NONNEGATIVE SOLUTIONS TO SUPERLINEAR PROBLEMS OF GENERALIZED GELFAND TYPE

DONAL O'REGAN

University College of Galway Department of Mathematics Galway, Ireland

(Received January, 1995; Revised March, 1995)

ABSTRACT

Existence of nonnegative solutions to superlinear second order problems of the form $y'' + \mu q(t)g(t, y) = 0$ is discussed in this paper. Here $\mu \ge 0$ is a parameter.

Key words: Boundary Value Problems, Superlinear, Generalized Gelfand Problems.

AMS (MOS) subject classifications: 34B15.

1. Introduction

This paper has two main objectives. In section 2 we establish existence of a nonnegative solution to $\begin{cases}
 u'' + uq(t)q(t, u) = 0, 0 < t < T
\end{cases}$

$$\begin{cases} y'' + \mu q(t)g(t, y) = 0, 0 < t < T \\ y(0) = a \ge 0 \\ y(T) = b \ge 0 \end{cases}$$
(1.1)

where $\mu \ge 0$ is a constant suitably chosen. We are interested mostly in the case when g is superlinear. Problems of the form (1.1) have been examined by many authors, see [1-7, 12] and their references. Usually it is shown that (1.1) has a nonnegative solution for $0 \le \mu < \mu_0$ where $\mu_0 \in$ $(0,\infty]$. For example, in [4] Erbe and Wang show that (1.1) with $g(t,y) \equiv g(y)$ and a = b = 0, has a nonnegative solution for all $\mu \ge 0$ if

$$\lim_{y\to 0} \frac{g(y)}{y} = 0 \text{ and } \lim_{y\to\infty} \frac{g(y)}{y} = \infty.$$

This paper presents a new existence argument [2], based on showing that no solutions of an appropriate family of problems lie on the boundary of a suitably open set, to problems of the form (1.1). This argument differs from the usual *a priori* bound type argument [7]. It has connections with the "forbidden interval" type approach introduced in [1]. In particular, we will show in this paper that (1.1) with g(t, y) = g(y) and a = b = 0, has a solution for all $\mu \ge 0$ if

$$\sup_{[0,\infty)}\frac{x}{g(x)}=\infty.$$

In section 3 we examine boundary value problems on the semi-infinite interval, namely

DONAL O'REGAN

$$y'' + \mu q(t)g(t, y) = 0, 0 < t < \infty$$

$$y(0) = a \ge 0$$

$$y \text{ bounded on } [0, \infty) \text{ or } \lim_{t \to \infty} y(t) \text{ exists or } \lim_{t \to \infty} y'(t) = 0.$$
(1.2)

Very little seems to be known about (1.2) when $g(t,a) \ge 0$ for $t \in (0,\infty)$ and g is superlinear; see [13, 14] for some initial results. To discuss (1.2) we will use the ideas in section 2, the Arzela-Ascoli theorem and a diagonalization argument. This diagonalization type argument has been applied before in a variety of situations; see [8, 10] and their references.

The arguments in this paper are based on the following fixed point theorem.

Theorem 1.1: (Nonlinear Alternative [6, 8]). Assume U is a relatively open subset of a convex set K in a normed linear space E. Let $N: \overline{U} \to K$ be a compact map with $p \in U$. Then either

(i) N has a fixed point in \overline{U} ; or

(ii) there is a $u \in \partial U$ and a $\lambda \in (0,1)$ such that $u = \lambda N u + (1-\lambda)p$.

Remark: By a map being *compact* we mean it is continuous with relatively compact range. For later purposes, a map is *completely continuous* if it is continuous and the image of every bounded set in the domain is contained in a compact set in the range.

2. Finite Interval Problem

This section establishes the existence and nonexistence for the second order boundary value problem

$$\begin{cases} y'' + \mu q(t)g(t, y) = 0, 0 < t < T \\ y(0) = a \ge 0 \\ y(T) = b \ge a. \end{cases}$$
(2.1)

Here $\mu \geq 0$ is a constant.

Remark: For convenience, in writing we assume $b \ge a$ in (2.1). However, in general, it is enough to assume $b \ge 0$.

By a solution to (2.1) we mean a function $y \in C^1[0,T] \cap C^2(0,T)$ which satisfies the differential equation on (0,T) and the stated boundary data. We begin by presenting two general existence results for problems of the form (2.1).

Theorem 2.1: Assume

$$q \in C(0,T) \text{ with } q > 0 \text{ on } (0,T) \text{ and } \int_{0}^{T} q(s)ds < \infty$$
 (2.2)

and

$$g:[0,T] \times [a,\infty) \to [0,\infty) \text{ is continuous and there exists}$$

a continuous nondecreasing function $f:[a,\infty) \to [0,\infty)$ such that
 $f(u) > 0 \text{ for } u > a \text{ and } g(x,u) \le f(u) \text{ on } (0,T) \times (a,\infty)$ (2.3)

are satisfied.

Case (a): Suppose

$$q \text{ is bounded on } [0,T].$$
 (2.4)

Let

$$K_{0} = \sup_{c \in (b,\infty)} \left\{ \int_{a}^{c} \frac{du}{[F(c) - F(u)]^{\frac{1}{2}}} + \int_{b}^{c} \frac{du}{[F(c) - F(u)]^{\frac{1}{2}}} \right\}$$
(2.5)

where

$$F(u) = \int_{0}^{u} f(x)dx \qquad (2.6)$$

and

$$\mu_0 = \frac{K_0^2}{2T^2[sup_{[0,T]}q(t)]}.$$

If $0 \le \mu < \mu_0$ then (2.1) has a nonnegative solution.

Case (b): Suppose

q is nonincreasing on
$$(0,T)$$
. (2.7)

Let

$$K_{1} = \sup_{c \in (b,\infty)} \left\{ \int_{a}^{c} \frac{du}{[F(c) - F(u)]^{\frac{1}{2}}} \right\}$$
(2.8)

where F is as in (2.6), and

$$\mu_1 = \frac{K_1^2}{2\left(\int\limits_0^T \sqrt{q(x)} ds\right)^2}$$

If $0 \le \mu < \mu_1$ then (2.1) has a nonnegative solution. Case (c): Suppose

q is nondecreasing on
$$(0,T)$$
. (2.9)

Let

$$K_{2} = \sup_{c \in (b,\infty)} \left(\int_{b}^{c} \frac{du}{\left[F(c) - F(u)\right]^{\frac{1}{2}}} \right)$$
(2.10)

where F is as in (2.6), and

$$\mu_2 = \frac{K_2^2}{2 \left(\int_0^T \sqrt{q(x)} dx \right)^2}.$$

If $0 \le \mu < \mu_2$ then (2.1) has a nonnegative solution.

Remark: The supremum in (2.5), (2.8), (2.10) is allowed to be infinite.

Proof: Consider the family of problems

$$\begin{cases} y'' + \lambda \mu q(t)g^*(t,y) = 0, 0 < t < T \\ y(0) = a \ge 0, y(T) = b \ge a \end{cases}$$
(2.11)_{\lambda}

for $0 < \lambda < 1$. Here $g^*: [0, T] \times \mathbb{R} \rightarrow [0, \infty)$ is defined by

$$g^*(t,y) = egin{cases} g(t,a)+a-y,y < a \ g(t,y),y \geq a. \end{cases}$$

We first show that any solution y to $(2.11)_{\lambda}$ satisfies

$$y(t) \ge a \text{ for } t \in [0, T].$$
 (2.12)

To see this suppose y - a has a negative minimum at $t_0 \in (0,T)$. Then $y'(t_0) = 0$ and $y''(t_0) \ge 0$. However

$$y''(t_0) = -\lambda \mu q(t_0)g^*(t_0, y(t_0)) = -\lambda \mu q(t_0)[g(t_0, a) + a - y(t_0)] < 0,$$

a contradiction. Thus (2.12) is true.

For notational purposes let

$$y_0 = \sup_{[0,T]} y(t).$$

Case (a): Suppose (2.4) is satisfied.

Fix $\mu < \mu_0$. Then there exists $M_0 > b$ with

$$\mu < \frac{\left(\int_{a}^{M_{0}} \frac{du}{[F(c) - F(u)]^{\frac{1}{2}}} + \int_{b}^{M_{0}} \frac{du}{[F(c) - F(u)]^{\frac{1}{2}}} \right)^{2}}{2T^{2}[\sup_{[0, T]}q(t)]} \equiv \gamma_{0} \le \mu_{0}.$$

$$(2.13)$$

Suppose the absolute maximum of y occurs at $t_0 \in [0,T]$. If $t_0 = 0$ or T we have $y_0 \leq b$. Next consider the case when $t_0 \in (0,T)$ and $y_0 > b$. In this case $y'(t_0) = 0$ with $y' \geq 0$ on $(0,t_0)$ and $y' \leq 0$ on $(t_0,1)$ (since $y'' \leq 0$ on (0,T)). Now for $t \in (0,t_0)$ we have

$$-y'y'' = \lambda \mu q(t)g(t,y)y$$

and integration from $t(t < t_0)$ to t_0 yields

$$[y'(t)]^2 \le 2\mu [\max_{[0,T]} q(x)] \int_{y(t)}^{y(t_0)} f(u) du$$

Hence,

$$\frac{y'(t)}{[F(y_0) - F(y(t))]^{\frac{1}{2}}} \le \sqrt{2\mu[\max_{[0,T]} q(x)]} \text{ for } t \in (0, t_0)$$

and integration from 0 to t_0 yields

$$\int_{a}^{y_{0}} \frac{du}{\left[F(y_{0}) - F(u)\right]^{\frac{1}{2}}} \le t_{0} \quad \sqrt{2\mu \left[\max_{[0,T]} q(x)\right]}.$$
(2.14)

On the other hand, for $t \in (t_0, T)$ we have

$$y'y'' = \lambda \mu q(t)g(t,y)(-y').$$

Integrate from t_0 to t and then from t_0 to T to obtain

$$\int_{b}^{y_{0}} \frac{du}{\left[F(y_{0}) - F(u)\right]^{\frac{1}{2}}} \leq (T - t_{0}) \sqrt{2\mu\left[\max_{[0, T]} q(x)\right]}.$$
(2.15)

Combine (2.14) and (2.15) and we obtain

$$\int_{a}^{y_{0}} \frac{du}{\left[F(y_{0}) - F(u)\right]^{\frac{1}{2}}} + \int_{b}^{y_{0}} \frac{du}{\left[F(y_{0}) - \left[F(u)\right]^{\frac{1}{2}}} \le T\sqrt{2\mu\left[\max_{[0,T]}q(x)\right]}.$$
 (2.16)

Let

$$U = \{ u \in C[0,T]: | u |_0 < M_0 \}, E = K = C[0,T]$$

where $|u|_0 = \sup_{[0,T]} |u(t)|$. Now solving (2.11)₁ is equivalent to finding a fixed point of N: $C[0,T] \rightarrow C[0,T]$ where

$$Ny(t) = a + \frac{(b-a)t}{T} + \mu \int_{0}^{T} G(t,s)q(s)g^{*}(s,y(s))ds$$

with

$$G(t,s) = \begin{cases} \frac{t(T-s)}{T}, & 0 \le t \le s \le T\\ \frac{s(T-t)}{T}, & 0 \le s \le t \le T. \end{cases}$$

Notice $N: C[0,T] \rightarrow C[0,T]$ is continuous and completely continuous (by the Arzela-Ascoli theorem). If condition (*ii*) of Theorem 1.1 holds, then there exists $\lambda \in (0,1)$ and $y \in \partial U$ with $y = \lambda Ny + (1-\lambda)p$; here $p = a + \frac{(b-a)t}{T}$. Thus y is a solution of $(2.11)_{\lambda}$ satisfying $|y|_0 = M_0$ i.e., $y_0 = M_0$. Now since $M_0 > b$, (2.16) implies

$$\int_{a}^{M_{0}} \frac{du}{\left[F(y_{0}) - F(u)\right]^{\frac{1}{2}}} + \int_{b}^{M_{0}} \frac{du}{\left[F(y_{0}) - F(u)\right]^{\frac{1}{2}}} \leq T \sqrt{2\mu \left[\max_{[0, T]} q(x)\right]},$$

a contradiction since $\mu < \gamma_0$. Hence N has a fixed point in U by Theorem 1.1. Thus $(2.11)_1$ has a solution $y \in C[0,T]$ with $a \leq y(t) \leq M_0$ for $t \in [0,T]$. It follows easily that $y \in C^1[0,T] \cap C^2(0,T)$. Hence y is a solution of (2.1).

Case (b): Suppose (2.7) is satisfied.

Fix $\mu < \mu_1$. There there exists $M_1 > b$ with

$$\mu < \frac{\left(\begin{array}{c} \int\limits_{a}^{M_{1}} \frac{du}{\left[F(c) - F(u)\right]^{\frac{1}{2}}} \right)^{2}}{2\left(\int\limits_{0}^{T} \sqrt{q(x)} dx \right)^{2}} \equiv \gamma_{1} \leq \mu_{1}.$$

Suppose the absolute maximum of y occurs at $t_0 \in (0,T)$ and $y_0 > b$. Then $y'(t_0) = 0$. For $t \in (0, t_0)$ we have

$$-y'y'' = \lambda \mu q(t)g(t,y)y'$$

and integration from $t(t < t_0)$ to t_0 yields

$$[y'(t)]^2 \le 2\mu q(t) \int_{y(t)}^{y(t_0)} f(u) du$$

since (2.7) holds (and $y' \ge 0$ on $(0, t_0)$). Hence

$$\frac{y'(t)}{[F(y_0) - F(y(t))]^{\frac{1}{2}}} \le \sqrt{2\mu q(t)} \text{ for } t \in (0, t_0)$$

and integration from 0 to t_0 yields

$$\int_{0}^{y_{0}} \frac{du}{\left[F(y_{0}) - F(u)\right]^{\frac{1}{2}}} \leq \sqrt{2\mu} \int_{0}^{T} \sqrt{q(x)} dx.$$

Let

$$U = \{ u \in C[0,T] : |u|_0 < M_1 \}, E = K = C[0,T]$$

Essentially the same reasoning as in case (a) guarantees the existence of a solution y to (2.1) with $a \le y(t) \le M_1$ for $t \in [0, T]$.

Case (c): Suppose (2.9) is satisfied.

Fix $\mu < \mu_2$. Then there exists $M_2 > b$ with

$$\mu < \frac{\left(\int\limits_{b}^{M_2} \frac{du}{[F(c) - F(u)]^{\frac{1}{2}}}\right)^2}{2 \left(\int\limits_{0}^{T} \sqrt{q(x)} dx\right)^2} \equiv \gamma_2 \leq \mu_2.$$

Suppose the absolute maximum of y occurs at $t_0 \in (0,T)$ and $y_0 > b$. Multiply the differential equation by y', integrate from t_0 to $t(t > t_0)$ and then from t_0 to T to obtain

$$\int_{b}^{y_{0}} \frac{du}{\left[F(y_{0}) - F(u)\right]^{\frac{1}{2}}} \leq \sqrt{2\mu} \int_{0}^{T} \sqrt{q(x)} dx.$$

As in case (a), there exists a solution y to (2.1) with $a \le y(t) \le M_2$ for $t \in [0, T]$.

Remark: Notice in the proof of Theorem 2.1 we only showed that any solution to $(2.11)_{\lambda}$ satisfies $y_0 \neq M_0$. We do **not** claim (and indeed it is not true in general) that any solution of $(2.11)_{\lambda}$ satisfies $y_0 \leq M_0$.

Theorem 2.2: Assume (2.2) and

$$g:[0,T] \times [a,\infty) \to \mathbf{R} \text{ is continuous, } g(t,a) \ge 0 \text{ for}$$

$$t \in (0,T) \text{ and there exists a continuous nondecreasing function}$$

$$f:[a,\infty) \to [0,\infty) \text{ such that } f(u) > 0 \text{ for } u > a$$

and $g(t,u) \le f(u) \text{ on } (0,T) \times (a,\infty)$

$$(2.17)$$

are satisfied. Let

$$Q_T = \sup_{t \in [0,T]} \left(\frac{(T-t)}{T} \int_0^t sq(s)ds + \frac{t}{T} \int_t^T (T-s)q(s)ds \right)$$

and let μ_0 satisfy

$$\sup_{c \in (b,\infty)} \left(\frac{c}{b + \mu_0 f(c) Q_T} \right) > 1.$$
(2.18)

If $\mu \leq \mu \leq \mu_0$ then (2.1) has a nonnegative solution.

Remark: The supremum in (2.18) is allowed to be infinite.

Proof: Let y be a solution to $(2.11)_{\lambda}$. Exactly the same reasoning as in Theorem 2.1 yields $y(t) \ge a$ for $t \in [0, T]$. Fix $\mu \le \mu_0$. Let $M_0 > b$ satisfy

$$\frac{M_0}{b + \mu f(M_0)Q_T} > 1.$$
(2.19)

Suppose the absolute maximum of y occurs at t_0 . If $t_0 = 0$ or T we have $y_0 \le b$. Next consider the case when $t_0 \in (0,T)$ and $y_0 > b$. For $t \in [0,T]$ we have

$$y(t) = a + \frac{(b-a)t}{T} + \lambda \mu \left(\frac{(T-t)}{T} \int_0^t sq(s)g^*(s,y(s))ds + \frac{t}{T} \int_t^T (T-s)q(s)g^*(s,y(s))ds \right)$$
$$\leq b + \mu Q_T f(y_0).$$

Consequently,

$$\frac{y_0}{b + \mu f(y_0)Q_T} \le 1.$$
(2.20)

Let

 $U = \{ u \in C[0,T]: \mid u \mid_0 < M_0 \}, E = K = C[0,T].$

Essentially the same reasoning as in Theorem 2.1, case (a) guarantees the existence of a solution y to (2.1) with $a \le y(t) \le M_0$ for $t \in [0, T]$.

Example 2.1: Suppose (2.2) holds. In addition, assume (2.17) is satisfied with f either $f(y) = e^{-\frac{1}{y}}$ (see [9]) or $f(y) = e^{\frac{\alpha y}{\alpha + y}}$ where $\alpha > 0$ is a constant (see [11]) or $f(y) = Ay^{\beta} + B$ where A > 0, $B \ge 0$ and $0 \le \beta < 1$ are constants. Then (2.1) has a nonnegative solution for all $\mu \ge 0$. This follows immediately from Theorem 2.2 since for any $\mu_0 > 0$ we have

$$\sup_{c \in (b,\infty)} \left(\frac{c}{b + \mu_0 f(c) Q_T} \right) = \infty > 1.$$

Example 2.2: The boundary value problem

$$\left\{ \begin{array}{l} y^{\prime\prime} + \mu(y^{\alpha} + \epsilon) = 0, 0 < t < T \\ y(0) = y(T) = 0, \alpha > 1 \text{ and } \epsilon > 0 \end{array} \right.$$

has a nonnegative solution if

$$0 \leq \mu < \frac{8}{\alpha T^2} \left(\frac{\alpha - 1}{\epsilon} \right)^{\frac{\alpha - 1}{\alpha}} \equiv r_0.$$

This follows immediately from theorem 2.2 since

$$\sup_{c \in (0,\infty)} \left(\frac{c}{\mu_0[c^{\alpha} + \epsilon]Q_T} \right) = \frac{8}{T^2 \mu_0} \quad \sup_{c \in (0,\infty)} \frac{c}{[c^{\alpha} + \epsilon]} = \frac{8}{\alpha T^2 \mu_0} \left(\frac{\alpha - 1}{\epsilon} \right)^{\frac{\alpha - 1}{\alpha}} > 1$$

if $\mu_0 < r_0$.

Example 2.3: Suppose (2.2) and (2.7) holds. In addition, assume (2.3) is satisfied with a = 0, b > 0 and $f(y) = y^{\alpha}, \alpha > 1$. Then the boundary value problem (2.1) with a = 0, b > 0 has a nonnegative solution for all

$$0 \le \mu < \frac{\left(\int_{0}^{1} \frac{dw}{[1-w^{\alpha+1}]^{\frac{1}{2}}}\right)^{2}}{2[\alpha+1]b^{\alpha-1} \left(\int_{0}^{T} \sqrt{q(x)} dx\right)^{2}}.$$

This follows immediately from Theorem 2.1 case (b), since

$$K_{1} = \sup_{c \in (b,\infty)} \left\{ \int_{a}^{c} \frac{du}{[F(c) - F(u)]^{\frac{1}{2}}} \right\} = \sup_{c \in (b,\infty)} \left\{ \frac{1}{[\alpha+1]^{\frac{1}{2}c} \frac{\alpha-1}{2}} \int_{0}^{1} \frac{dw}{[1-w^{\alpha+1}]^{\frac{1}{2}}} \right\}$$
$$= \frac{1}{[\alpha+1]^{\frac{1}{2}b} \frac{\alpha-1}{2}} \int_{0}^{1} \frac{dw}{[1-w^{\alpha+1}]^{\frac{1}{2}}}.$$

To conclude this section we present a nonexistence result for the boundary value problem

$$\begin{cases} y'' + \mu q(t)g(t, y) = 0, 0 < t < T \\ y(0) = 0 \\ y(T) = b \ge 0. \end{cases}$$
(2.21)

Theorem 2.3: Assume (2.2) and

$$\begin{cases} g: [0,T] \times [0,\infty) \to (0,\infty) \text{ is continuous and there exists} \\ a \text{ continuous nondecreasing function } f: [0,\infty) \to (0,\infty) \text{ such that} \\ g(t,y) \ge f(y) \text{ on } [0,T] \times [0,\infty) \end{cases}$$
(2.22)

are satisfied. In addition, assume μ satisfies

$$\mu \int_{\frac{T}{2}}^{T} (T-x)q(x)dx \geq \int_{b}^{\infty} \frac{du}{f(u)} \quad and \quad \mu \int_{0}^{\frac{T}{2}} xq(x)dx \geq \int_{0}^{\infty} \frac{du}{f(u)}.$$

Then (2.21) does not have a nonnegative solution on [0, T].

Proof: Suppose (2.21) has a nonnegative solution y on [0, T]. Then since $y'' \leq 0$ on (0, T) we have either $y' \geq 0$ on (0, T) or there exists $\tau \in (0, T)$ with $y' \geq 0$ on $(0, \tau)$ and $y' \leq 0$ on (τ, T) .

Case (a): $y' \ge 0$ on (0, T).

For $x \in (0, T)$ we have

$$y''(x) = (-\mu)q(x)g(x,y(x)) \le (-\mu)q(x)f(y(x)).$$
(2.23)

Integrate from t to T to obtain (since $y' \ge 0$ on (0,T)),

$$y'(T) - y'(t) \leq (-\mu) \int_t^T q(x) f(y(x)) dx \leq (-\mu) f(y(t)) \int_t^T q(x) dx$$

and so

$$\frac{-y'(t)}{f(y(t))} \leq (-\mu) \int_t^T q(x) dx.$$

Thus for $t \in (0,T)$ we have

$$\frac{y'(t)}{f(y(t))} \ge \mu \int_{t}^{T} q(x) dx$$

and integration from 0 to T yields

$$\int_{0}^{b} \frac{du}{f(u)} \ge \mu \int_{0}^{T} xq(x) dx,$$

a contradiction.

Case (b): $y' \ge 0$ on $(0, \tau)$ and $y' \le 0$ on (τ, T) .

Integrate (2.23) from τ to $t(t > \tau)$ to obtain

$$y'(t) \leq (-\mu) \int_{\tau}^{t} q(x)f(y(x))dx \leq (-\mu)f(y(t)) \int_{\tau}^{t} q(x)dx$$

and so

$$\frac{-y'(t)}{f(y(t))} \ge \mu \int_{\tau}^{t} q(x) dx \text{ for } t \in (\tau, T).$$

Integration from τ to T yields

$$\int_{b}^{y(\tau)} \frac{du}{f(u)} \ge \mu \int_{\tau}^{t} (T-x)q(x)dx.$$
(2.24)

On the other hand integrate (2.23) from $t(t < \tau)$ to τ to obtain

$$-y'(t) \leq (-\mu) \int_t^\tau q(x) f(y(x)) dx \leq (-\mu) f(y(t)) \int_t^\tau q(x) dx$$

and so

$$\frac{y'(t)}{f(y(t))} \ge \mu \int_t^\tau q(x) dx \text{ for } t \in (0,\tau).$$

Integration from 0 to τ yields

$$\int_{0}^{y(\tau)} \frac{du}{f(u)} \ge \mu \int_{0}^{\tau} xq(x)dx.$$
(2.25)

T

Now either $\tau \leq \frac{T}{2}$ or $\tau \geq \frac{T}{2}$. If $\tau \leq \frac{T}{2}$ then (2.24) implies

$$\int_{b}^{\infty} \frac{du}{f(u)} > \int_{b}^{y(\tau)} \frac{du}{f(u)} \ge \mu \int_{\tau}^{T} (T-x)q(x)dx \ge \mu \int_{\frac{T}{2}}^{T} (T-x)q(x)dx,$$

a contradiction. On the other hand, if $\tau \geq \frac{T}{2}$, then (2.25) implies

$$\int_0^\infty \frac{du}{f(u)} > \int_0^{y(\tau)} \frac{du}{f(u)} \ge \mu \int_0^\tau xq(x)dx \ge \mu \int_0^{\frac{1}{2}} xq(x)dx,$$

a contradiction.

3. Semi-infinite Interval Problem

The ideas in section 2 together with a diagonalization argument enable us to treat various problems defined on semi-infinite intervals. We begin by considering two such problems, namely,

$$\begin{cases} y'' + \mu q(t)g(t, y) = 0, 0 < t < \infty \\ y(0) = a \ge 0 \\ y \text{ bounded on } [0, \infty) \end{cases}$$

$$\begin{cases} y'' + \mu q(t)g(t, y) = 0, 0 < t < \infty \\ y(0) = a \ge 0 \\ \lim_{t \to \infty} y(t) \text{ exists.} \end{cases}$$
(3.1)
(3.2)

and

Two existence results are presented.

Theorem 3.1: Choose $b \ge a$ and fix it. Suppose

$$\begin{cases} q \in C(0,\infty) \text{ with } q > 0 \text{ nonincreasing on } (0,\infty) \\ and \int_{0}^{\infty} \sqrt{q(x)} ds < \infty \end{cases}$$
(3.3)

and

$$\begin{cases} g: [0,\infty) \times [a,\infty) \to [0,\infty) \text{ is continuous and there exists} \\ a \text{ continuous nondecreasing function } f: [a,\infty) \to [0,\infty) \text{ such that} \\ f(u) > 0 \text{ for } u > a \text{ and } g(x,u) \le f(u) \text{ on } (0,\infty) \times (a,\infty) \end{cases}$$
(3.4)

are satisfied. Define

where F is as in (2.6), and

$$K_{\infty} = \sup_{c \in (b,\infty)} \left\{ \int_{a}^{c} \frac{du}{\left[F(c) - F(u)\right]^{\frac{1}{2}}} \right\}$$
$$\mu_{\infty} = \frac{K_{\infty}^{2}}{2\left(\int_{0}^{\infty} \sqrt{q(x)} dx\right)^{2}}.$$
(3.5)

If $0 \le \mu < \mu_{\infty}$ then (3.1) and (3.2) have a nonnegative solution $y \in C^{1}[0,\infty) \cap C^{2}(0,\infty)$.

Proof: Fix $n \in N^+ = \{1, 2, ...\}$. Consider the family of problems

$$y'' + \lambda \mu q(t)g^*(t, y) = 0, 0 < t < n$$

$$y(0) = a, y(n) = b$$
(3.6)ⁿ_{\lambda}

for $0 < \lambda < 1$; here g^* is as defined in theorem 2.1.

Fix $\mu < \mu_{\infty}$. Then there exists $M_{\infty} > b$ with

$$\mu < \frac{\left(\int_{a}^{M_{\infty}} \frac{du}{\left[F(c) - F(u)\right]^{\frac{1}{2}}}\right)^{2}}{2\left(\int_{0}^{\infty} \sqrt{q(x)} dx\right)^{2}} \equiv \gamma_{\infty} \le \mu_{\infty}.$$
(3.7)

Let y be any solution of $(3.6)^n_{\lambda}$. Then as in Theorem 2.1 we have $y(t) \ge a$ for $t \in [0, n]$. For notational purposes, let $y_{0,n} = \sup_{[0,n]} y(t)$. Suppose the absolute maximum of y occurs at $t_0 \in (0, n)$ and $y_{0,n} > b$. Essentially the same reasoning as in Theorem 2.1 case (b) yields

$$\int_{a}^{y_{0,n}} \frac{du}{\left[F(y_{0,n}) - F(u)\right]^{\frac{1}{2}}} \leq \sqrt{2\mu} \int_{0}^{n} \sqrt{q(x)} dx < \sqrt{2\mu} \int_{0}^{\infty} \sqrt{q(x)} dx$$

Thus as in Theorem 2.1 there exists a solution y_n to $(3.6)_1^n$ with

$$a \le y_n(t) \le M_{\infty} \text{ for } t \in [0, n].$$

$$(3.8)$$

In particular, $\boldsymbol{y}_n \in C^1[0,n] \cap C^2(0,n)$ is a solution of

$$y'' + \mu q(t)g(t, y) = 0, 0 < t < n$$

$$y(0) = a, y(n) = b.$$
(3.9)

Let

 $R_0 = \sup_{[0,\infty)\times[a,\,M_\infty]} g(t,u),$

and for $t \in [0, n]$ we have

$$|y_n''(t)| \le \mu R_0 q(t). \tag{3.10}$$

DONAL O'REGAN

Now (3.8) together with the mean value theorem implies that there exists $\tau \in (0,1)$ with $|y'_n(\tau)| = |y_n(1) - y_n(0)| \le M_{\infty}$. Consequently, for $t \ge \tau$ we have

$$|y'_{n}(t)| \leq |y'_{n}(\tau)| + \int_{\tau}^{\tau} |y''_{n}(x)| dx$$

and so

$$|y'_{n}(t)| \leq M_{\infty} + \mu R_{0} \int_{0}^{t} q(x) dx.$$
 (3.11a)

On the other hand, for $t < \tau$ we have

$$|y_{n}'(t)| \leq M_{\infty} + \int_{t}^{\tau} |y_{n}''(x)| dx \leq M_{\infty} + \mu R_{0} \int_{0}^{1} q(x) dx \equiv R_{1}.$$
 (3.11b)
(3.11b) imply

Now (3.11a) and (3.11b) imply

$$|y'_{n}(t)| \leq R_{1} + \mu R_{0} \int_{0}^{t} q(x) dx$$
 for $t \in (0, n)$

so for $t, s \in [0, n]$ we have

$$|y_{n}(t) - y_{n}(s)| \leq R_{1} |t - s| + \mu R_{0} | \int_{s}^{t} \int_{0}^{x} q(u) du dx |.$$
(3.12)

A standard diagonalization type argument [8, 10] will now complete the proof. Define

$$u_n(x) = \begin{cases} & y_n(x), x \in [0, n] \\ & b, x \in [n, \infty). \end{cases}$$

Then, u_n is continuous on $[0,\infty)$ and $a \le u_n(t) \le M_\infty$, $t \in [0,\infty)$. Also for $t,s \in [0,\infty)$ it is easy to check that

$$|u_n(t) - u_n(s)| \le R_1 |t - s| + \mu R_0 | \int_s^t \int_0^x q(u) du dx |$$

Using the Arzela-Ascoli theorem [8] we obtain for k = 1, 2, ... a subsequence $N_k \subseteq N^+$ with $N_k \subseteq N_{k-1}$ and a continuous function z_k on [0,k] with $u_n \rightarrow z_k$ uniformly on [0,k] as $n \rightarrow \infty$ through N_k . Also $z_k = z_{k-1}$ on [0, k-1].

Define a function y as follows. Fix $x \in [0,\infty)$ and let $k \in N^+$ with $x \le k$. Define $y(x) = z_k(x)$. Notice $y \in C[0,\infty)$ and $a \le y(t) \le M_\infty$ for $t \in [0,\infty)$.

Fix x and choose $k > x, k \in N^+$. Then for $n \in N_k$ we have

$$\begin{split} u_n(x) &= \frac{t u_n(k)}{k} + a + \frac{(b-a)t}{k} + \frac{\mu(k-t)}{k} \int_0^t sq(s)g(s, u_n(s))ds \\ &+ \frac{\mu t}{k} \int_t^k (k-s)q(s)g(s, u_n(s))ds. \end{split}$$

Let $n \rightarrow \infty$ through N_k to obtain

$$\begin{split} z_k(x) &= \frac{tz_k(k)}{k} + a + \frac{(b-a)t}{k} + \frac{\mu(k-t)}{k} \int_0^t sq(s)g(s, z_k(s))ds \\ &+ \frac{\mu t}{k} \int_t^k (k-s)q(s)g(s, z_k(s))ds. \end{split}$$

Thus

$$y(x) = \frac{ty(k)}{k} + a + \frac{(b-a)t}{k} + \frac{\mu(k-t)}{k} \int_{0}^{t} sq(s)g(s,y(s))ds + \frac{\mu t}{k} \int_{t}^{k} (k-s)q(s)g(s,y(s))ds$$

which implies $y \in C^1[0,\infty) \cap C^2(0,\infty)$ with $y''(x) = -\mu q(x)g(x,y(x))$ for $0 < x < \infty$. Consequently y is a solution of (3.1). To show y is a solution of (3.2) we claim

$$y'(t) > 0 \text{ for } t \in (0, \infty).$$
 (3.13)

If this is not true then there exists $x_0 \ge 0$ with $y'(x_0) < 0$. Then for $x > x_0$ we have

$$y'(x) = y'(x_0) - \mu \int_{x_0}^x q(s)g(s,y(s))ds \le y'(x_0).$$

Hence for $x > x_0$ we have

$$y(x) - y(x_0) \le y'(x_0)(x - x_0) \rightarrow -\infty \text{ as } x \rightarrow \infty.$$

This contradicts $a \leq y(t) \leq M_{\infty}$ for $t \in [0, \infty)$. Hence (3.13) is true i.e., y is nondecreasing on $(0, \infty)$. This together with $a \leq y(t) \leq M_{\infty}$ for $t \in [0, \infty)$ implies $\lim_{t \to \infty} y(t)$ exists. \Box

Theorem 3.2: Let $N^+ = \{1, 2, ...\}$. Suppose

$$q \in C(0,\infty) \text{ with } q > 0 \text{ on } (0,\infty)$$

$$(3.14)$$

$$Q_{\infty} = \sup_{n \in N+} \left(\sup_{t \in [0,n]} \left\{ \frac{(n-t)}{n} \int_{0}^{t} sq(s)ds + \frac{t}{n} \int_{t}^{n} (n-s)q(s)ds \right\} \right) < \infty$$
(3.15)

for
$$0 \le t < \infty$$
 and $u \ge a$ in a bounded set then $|g(t, u)|$ is bounded (3.16)

and

$$g:[0,\infty) \times [a,\infty) \to \mathbf{R} \text{ is continuous, } g(t,a) \ge 0 \text{ for}$$

$$t \in (0,\infty) \text{ and there exists a continuous nondecreasing function}$$

$$f:[a,\infty) \to [0,\infty) \text{ such that } f(u) > 0 \text{ for } u > a$$

and $g(t,u) \le f(u) \text{ on } (0,\infty) \times (a,\infty)$

$$(3.17)$$

are satisfied. Choose $b\geq a$ and fix it. Let μ_∞ satisfy

$$\sup_{c \in (b,\infty)} \left(\frac{c}{b + \mu_{\infty} f(c) Q_{\infty}} \right) > 1.$$
(3.18)

If $0 \le \mu \le \mu_{\infty}$ then (3.1) has a nonnegative solution $y \in C^{1}[0,\infty) \cap C^{2}(0,\infty)$.

Proof: Fix $\mu \leq \mu_{\infty}$. Let $M_{\infty} > b$ satisfy

$$\frac{M_{\infty}}{b + \mu f(M_{\infty})Q_{\infty}} > 1. \tag{3.19}$$

Fix $n \in N^+$ and let y be any solution of $(3.6)^n_{\lambda}$. As in Theorem 2.1 we have $y(t) \ge a$ for $t \in [0, n]$. For notational purposes, let $y_{0,n} = \sup_{[0,n]} y(t)$. Suppose the absolute maximum of y occurs at $t_0 \in (0, n)$ and $y_{0,n} > b$. For $t \in [0, n]$ we have, as in Theorem 2.2,

$$\begin{split} y(t) &\leq b + \mu f(y_{0,n}) \left(\frac{(n-t)}{n} \int_{0}^{t} sq(s) ds + \frac{t}{n} \int_{t}^{n} (n-s)q(s) ds \right) \\ &\leq b + \mu Q_{\infty} f(y_{0,n}). \end{split}$$

Consequently,

$$\frac{y_{0,n}}{b+\mu Q_{\infty}f(y_{0,n})} \le 1$$

and the argument in Theorem 2.1 implies that $(3.6)_1^n$ has a solution $y_n \in C^1[0,n] \cap C^2(0,n)$ with $a \leq y_n(t) \leq M_\infty$ for $t \in [0,n]$.

Essentially the same reasoning as in Theorem 3.1 (from (3.10) onwards) implies that (3.1) has a solution $y \in C^1[0,\infty) \cap C^2(0,\infty)$ with $a \leq y(t) \leq M_{\infty}$ for $t \in [0,\infty)$.

Remarks: (i) Suppose the conditions in Theorem 3.2 hold and in addition, g(x, u) > 0 for $(x, u) \in (0, \infty) \times (a, \infty)$. Then the argument in Theorem 3.1 implies that (3.2) has a nonnegative solution.

(ii) As an example, if $q(t) = e^{-t}$ then

$$Q_{\infty} = \sup_{n \in N^+} \left(\sup_{t \in [0, n]} \left\{ [1 - e^{-t}] - \frac{t}{n} [1 - e^{-n}] \right\} \right) \leq \sup_{n \in N^+} [1 - e^{-n}] = 1 < \infty.$$

Next we discuss a general boundary value problem on the semi-infinite interval, namely,

$$\begin{cases} y'' + \mu q(t)g(t, y) = 0, 0 < t < \infty \\ y(0) = a \ge 0 \\ \lim_{t \to \infty} y'(t) = 0. \end{cases}$$
(3.20)

Theorem 3.3: Suppose (3.14), (3.15) and (3.16) hold and in addition, assume

$$\int_{0}^{\infty} q(x)dx < \infty \quad and \quad \lim_{n \to \infty} \frac{1}{n} \int_{0}^{n} sq(s)ds = 0$$
(3.21)

and

$$\begin{cases} g: [0,\infty) \times [a,\infty) \to \mathbf{R} \text{ is continuous, } g(t,a) \ge 0 \text{ for} \\ t \in (0,\infty) \text{ and there exists a continuous nondecreasing function} \\ f: [a,\infty) \to [0,\infty) \text{ such that } f(u) > 0 \text{ for } u > a \\ and |g(t,u)| \le f(u) \text{ on } (0,\infty) \times (a,\infty) \end{cases}$$
(3.22)

are satisfied. Choose $b \ge a$ and fix it. Let μ_{∞} satisfy (3.18). If $0 \le \mu \le \mu_{\infty}$, then (3.20) has a nonnegative solution $y \in C^{1}[0,\infty) \cap C^{2}(0,\infty)$.

Proof: Fix $\mu \leq \mu_{\infty}$. As in Theorem 3.2 we have that $(3.6)_1^n$ has a solution $y_n \in C^1[0,n] \cap C^2(0,n)$ with $a \leq y_n(t) \leq M_{\infty}$ for $t \in [0,n]$; here M_{∞} is given as in (3.19). Also since

$$y'_n(t) = \frac{b}{n} + \mu \left(\int_t^n q(s)g(s, y_n(s))ds - \frac{1}{n} \int_0^n sq(s)g(s, y_n(s))ds \right)$$

we have that

$$\begin{aligned} y_n'(t) \mid &\leq \frac{b}{n} + \mu f(M_{\infty}) \left(\int_t^n q(s)ds + \frac{1}{n} \int_0^n sq(s)ds \right) \\ &\leq \frac{b}{n} + \mu f(M_{\infty}) \left(\int_t^\infty q(s)ds + \frac{1}{n} \int_0^n sq(s)ds \right) \equiv c_n(t) \\ &\in [0,n] \text{ we have} \end{aligned}$$

Thus for $t \in [0, n]$ we have

$$|y'_{n}(t)| \leq c_{n}(t).$$
 (3.23)

Remarks: (i) Notice since (3.21) is true then $\lim_{n\to\infty}\frac{1}{n}\int_{0}^{n}sq(s)ds = 0$ and consequently

$$\lim_{n\to\infty} c_n(t) = \mu f(M_\infty) \int_t^\infty q(s) ds \text{ for } t \in [0,n].$$

(ii) Also (3.21) implies that that there exists a constant c_{∞} with $|y'_n(t)| \leq c_{\infty}$ for $t \in [0, n]$. Finally, as in Theorem 3.1, we have

$$|y_n''(t)| \le \mu R_0 q(t) \text{ for } t \in [0, n]$$
 (3.24)

where

$$R_0 = \sup_{[0,\infty)\times[a,M_\infty]} |g(t,u)|.$$

Define

$$u_n(x) = \begin{cases} & y_n(x), x \in [0, n] \\ & b, x \in (n, \infty). \end{cases}$$

Using the Arzela-Ascoli theorem [8] we obtain for k = 1, 2, ... a subsequence $N_k \subseteq \{k + 1, k + 2, ...\}$ with $N_k \subseteq N_{k-1}$ and a function $z_k \in C^1[0,k]$ with $u_n^{(j)} \rightarrow z_k^{(j)}$, j = 0, 1 uniformly on [0,k] as $n \rightarrow \infty$ through N_k .

Now define a function $y:[0,\infty)\to[a,\infty)$ by $y(x)=z_k(x)$ on [0,k]. Notice $y\in C^1[0,\infty)$ and $a\leq y(t)\leq M_{\infty}$ for $t\in[0,\infty)$ and $|y'(t)|\leq c_{\infty}$ for $t\in[0,\infty)$. In fact

$$|y'(t)| \leq \lim_{n \to \infty} c_n(t) = \mu f(M_{\infty}) \int_t^{\infty} q(s) ds \text{ for } t \geq 0.$$
(3.25)

DONAL O'REGAN

As in Theorem 3.1 we have that y is a solution of (3.1). Also (3.25) implies $|y'(\infty)| = 0$ so $y'(\infty) = 0$.

Similarly we have

Theorem 3.4: Choose $b \ge a$ and fix it. Suppose (3.3) and (3.21) hold and in addition

$$g:[0,\infty) \times [a,\infty) \rightarrow [0,\infty) \text{ is continuous and there exists}$$

a continuous nondecreasing function $f:[a,\infty) \rightarrow [0,\infty)$ such that (3.26)
 $f(u) > 0 \text{ for } u > a \text{ and } g(x,u) \leq f(u) \text{ on } (0,\infty) \times (a,\infty)$

is satisfied. Let μ_{∞} satisfy (3.5). If $0 \leq \mu < \mu_{\infty}$ then (3.20) has a nonnegative solution $y \in C^{1}[0,\infty) \cap C^{2}(0,\infty)$.

References

- [1] Bobisud, L.E., Calvert, J.E. and Royalty, W.D., Existence of biological populations stabilized by diffusion, (to appear).
- [2] Bobisud, L.E. and O'Regan, D., Existence of positive solutions for singular ordinary differential equations with nonlinear boundary conditions, (to appear).
- [3] Brown, K.J., Ibrahim, M.M.A. and Shivaji, R., S-shaped bifurcation curves, J. Nonlinear Anal. 5 (1981), 475-486.
- [4] Erbe, L. and Wang, H., On the existence of positive solutions of ordinary differential equations, *Proc. Amer. Math. Soc.* **120** (1994), 743-748.
- [5] Fink, A.M., Gatica, J.A. and Hernandez, G.E., Eigenvalues of generalized Gelfand problems, J. of Nonlinear Anal. 20 (1993), 1453-1468.
- [6] Granas, A., Guenther, R.B. and Lee, J.W., Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures et Appl. 70 (1991), 153-196.
- [7] O'Regan, D., Singular superlinear boundary value problems, Diff. Eqns. and Dynamical Sys. 2 (1994), 81-98.
- [8] O'Regan, D., Theory of Singular Boundary Value Problems, World Scientific Press, Singapore 1994.
- [9] Parter, S., Solutions of differential equations arising in chemical reactor processes, SIAM J. Appl. Math. 26 (1974), 687-716.
- [10] Schmidt, K. and Thompson, R., Boundary value problems for infinite systems of second order differential equations, J. Diff. Eqns. 18 (1975), 277-295.
- [11] Wang, S., On S-shaped bifurcation curves, J. Nonlinear Anal. 22 (1994), 1475-1485.
- [12] Wong, F., Existence of positive solutions of singular boundary value problems, J. Nonlinear Anal. 21 (1993), 397-406.
- [13] Yanagida, E. and Yotsutani, S., Existence of nodal fast-decay solutions to $\Delta u + K(|x|) |u|^{p-1}u = 0$ in \mathbb{R}^n , J. Nonlinear Anal. 22 (1994), 1005-1015.
- [14] Zhao, Z., Positive solutions of nonlinear second order ordinary differential equations, Proc. Amer. Math. Soc. 121 (1994), 465-469.