_ = sup lﬂ / i
¢ € (b,0) a [F(c)— F(u))2 C*E(bm)[ +12c 2 % a+12

- = /
0 a+1]2

_1_
[a+1]%

To conclude this section we present a nonexistence result for the boundary value problem

y'+ug(t)g(t,y) =0,0<t<T
y(0) =0 (2.21)
y(T)=>b2>0.

Theorem 2.3: Assume (2.2) and

¢:[0,T] % [0,00)—(0,00) is continuous and there exists
a continuous nondecreasing function f:[0,00)—(0,00) such that (2.22)

g(t$y) > f(y) on [O,T] X [0,00)

are satisfied. In addition, assume p satisfies
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T

T oo Pl 00
du du

(T — z)q(z)dz > / () and ,u/ :l:q(x)d:cZ/ Fluy

0 0

7

2N~

Then (2.21) does not have a nonnegative solution on [0,T].

Proof: Suppose (2.21) has a nonnegative solution y on [0,7]. Then since y” <0 on (0,7') we
have either y' > 0 on (0,T") or there exists 7 € (0,T) with y' > 0 on (0,7) and y’' <0 on (7, 7).

Case (a): y' >0on (0,T).
For z € (0,T) we have

y"(2) = (= wy(x)9(z,y(z)) < (- we(z)f (y(2))- (2.23)

Integrate from ¢ to T to obtain (since y' > 0 on (0,T)),

T T
V(D) -y < (- ) [ a0z < (-nfw) [ ez
and so t t

— y’(t

T
)
f(y(t)) < (_ N)[ q(x)dz

Thus for t € (0,T) we have
T

Te@) 2 “/ o(z)d=

t

and integration from 0 to T yields
T

[ 50 [ eaee
0

0

a contradiction.
Case (b): ¥y’ >0o0n (0,7) and ¥’ <0 on (7,T).
Integrate (2.23) from 7 to (¢ > 7) to obtain
¢

t
v <(-n) [ 6@ @) < (-0160) [ s

and so
SON
f(;(t)) > u/q(x)dm for te(r,T).
Integration from 7 to T yields .
y(7) t
/ fi(ﬁ‘) > 1 / (T - 2)q(2)dz. (2.24)
b T

On the other hand integrate (2.23) from ¢(t < 7) to 7 to obtain

V= (=) [ d@FwE)Ms < (- [ )iz
t t
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and so
r

F(y(t)) 2 ,u/ q(z)dz for t € (0, 7).

t

Integration from 0 to 7 yields

y(7) T
du
-t > z)dz. 2.25
Flu) = l‘/ zq(z) ( )
0 0
Now either 7 < —72: or T > % Ifr< %— then (2.24) implies
00 y(7) T T
du / du / /
- > - > T —z)q(z)dz > T —z)g(z)de,
e boou [ (@-one)iezu [ (T -one)
b T T
2
a contradiction. On the other hand, if 7 > %, then (2.25) implies
T
00 y(7) T 2
du / du / /
- > —_ > zq(z)dz > zq(z)dz,
f(u) f(u) Zp q( ) ZH q( )
0 0 0 0
a contradiction. |

3. Semi-infinite Interval Problem

The ideas in section 2 together with a diagonalization argument enable us to treat various
problems defined on semi-infinite intervals. We begin by considering two such problems, namely,

)
v+ pg(t)g(t,y) =0,0 <t < oo
! y0)=a>0 (3.1)

and y bounded on [0, c0)

' y" + pg(t)g(t,y) =0,0 <t < oo
y(0) =a>0 (3.2)

lim,_,  y(t) exists.
\

Two existence results are presented.

Theorem 3.1: Choose b > a and fiz it. Suppose

q € C(0,00) with ¢ > 0 nonincreasing on (0,00)

0o (3.3)
and [ +/q(z)ds < oo
0
and . . .
9:[0,00) x [a,00)—[0,00) is continuous and there exists
a continuous nondecreasing function f:[a,00)—[0,00) such that (3.4)

f(u) >0 for u>a and g(z,u) < f(u) on (0,00) x (a,00)
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are satisfied. Define

K_ = sup / _du__T
et o (Pe) - F)P
where F is as in (2.6), and

K2
Poo = = 0 7 (3.5)
2 ( { \/q(:c)dm>
If0 < p < p, then (3.1) and (3.2) have a nonnegative solution y € C1[0,00) N C%(0,00).
Proof: Fixne€ Nt ={1,2,...}. Consider the family of problems
¥+ Apg(t)g*(t,y) =0,0<t<n
(t)g™(t,) (3.6)%
y(0) =a,y(n) =b
for 0 < A < 1; here g* is as defined in theorem 2.1.
Fix pp < po.. Then there exists M __ > b with
M 2
j’ * du
" P P
p< = Yoo < Hoor (3.7)

({7 vie)

Let y be any solution of (3.6)}. Then as in Theorem 2.1 we have y(t) > a for ¢t € [0,n]. For nota-
tional purposes, let Yo,n = SUP[g n]y(t). Suppose the absolute maximum of y occurs at t; € (0,n)
and y, , > b. Essentially the same reasoning as in Theorem 2.1 case (b) yields

yO, n

/ du 15\/27/"\/mdx<\/27/m\/mdx_
0 0

o [Flyp )= F(u)2

Thus as in Theorem 2.1 there exists a solution y,, to (3.6)] with

a<y,(t)<M_ for t €[0,n] (3.8)
In particular, y,, € C'[0,n] N C%(0,n) is a solution of

(3.9)

Y+ pg(t)g(t,y) = 0,0 <t <n
y(O) =a, y(n) =b.

Let
Ry = sup g(t,u),
[0,00) X [a, MOO]
and for ¢t € [0,n] we have

lyn(t) | < uRyq(t). (3.10)
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Now (3.8) together with the mean value theorem implies that there exists 7€ (0,1) with
[y,(7)] = |y,(1)—y,(0)| <M. Consequently, for t > 7 we have

t
91 <150 |+ [ 9o do

and so
t
|90)| < Moo+ iR, [ a(a)da. (3.11a)
0
On the other hand, for t < 7 we have
T 1
O] S Mt [ 1940e) 1do < Moy [ a(aldo = By, (3.110)
t 0

Now (3.11a) and (3.11b) imply
t

|90 | < Ry+uRy [ a(a)dz for € 0,n)

0
so for t,s € [0,n] we have

t
190 = 4(3)| S Balt=s] +uRol [ [ a(wiuda]. (3.12)
5 0

A standard diagonalization type argument 8, 10] will now complete the proof. Define

Yn(z),z €[0,n]

ua(#) = b, € [n,o00).

Then, u,, is continuous on [0,00) and a < u,(t) < M, t €[0,00). Also for t,s € [0,00) it is easy
to check that

t x
4l = )| S Ry lt=s] +4Ro] [ [ a(uwdud].
s 0

Using the Arzela-Ascoli theorem [8] we obtain for k =1,2,... a subsequence N, C N+t with
N, C N, _, and a continuous function z; on [0,k] with u,—z; uniformly on [0,k] as n—oo
through N;. Also 2, =z, _, on [0,k —1].

Define a function y as follows. Fix z €[0,00) and let k € Nt with z < k. Define y(z) =
zp(x). Notice y € C[0,00) and a < y(t) < M for t € [0,00).

Fix z and choose k >z, k € N*. Then for n € N we have

t
(o) =2 0 OO HEZD [ )6, ()
0

k
+ %t/ (k—5)q(s)g(s,u,(s))ds.
t

Let n—oo through N, to obtain
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(o) = ) o Gt pEn D / sa(5)g(s, 4(5))ds

k
+& / (k = $)a(5)9(s, 2 (s))ds.
Thus t

vy =28y o0t wb D) / sa(5)9(5,¥(s))ds

,u
&= —5)q(s)g(s,y(s))ds
L

which implies y € C[0,00) N C%(0,00) with y"(z) = — pg(z)g(z,y(x)) for 0 < z < co. Consequent-
ly y is a solution of (3.1). To show y is a solution of (3.2) we claim

y'(t) > 0 for t € (0,00). (3.13)

If this is not true then there exists z, > 0 with y'(zy) < 0. Then for z > z; we have

x

y'(z) = y'(xg) — p / a(s)9(s,y(s))ds < y'(zp)-

To
Hence for > z, we have
y(z) — y(zg) < y'(xg)(x — zy)— — 00 as z—o0.
This contradicts a < y(t) < M for t € [0,00). Hence (3.13) is true i.e., y is nondecreasing on
(0,00). This together with a < y(t) < M for t € [0,00) implies lim,_, y(t) exists. O
Theorem 3.2: Let Nt ={1,2,...}. Suppose

q € C(0,00) with ¢ >0 on (0,00) (3.14)

neN+ | te[o,n]

t n
(n—1) t
Qo = sup sup = [ sa(s)ds+57 [ (n— s)q(s)ds} < 00 (3.15)
{ { [

for 0 <t < oo and u> a in a bounded set then | g(t,u)| is bounded (3.16)

and
9:[0,00) x [a,00)—R is continuous, g(t,a) >0 for

t € (0,00) and there exists a continuous nondecreasing function (3.17)
f:la,00)—[0,00) such that f(u) >0 foru>a .
and g(t,u) < f(u) on (0,00) x (a,00)

are satisfied. Choose b > a and fix it. Let p_ satisfy
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c

sup ——\> 1. 3.18
c € (b,00) (b + “mf(c)Qw) ( )

If0 < p< py, then (3.1) has a nonnegative solution y € C1[0,00) N C%(0,00).

Proof: Fix p < p . Let M__ > b satisfy
MOO

— > ], 3.19
b+ I»‘f(Moo)Qoo ( )

Fix n€ N1 and let y be any solution of (3.6)}. As in Theorem 2.1 we have y(t) >a for t €
[0,n]. For notational purposes, let Yo,n = SUP[g n]y(t). Suppose the absolute maximum of y
occurs at t, € (0,n) and y, ,, > b. For ¢ € [0,n] we have, as in Theorem 2.2,

y(t) <b+pf(yo, ) ((n; t)/ sq(s)ds +%/ (n— s)q(s)ds)
0

t
< b+ pQuof (Yo, n)-

Consequently,
Y
o,n <1

b+ 1Qoof (Yo,n) =

and the argument in Theorem 2.1 implies that (3.6)] has a solution y,, € C[0,n] N C%(0,n) with
a<y,(t)< M for t €[0,n].

Essentially the same reasoning as in Theorem 3.1 (from (3.10) onwards) implies that (3.1)
has a solution y € C1[0,00) N C%(0,00) with a < y(t) < M for ¢ € [0,00). ]

Remarks: (i) Suppose the conditions in Theorem 3.2 hold and in addition, g(z,u) > 0 for
(z,u) € (0,00) x (a,00). Then the argument in Theorem 3.1 implies that (3.2) has a nonnegative
solution.

(ii) As an example, if ¢(t) = e~ ! then
Q,, = sup ( sup (1 —e'"ﬂ—%[l—e‘"]})fsup [1-e "]=1<o00.
neNt \t€[o,n] neNt

Next we discuss a general boundary value problem on the semi-infinite interval, namely,
y" + pa(t)g(t,y) =0,0 <t < oo
y(0)=a>0 (3.20)
lim,_,_y'(t) = 0.

Theorem 3.3: Suppose (3.14), (3.15) and (3.16) hold and in addition, assume

o0 n

/ g(z)dz < oo and nll_'néo% /sq(s)ds =0 (3.21)
0 0

and
g:[0,00) x [a,00)—R is continuous, g(t,a) >0 for

t € (0,00) and there exists a continuous nondecreasing function
f:[a,00)—[0,00) such that f(u) >0 foru>a
and | g(t,u)| < f(u) on (0,00)x (a,00)

(3.22)
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are satisfied. Choose b > a and fiz it. Let p satisfy (3.18). If0<pu<p, then (3.20) has a
nonnegative solution y € C[0,00) N C%(0,00).

Proof: Fix p < p,. Asin Theorem 3.2 we have that (3.6)] has a solution y, € C'[0,n]N
C%(0,n) with a <y, (t) < M, for t € [0,n]; here M is given as in (3.19). Also since

0

y:,<t>=%+u( | a@uts.v(snis -4 [ sq(s)g(s,yn@))ds)
t

we have that

|Yn(®)| < B+ (M) ( [ atsrs+k | sq(s)ds)
t

0

5%+uf(Moo)( / g(s)ds + 4 / sq(s)ds)Ecn(t).
0

t
Thus for t € [0,n] we have

ly(t) | < cn(t)- (3.23)

n
Remarks: (i) Notice since (3.21) is true then lim,_, %L [ sq(s)ds = 0 and consequently
0

Jim e, ()= 1M ) [ a(s)ds for t €[0,n}
t

(17) Also (3.21) implies that that there exists a constant ¢, with |y (t)| < ¢, for t €[0,n].

Finally, as in Theorem 3.1, we have

| yn(t) | < nRyq(t) for t € [0,n] (3.24)
where
Ry = sup | g(t,u)].
[0, 00) x [a’Moo]
Define

z),z €[0,n
un(x):{ Ua(@)2 €[0,n]

b,z € (n,00).

Using the Arzela-Ascoli theorem [8] we obtain for k=1,2,... a subsequence N, C{k+1,
k+2,...} with N, CN,_, and a function zj € Cl[O,lc] with ugf)—wscj), j = 0,1 uniformly on
[0,k] as n—oo through N.

Now define a function y:[0,00)—[a,00) by y(z) = z;(x) on [0,k]. Notice y € C'0,00) and
a<y(t)< M fort €[0,00) and |y'(t)| <c,, for t €[0,00). In fact

VO] < Jime,t) = (M) [ a(s)ds for 20 (3.25)
t
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As in Theorem 3.1 we have that y is a solution of (3.1). Also (3.25) implies |y'(c0)| =0 so
y'(c0) = 0. (]

Similarly we have

Theorem 3.4: Choose b > a and fiz it. Suppose (3.3) and (3.21) hold and in addition

9:[0,00) % [a,00)—[0,00) is continuous and there exists
a continuous nondecreasing function f:[a,00)—[0,00) such that (3.26)

f(uw) >0 for u>a and g(z,u) < f(u) on (0,00) x (a,00)

is_satisfied. Let p_ satisfy (3.5). If 0<p< p, then (3.20) has a nonnegative solution y €
C1[0,00) N C%(0,00).
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