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ABSTILCT

Existence of nonnegative solutions to super]inear second order problems of
the form y"+ #q(t)g(t, y) 0 is discussed in this paper. Here # _> 0 is a paramet-
er.
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1. Introduction

This paper has two main objectives. In section 2 we establish existence of a nonnegative solu-
tion to y" + #q(t)g(t, y) O, 0 < t < T

y(O)--a>_O (1.1)
>_ 0

where tt _> 0 is a constant suitably chosen. We are interested mostly in the case when g is super-
linear. Problems of the form (1.1) have been examined by many authors, see [1-7, 12] and their
references. Usually it is shown that (1.1) has a nonnegative solution for 0

_
It < It0 where It0 E

(0, c]. For example, in [4] Erbe and Wang show that (1.1) with g(t,y) g(y) and a b 0, has
a nonnegative solution for all It >_ 0 if

-0 and nm

This paper presents a new existence argument [2], based on showing that no solutions of an appro-
priate family of problems lie on the boundary of a suitably open set, to problems of the form

(1.1). This argument differs from the usual a priori bound type argument [7]. It has connections
with the "forbidden interval" type approach introduced in [1]. In particular, we will show in this

paper that (1.1) with g(t,y) g(y) and a b 0, has a solution for all It >_ 0 if

sup
[o,)g(x)

In section 3 we examine boundary value problems on the semi-infinite interval, namely
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y"+ #q(t)g(t, y) 0, 0 < t < oo

y(O)-a>_O

y bounded on [0, (x) or limt__,ooy(t exists or hmt_ooY (t) O.

(1.2)

Very little seems to be known about (1.2) when g(t,a) >_ 0 for t E (0, oc) and g is superlinear; see

[13, 14] for some initial results. To discuss (1.2) we will use the ideas in section 2, the Arzela-
Ascoli theorem and a diagonalization argument. This diagonalization type argument has been
applied before in a variety of situations; see [8, 10] and their references.

The arguments in this paper are based on the following fixed point theorem.

Theorem 1.1" (Nonlinear Alternative [6, 8]). Assume U is a relatively open subset of a convex
set K in a normed linear space E. Let N: U--,K be a compact map with p U. Then either

(i) N has a fixed point in U; or

(ii) there is a u OU and a A G (0,1) such that u ANn + (1 A)p.

Remark: By a map being compact we mean it is continuous with relatively compact range.
For later purposes, a map is completely continuous if it is continuous and the image of every
bounded set in the domain is contained in a compact set in the range.

2. Finite Interval Problem

This section establishes the existence and nonexistence for the second order boundary value
problem

(2.1)

Here # _> 0 is a constant.

y"+ #q(t)g(t, y) 0, 0 < t < T

v(0) a >_ 0

y(T) b >_ a.

lmark: For convenience, in writing we assume b >_ a in (2.1).
enough to assume b _> 0.

However, in general, it is

By a solution to (2.1) we mean a function y e CI[O,T]NC2(O,T) which satisfies the differen-
tial equation on (0, T) and the stated boundary data. We begin by presenting two general exis-
tence results for problems of the form (2.1).

and

Assume
T

q e C(O,T) with q > 0 on (O,T) and ] q(s)ds < cx

0

g: [0, T] x [a, )---[0, c) is continuous and there exists

a continuous nondecreasing function f’[a,c)--,[0, c) such that

f(u) > 0 for u > a and g(x,u)

Theorem 2.1:

are satisfied.
Case (a): Suppose

q is bounded on [0, T]. (2.4)
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Let

where

sup du
e (b,) [F(c)- F(u)]

c

[F(c)-F(u)]

and

F(u)- / f(x)dx
0

#o 2T2[suP[o,T]q(t)]
If 0 <_ # < #o then (2.1) has a nonnegative solution.

Case (b): Suppose

q is nonincreasing on (O,T).

Let

where F is as in (2.6), and
e (. oo)( [()_ (.)]1/2

If 0

_
It < Pl then (2.1) has a nonnegative solution.

Case (c): Suppose

q is nondecreasing on (0, T).

Let

where F is as in (2.6), and
[F(c)- F(u)]2

If 0 <_ # < #2 then (2.1) has a nonnegative solution.

Remark: The supremum in (2.5), (2.8), (2.10)is allowed to be infinite.

Proof: Consider the family of problems

v"+ m()*(. v) 0.0 < < T

y(O) a >_ O,y(T) b >_ a

(.5)

(2.6)

(2.8)

(2.9)

(2.10)

(2.11),
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for 0 < A < 1. Here g*" [0, T] x R---,[0, o) is defined by

[

) g(t,a) + a-- y,y < a
g*(t,y)

g(t,y),y>_a.

We first show that any solution y to (2.11),x satisfies

y(t) >_ a for t [0, T]. (2.12)

To see this suppose y- a has a negative minimum at to E (0, T). Then y’(to) 0 and y"(to) >_ O.
However

y"(to) A#q(to)g*(to, Y(to) #q(to)[g(to, a) + a- Y(to) < 0,

a contradiction. Thus (2.12) is true.

For notational purposes let

[0, T]

Case (a): Suppose (2.4) is satisfied.

Fix # < #o" Then there exists Mo > b with

MO MO )2f du du

a l+f 1

# <
[F(c)-F(ul] b [F(c)-F(,,)] =-- 70 --< #0" (2.13)2T2[suP[o, T]q(t

Suppose the absolute maximum of y occurs at to E [0, T]. If to -0 or T we have Yo--b. Next
consider the case when to (0, T) and Yo > b. In this case y’(to) 0 with y’ >_ 0 on (0, to) and
y’

_
0 on (to, 1) (since y"

_
0 on (0, T)). Now for t (0, to) we have

y’y"- A#q(t)g(t,y)y’

and integration from t(t < to) to o yields

U(to)

[v’(t)] <2#[ max q(x)]/ f(u)du.
[O,T]

(t)
Hence,

y’(t) _
-< y/2#[ [O,T]max q(x)] for t (0, to)

[F(yo)-F(y(t))]2

and integration from 0 to o yields

YO
du < to ./2#[ max q(x)].

V [0, T]
[F(Yo)-F(u)]2

(2.14)
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On the other hand, for t E (to, T) we have

y’y" #q(t)g(t,y)( y’).

Integrate from to to t and then from to to T to obtain

Yo

[ du < (T-to) /2#[ max q(x)].1_ v [0, T]
[F(vo)-

(2.15)

Combine (2.14)and (2.15)and we obtain

Let

Y0

o

Yo
du

1_ <- TV/2#[ [o,T]max q(x)].
[F(Yo)-[F(u)]2

(2.16)

U {u E C[0, T]: u o < Mo},E K C[0, T]

where u o suP[o, Tllu(t) l.
C[0, T]---,C[0, T] where"

with

Now solving (2.11)1 is equivalent to finding a fixed point of N:

Ny(t) a+(b-a)tT

T

+. ] a(t,
0

t(T-s) 0 < t < s < T7’

s(T- t) 0 < s < t < T.

Notice N’C[O,T]C[O,T] is continuous and completely continuous (by the Arzela-Ascoli theo
rem). If condition (ii) of Theorem 1.1 holds, then there exists A (0,1) and y OU with y-

ANy + (1 A)p; here p a + (-b---Ta)t. Thus y is a solution of (2.11).x satisfying Ylo Mo i.e.,
Yo- Mo" Now since Mo > b, (2.16) implies

Mo Mo

/ du
if du

1 (T2#[ [0, T]1 d- . .max_q x ],
a IF(Y0)- F(It)] a

b [F(yo)_ F(tt)]
a contradiction since # < 70. Hence N has a fixed point in U by Theorem 1.1. Thus (2.11)1 has
a solution yC[0, T] with a<_y(t)<_M0 for t[0, T]. It follows easily that yeCI[0, T]N
C2(0, T). Hence y is a solution of (2.1).

Case (b): Suppose (2.7) is satisfied.

Fix # < t1. There there exists M1 > b with

M1
1 )2a [F(c)_F(u)]g

2 fx/dx
0
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Suppose the absolute maximum of y occurs at to E (0, T) and Yo > b.
t E (0, to) we have

Then y’(to) O. For

y’y" Apq(t)g(t, y)y’

and integration from t(t < to) to to yields
(to)

IV(t)] <_ 2#q(t) / f(u)du
(t)

since (2.7) holds (and y’>_ 0 on (0, to) ). Hence

1 V/2#q(t) for t (0, to)
[(o)- F((t))]

and integration from 0 to to yields

Let

Y0 T

o [F(Yo)- F(u)]2 o

U-{u@C[0, T]: Ulo <M1}, E-K-C[0, T].

Essentially the same reasoning as in case (a) guarantees the existence of a solution y to (2.1) with
a

_
y(t)

_
M1 for t [0, T].

Case (c): Suppose (2.9) is satisfied.

Fix # < #2" Then there exists M2 > b with

f du_
1

b [F(c)_F(u)]]

0

Suppose the absolute maximum of y occurs at to G (0, T) and Yo > b. Multiply the differential
equation by y’, integrate from to to t(t > to) and then from to to T to obtain

Y0 T

b o

As in case (a), there exists a solution y to (2.1) with a

_
y(t)

_
M2 for t E [0, T].

Remark: Notice in the proof of Theorem 2.1 we only showed that any solution to (2.11) sat-
isfies Yo Mo" We do not claim (and indeed it is not true in general) that any solution of
(2.11),x satisfies Yo - Mo"
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Theorem 2.2: Assume (2.2) and

g: [0, T] [a, oo)--,R is continuous, g(t, a) >_ 0 for
t E (0, T) and there exists a continuous nondecreasing function

f: [a, cx)--[0, cx) such that f(u) > 0 for u > a

and g(t, u) <_ f(u) on (0, T) (a, c)

are satisfied. Let

QT sup
(T- t) sq(s)ds + (T- s)q(s)ds

e [o,T] T
0

(2.17)

and let #o satisfy
sup ( c

c fi (b, oo) b + #of(c)QT > 1. (2.18)

If # <_ # <_ #o then (2.1) has a nonnegative solution.

Remark: The supremum in (2.18) is allowed to be infinite.

Proof: Let y be a solution to (2.11),x. Exactly the same reasoning as in Theorem 2.1 yields
y(t)>_afortE[O,T]. Fix#_<#0. LetM0>bsatisfy

Mo
b + #f(Mo)QT > 1. (2.19)

Suppose the absolute maximum of y occurs at t0. If to -0 or T we have Yo < b. Next consider
the case when to (0, T) and Y0 > b. For t ( [0, T] we have

y(t) a+(b-a)tT + (T-
T (T

0

<_ b-F #QTf(Yo)"

Consequently,

Let

Yo < 1. (2.20)
b + #f(Yo)QT

U {u e C[0, T]: u o < Mo},E K C[0, T].

Essentially the same reasoning as in Theorem 2.1, case (a) guarantees the existence of a solution y
to (2.1) with a <_ y(t) < Mo for t [0, T]. [3

Example 2.1: Suppose (2.2) holds. In addition, assume (2.17) is satisfied with f either
cy

f(y)--e v (see [9]) or f(y)-e+y where a>0 is a constant (see [11]) or f(y)-Ay+B
where A > 0, B > 0 and 0 </3 < 1 are constants. Then (2.1) has a nonnegative solution for all

# > 0. This follows immediately from Theorem 2.2 since for any #o > 0 we have

c (b, oo)\ b + #o(C)QT oo > 1.
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Example 2.2: The boundary value problem

has a nonnegative solution if

y,,+#(ya+)_O,O<t<T

y(O) y(T) O,a > l ands>0

rO"

This follows immediately from theorem 2.2 since

su ( oc ) c o
= c >I

c e (o,o)\#o[c + e]QT T2#o c e (o,)[ca + e] aT2po
if Po < to"

Example 2.3: Suppose (2.2) and (2.7) holds. In addition, assume (2.3) is satisfied with
a- 0, b > 0 and f(y)- ya, a > 1. Then the boundary value problem (2.1) with a- 0, b > 0 has
a nonnegative solution for all

1)o
[ _+]g

0<
2[ + iIb-I f d

0

This follows immediately from Theorem 2.1 case (b), since

/du_ sup 1 dw

[F(c)- F(u)]J c e (b, )[[c + 1]ca 1 [1 W
a + 1]1/2

1

1 o dw
lC-I 1"

[ + ] [1 " + 1]

To conclude this section we present a nonexistence result for the boundary value problem

"+ ,q(t)a(, ) 0, 0 < < T

(0) =0

y(T) b >_ O.

(2.21)

Theorem 2.3: Assume (2.2) and

g" [0, T] [0, cx)--(0, c) is continuous and there exists

a continuous nondecreasing function f:[0,x)---(0, c) such that

g(t, y) >_ f(y) on [0, T] [0,

are satisfied. In addition, assume # satisfies
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T

# (T- x)q(x)dx > f(u) f(u)"
T b o o
2

Then (2.21) does nol have a nonnegative solulion on [O,Z].
Proof: Suppose (2.21) has a nonnegative solution y on [0, T]. Then since y"< 0 on (0, T) we

have either y’> 0 on (0, T) or there exists r e (0,T) with y’>_ 0 on (0, 7") and y’ < 0 on (r, T).
Case (a): y’>_ 0 on (0, T).
For x E (0, T) we have

y"(x) (- #)q(x)9(x, y(x)) < (- #)q(x)f(y(x)). (2.23)

Integrate from t to T to obtain (since y’> 0 on (0, T)),

and so

T T

y’(T)- y’(t) < (- #)/ q(x)f(y(x))dx < (- #)f(y(t)) f q(x)dx

Thus for t E (0, T) we have

and integration from 0 to T yields

a contradiction.

T
y’(t) < (_ #)/ q(x)dx.f(y(t))

T
y’(t) > #/ q(x)dxf(y(t))

b T- > I.t xq x

0 0

Case (b): y’> 0 on (0, v) and y’ < 0 on (r, T).
Integrate (2.23) from 7" to t(t > r) to obtain

y’(t) <_ (- #)/ q(x)f(y(x))dx <_ (- #)f(y(t)) / q(x)dx
T

and so

Integration from r to T yields

y’(t) > t / q(x)dx for t G (7", T).f(y(t))

()

J du > #f (T-x)q(x)dx.f(u)
b r

(2.24)

On the other hand integrate (2.23) from t(t < r) to 7 to obtain
T

y’(t) < (- #)./ q(x)f(y(x))dx < (- #)f(y(t))J q(x)dx
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and so

Integration from 0 to 7" yields

’(t) > , f q()d fo t e (0, ).y((t))

y(v) r

/ du >tt/ xq(x)dx.f(u)
0 0

Now either r _< ff or >_ -. If r _< - then (2.24) implies

c y(r) T T

f---> f()-
b b r T

2

a contradiction. On the other hand, if r , then (2.25) implies
T

u()

f(u) > f()
0 0 0 0

a contradiction. I-1

3. Semi-infinite Interval Problem

The ideas in section 2 together with a diagonalization argument enable us to treat various
problems defined on semi-infinite intervals. We begin by considering two such problems, namely,

y"+ #q(t)g(t, y) O, 0 < t <

y(O) a _> 0 (3.1)

and y bounded on [0,

y" + #q(t)g(t, y) O, 0 < t <

y(0) =a>0 (3.2)
lim y(t exists.

Two existence results are presented.

and

Theorem 3.1" Choose b >_ a and fix it. Suppose

q G C(0, o) with q > 0 nonincreasing on (0, cx)

and f )ds
0

g: [0, c) [a, cx)---,[0, c) is continuous and there exists

a continuous nondecreasing function f:[a, cx)-,[0, cx) such that

f(u) > 0 for u > a and g(x, u) f(u) on (0,) x (a,)

(3.3)
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are satisfied. Define

where F is as in (2.6), and

Koo sup

.2

If 0 <_ # < #oo then (3.1) and (3.2) have a nonnegative solution y E C1[0, oo)ffl C2(0, oo).
Proof: Fix n E N + {1, 2,...}. Consider the family of problems

u" + a,q(t)a*(t. ) o. o < t <

y(O) a. y(n) b

for 0 < $ < 1; here g* is as defined in theorem 2.1.

Fix # < #oo. Then there exists Moo > b with

Let y be any solution of (3.6)]. Then as in Theorem 2.1 we have y(t) > a for t G [0, n]. For nota-
tional purposes, let Yo, n- suP[o,n]Y(t)" Suppose the absolute maximum of y occurs at to e (0, n)
and Yo, n > b. Essentially the same reasoning as in Theorem 2.1 case (b) yields

[F(Yo, n)- F(u)]2 o o

Thus as in Theorem 2.1 there exists a solution Yn to (3.6) with

a <_ Yn(t) <_ Moo for t [0, n]. (a.8)

In particular, Yn Or. C1[0, n] C? C2(0, n) is a solution of

y"+ ttq(t)g(t,y) 0,0 < t < n

y(O)-a,y(n)-b.
(3.9)

Let

R0 sup g(t, u),
[0, Oo) x [a, Moo]

and for t E [0, n] we have

y’(t) <_ #Roq(t ). (3.1o)
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Now (3.8) together with the mean value theorem implies that there exists r E (0,1) with
y(r) yn(1)- Yn(0) < Moo. Consequently, for t > - we have

and so

ly(t) _< y()l + f y()ld
7"

y’n(t) < Moo + pRO / q(x)dx.
0

On the other hand, for t < v we have
r 1

y’n(t) <Moo+ j y(x)]dx<Moo+,Rof q(x)dx R1.

0
Now (3.11a)and (3.11b)imply

y() + Rof q(x)dx for t (0, n)
0

so for , s e [0, n] we have

In()-n()l 1 - +"01 f f q()ddg I"
0

(3.11a)

(3.11b)

(3.12)

A standard diagonalization type argument [8, 10] will now complete the proof. Define

.(), e [0, ]
Un(T

b, z E [n, cx3).

Then, un is continuous on [0, oc) and a < un(t < Moo t [0, cx3). Also for t,s [0, cx3) it is easy
to check that

x

un(t)-Un(S)l <_Rllt-sl +#Rol j ./ q(u)dudxl.
s 0

Using the Arzela-Ascoli theorem [8] we obtain for k- 1,2,... a subsequence Nk C_ N + with
Nk C Nk_ 1 and a continuous function zk on [0, k] with un--zk uniformly on [0, k] as

throughNk. Alsozk- zk_l on [O,k-1].
Define a function y as follows. Fix x [0,x) and let k g + with x < k. Define y(x)-

Zk(X). Notice y E C[0, cx) and a < y(t) < Moo for t [0,
Fix x and choose k > x, k N +. Then for n Nk we have

un(x tun(k (b-a)t #(k- t) /----if-- + a + k + sq(s)g(s, un(s))ds
0

k

+ --ff (k s)q(s)g(s, un(s))ds.

Let ncx through Nk to obtain
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Thus

zk(x ----+ (b-k a)t -t-#(k- t) j sq(s)g(s, zk(s))ds
0

k

+;._’t f s) (s)g(s, zk(S))dsq

y(x) ty(k) (b-a)t--+a+ k +k sq(s)g(s,y(s))ds
0

k
,t f+-

which implies y e C1[0, cxz)fq C2(0, cxz) with y"(x)- -#q(x)g(x,y(x)) for 0 < x < c. Consequent-
ly y is a solution of (3.1). To show y is a solution of (3.2) we claim

y’(t)> Ofor t (3.13)

If this is not true then there exists xo > 0 with y’(xo) < 0. Then for x > xo we have

x

y’(x) y’(xo) # / q(s)g(s, y(s))ds <_ y’(xo).
x0

Hence for x > xo we have

This contradicts a < y(t)< Moo for t E [0,). Hence (3.13) is true i.e., y is nondecreasing on

(0, c). This together with a <_ y(t) <_ Moo for t E [0, c) implies limt__,ooy(t exists. I-!

Theorem 3.2: Let N + {1,2,...}. Suppose

q e C(0, c) with q > 0 on (0, cx) (3.14)

Qoo- sup sup
(n- t) sq(s)ds + t (n- s)q(s)ds < c,3 (3 15)

hEN+ E [0, n]
n

o

for 0 <_ t < c and u >_ a in a bounded set then g(t, u) is bounded

and
g: [0, c) x [a, c)---.R is continuous, g(t, a) >_ 0 for

(0, cx) and there exists a continuous nondecreasing function

f: [a, cx)----[O, ,:,,z) such that f(u) > 0 for u > a

and g(t, u) <_ f(u) on (0, cx) (a, c)

are satisfied. Choose b >_ a and fix it. Let poo satisfy

(3.16)

(3.17)
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sup ( c

c e (b, Oo) b + #oof(c)Qoo > 1.

If 0 <_ # < #oo then (3.1) has a nonnegative solution y e C1[0, cx)gl C2(0, c).

(3.18)

Proof: Fix # < #oo. Let Moo > b satisfy

M
b + #f(M)Qoo > 1. (3.19)

Fix nN + and let y be any solution of (3.6). As in Theorem 2.1 we have y(t)>_a for t
[0, n]. For notational purposes, let yo, nsu.P[o,n]y(t). Suppose the absolute maximum of y
occurs at to (0, n) and Yo, n > b. For t n] we 1/ave, as in Theorem 2.2,

y(t) < b q- #f(Yo, n) (n
n

t) sq(s)ds + t (n s)q(s)ds
0

< b + PQcf(Yo,)"

Consequently,
Y0, n

b + #Qoof(yo, n)
< 1

and the argument in Theorem 2.1 implies that (3.6) has a solution Yn e C1[0, n] fq C2(0, n) with
a <_ yn(t) <_ Moo for t E [0, n].

Essentially the same reasoning as in Theorem 3.1 (from (3.10) onwards) implies that (3.1)
has a solution y E vii0, O:))f] C2(0, 07)) with a < y(t) < Moo for t [0, cx).

Pmarks: (i) Suppose the conditions in Theorem 3.2 hold and in addition, g(x, u)> 0 for
(x, u) (0, c)x (a, cx). Then the argurnent in Theorem 3.1 implies that (3.2)has a nonnegative
solution.

(ii) As an example, if q(t)- e- then

Qoo-sup ( sup {[l -e-t]- t[1-e-n]}) < sup [l-e-]-l<c.
n N + [0, n] n N +

and

Next we discuss a general boundary value problem on the semi-infinite interval, namely,

’ + o, o < t <

y(O)--a>_O

limt__,ooy’(t) 0.

Theorem 3.3: Suppose (3.14), (3.15) and (3.16) hold and in addition, assume

f q(x)dx<oc and n-oolim j sq(s)ds-O
0 0

g" [0, cx) x [a, cx)--,R is continuous, g(t, a) >_ 0 for
t G (0, c) and there exists a continuous nondecreasing function

f: [a, cx)---,[0, cx)) such that f(u) > 0 for u > a

and g(t, u) <_ f(u) on (0, c) (a, cx))

(3.21)

(3.22)
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are satisfied. Choose b _> a and fix it. Let #oo satisfy (3.18). If 0 <_ # <_ #oo, then (3.20) has a

nonnegative solution V Ca[0, cxz) N C2(0, cx).
n has asolution YnE Ca[0 n]fProof: Fix # < #oo. As in Theorem 3.2 we have that (3.6)a

C2(0, n) with a <_ yn(t) <_ Moo for t E [0, n]; here Moo is given as in (3.19). Also since

v’.(t) +.
0

we have that

y(t) + ,f(M) q(s)ds + sq(s)ds
0

<_ + #f(Moo) q(s)ds + sq(s)ds cn(t).
0

Thus for t G [0, n] we have

y’(t) < c,(t). (3.23)

Remarks: (i) Notice since (3.21) is true then limn__,oo f sq(s)ds 0 and consequently
0

nlimcn(t)- #f(Moo)/ q(s)ds for t e [0, n].

(ii) Also (3.21) implies that that there exists a constant coo with ly’n(t) < coo for t [0, hi.
Finally, as in Theorem 3.1, we have

y,(t) < #Roq(t for t [0, n] (3.24)

where

Define

Ro = sup g(t,u)].
[0, Oo) X [a, Moo]

yn(X),x [0, n]
Un(X)

b,x
_

(n, oo).

Using the Arzela-Ascoli theorem [8] we obtain for k-1,2,.., a subsequence Nk C_ {k+ 1,
k + 2,...} with Nk C_ Nk_ a and a function zk Ca[0, k] with u(J)zj), j-0,1 uniformly on

[0, k] as noo through Nk.

Now define a function y: [0, cx)[a, cxz) by y(x) zk(z on [0, k]. Notice y Ca[0, cx) and
a < y(t) < Moo for t [0,) and y’(*) < %0 for t E [0, o). In fact

y’(t) < c(t) pf(Moo)/ q(s)ds for t > 0. (3.25)
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As in Theorem 3.1 we have that y is a solution of (3.1). Also (3.25) implies y’(oc) -0 so
0.

Similarly we have

Theorem 3.4: Choose b >_ a and fix it. Suppose (3.3) and (3.21) hold and in addition

g: [0, c) x [a, c)--,[0, cx)) is continuous and there exists

a continuous nondecreasing function f: [a, cx))-[0, oc) such that

f(u) > 0 for u > a and g(x,u)

is satisfied. Let # satisfy (3.5).
C1 [0, oo) [’1 C2(0, oo).

then (3.20) has a nonnegative solution
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