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ABSTRACT

Two different definitions of strong solutions of a stochastic integral set-valued
equation are discussed. A selection property of a set-valued stochastic integral is
given.
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1. Introduction

In the theory of stochastic equations the definition of their solutions is quite natural. A
process x is a solution of the equation

xt- / fr(x)dMr, 0_<t<c (1)
0

if the above is satisfied for all t.

In the set-valued approach there are two possibilities for defining a solution of a stochastic in-
clusion.

Let F be a set-valued predictable process and let the following stochastic inclusion be given:

x / Fr(x)dMr’
0

(for required definitions see the next section).

0<t<c

Definition A: A process x is a solution of problem (2) if it satisfies

(2)

x xs / Fr(x)dMr (3)

for all 0 < s < t < c.

Definition B: A process x is a solution of problem (2) if there exists an M-integrable selector

f of F(x) such that
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x J frdMr, (4)
0

for all

Definition A is more natural because of its similarity to a single-valued case. In stochastic
set-valued investigations the two definitions have been used. In [1,10,11] the solutions were

investigated in the sense of B while in [7,8] they were investigated in the sense of A. Avgerinos
and Papageorgiou in [3] used a combination of these definitions. They investigated a random in-
clusion of the type

k(w, t) e A(w)x(w, t) + F(w, t, x(w,

and as a solution they meant a process satisfying the inclusion

k(w, t) A(w)x(w, t) + f(w)(t)

for f(w) being a selection of F(w,. ,x(w,. )).
It is well known that, in the ordinary differential inclusion case, these two concepts of solu-

tions coincide only for convex-valued set-valued functions (see e.g., Integral Representation
Property in [2, p. 99]). The same is true for a stochastic inclusion with a Wiener process ([7, Th.
4.1]), but it is an open problem for the semimartingale case. It is clear that if x is a solution of
problem (2) in the sense of definition B, it is also a solution in the sense of A. The purpose of
this paper is to prove the converse, and this requires some selection-type theorem.

2. Preliminaries

Throughout the paper (f2, 4, {at} > 0, P) denotes a complete filtered probability space satisfy-
ing the usual hypothesis" (i) 50 contdins all P-null sets of 4, (ii) ?t u > tu, for all t, 0 _<
t < cx; This means that a filtration {t}t > 0 is right continuous. By a stochastic process x on

(f2, 4, P) we mean a collection (xt) > 0 of 7-dimensional random variables xt: f2--,n, t >_ O. The
process x is said to be adapted if x-belongs to t (which means it is t-measurable) for each
t >_ 0. A stochastic process x is called cdlg if it a.s. has sample paths which are right contin-
uous, with left limits. Similarly, a stochastic process x is said to be c[tgl(d if it a.s. has sample
paths which are left continuous, with right limits. The family of all adapted cdlg (cgld)
processes is denoted by D [L].

Let (t) denote the smallest a-algebra on R+ x f with respect to which every cgld
adapted process is measurable in (t, w), i.e. P(t)- r(L). A stochastic process x is said to be pre-
dictable if x is P(bt)-measurable. The family of all such processes is denoted by P. One has
P(bt) C + (R) 5, where fl + denotes the Borel a-algebra on R +.

Denote X2 {x (5 P" II x II s2 < cx3}, where II x II $2 [I supt >_ o lXt III L2" It can be verified

that (X2, I1" II s2)is Banach space (see e.g., [12, 13]).
Let [or 10] denote the set of all one-dimensional semimartingales [or vanishing at t- 0

respectively]. Given M .At,, let M N + A be a decomposition of M, where N is a local martin-
gale, A denotes a process with path of finite variation on compacts and [N, N] denotes the quadra-
tic variation process of N. Define

j2(N, A) II [N,N]2oo + dA, II L2

0
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inf AJ2(N,A),]]MI[2 M=N+

where f [dAs f [dAs and the infimum is taken over all possible decompositions of M.

Define-2 {M 6[! [[ M [[ 2 < c}. We also let L(M)- {H e 2: H is integrable with respect

to M) with a norm II H ]1 M II H. M II 2" Moreover, by H. M we denote f HrdMr.

Let n be the n-dimensional Euclidean space and Cl(Rn), Comp(Rn) and Conv(n) denote
spaces of all nonempty closed, compact, compact and convex, respectively, subsets of n. Denote
by dist(a, A) the distance between a E n and A E Cl(’). We put h (A, B) supa e B dist(a, A),
and h(A,B) max{h (A,B),h (B, A)} for all A,B E Cl(n).

Consider a set-valued stochastic process %- (%t)t > 0 with values in Cl(n), i.e. a family of
5-measurable set-valued mappings %t:Cl(n) for ech t > 0. We call % predictable if % is

.P(t)-measurable in the sense of set-valued functions.

Given a predictable set-valued process % (%t)t > 0 and M E .At0, let

M(aJ6): {H E L(M):H E %t for all t}.

A set bM(6J) is called a subtrajectory integral of %.

A predictable set-valued process % is said to be integrable with respect to a semimartingale
M or, simply, M-integrable, if M(%) is a nonempty set. It follows immediately from the proper-
ties of stochastic integrals with respect to semimartingales (see Th. 3.2 of [6]) and Kuratowski
and Pyll-Nardzewski measurable selection theorem (see e.g. [9]), that every M-integrably bounded
and predictable set-valued stochastic process % is M-integrable. Recall a set-valued stochastic
process aJ-(cJht)t> 0 is M-integrably bounded if there exists mE L(M)C3X2 such that
h(%t, {0}) _< m a.s.-for each t _> 0.

3. Selection Properties of Integrals

b b
Convention: In this section we employ a notation f HdM instead of f HsdMs for clarity of

formulas, a a

Lemma 1" Let M be a semimartingale in 2, let X- (Xt) > 0 be a cdl[tg process and let a

predictable set-valued process be integrably bounded by a proce-ss m- (rot) > o, m E L(M). If
x --xs E ClL2 fs dM for every 0 < s < t < o, then for all stopping times a, , 0 < a < fl < cx3,

there exists a sequence (gn) C ClL(M)M( such that

nlimoo II (x- xa)- ] gndM II L2 0.

Proof: Let an-k.2-n for w such that (k-1)2-n<a(w)<k2-n and
such that (k-1)2-n<fl(w)<k2-’*. Let A-{w:a>k.2-n} and B-
Then we have

[0, a]-({0}x)u(U (k.2-n,(k+l)2-"]xA),
k=O
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[0,n]- ({0} x f) U (U (k.2-n,(k + 1)2- n]x B).
k=O

Now, for each n- 1,2,... we obtain

and

Since A C B then

xan xO q-koIA(X(k=+ 1)2-n- Xk2-n)

Xn ZO -[-k= oIBr(X(k + 1)2- n- Xk2- n).

--k=oIB\A(X(k + 1)2 Xk2 n).XOn ,ot
n

n

For every k 0, 1,... and n 1,2,... we can select gn, k E fM() such that

(k + 1)2 -n

II (k / 1)2- n- Xk2- n- f gn’kdM II L2 < /(3.2k)
k2 -n

and put

gn l[0, cn] + 2 l(k2 n,(k + 1)2 nlxBk\Ak l(fln, C,,:))gn n’gn’k+ -k=0

where E M() is an arbitrary selector.

It is easy to see that gn belongs to ClL(M)M() because of decomposability of M() and the
Lebesgue Dominated Convergence Theorem. Moreover,

On (k + a)2- n

gndM Isr\Ar gn’kdM.
on k2 n

Since gT() _< mr(w) for every (t,w), we obtain

where AAB denotes the set (A\B)U (B\A). Therefore,

II z- %- f gndM II L

+ II / I(a, OIA(c%,On]mdM II .
0
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Since (xt) > 0 and the stochastic integral are cdlg processes, an--a fln---*fl as n---oo, we can
select no so-reat that first and third components are less than /3 for n > n0.

Next we have

I]-xau- / gndM II L2

(k + 1)2 -n

II 4-1)2 n--Xk2 n

k2 -n

< /(3.2k)-/3 forn-l,2,
k=O

Since > 0 is arbitrary and fixed, we obtain

lirn II / gndM II Lu 0.

Theorem 1: Let M be a semimartingale in 2 and let m be a process in L(M) gl X2. Sup-
pose % is a predictable set-valued process interably bounded b m. If z- (zt) > o is a

process such that x -xs E ClL2 fs dM a.s. for every stopping time T and s, t, T < s < t <
then for every > 0 there exists a process H ClL(M)M(Jt,) such that

sup I] xt- XT- / HdM ]] L2 < .
t>T

T

Proof: Let > 0 be fixed. By the Fundamental Theorem of Local Martingales and the Bich-
teler-Dellacherie Theorem M has a decomposition M- N-4-A such that the jumps of the local
martingale N are bounded by (3C2 II rn I182)- 1. Define recursively

TO T

Tk 4-1 inf{t > Tk: ] dIN, N])1/2 + ,/ ]dA] >_ (3C2 ]1 m I)$2) -1
Tk_l Tk_l

or xt >--XTk_ 1

Then (Tk)increase to infinity a.s. [12, p. 192].
By Lemma 1, for every k 1, 2,..., there exists a selector Hk YM(%) such that

Tk

II XTk Tk- 1
Tk_ 1

Next, take any H0 3’M(% and define H HoI[o,T += 1HkI[Tk_ 1,Tk ). Let us claim

that H ClL(M)M(). Indeed, the set ClL(M)M( is closed in L(M) and decomposable.
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Then Hn -HoI[o,T +=1Hkl[Tk_l,Tk belongs to 5M(CJ). Since Hn tends to H for all

(t,w) and Hn < m E L(M) for each n- 1,2,..., then by the Lebesgue Dominated Convergence
Theorem Hn tends to H in L(M)[12].

Now we have

t>T k>l Tk 1 <t<TkT T

r.
k-1

E / HdM)I1 L2< sup sup II II L2 + sup I[ (XTi- XTi- 1--k>_l Tk_ l <_t<Tk
--XTk-1 k>_.2 i=1 T.-1

sup
k>l Tk 1 < < Tk Tk_ 1

HdM ]] L2 11 + 12 + 13.

By the definition of Tk we obtain suPTk 1 < < Tk xt XTk 1
w E f. Therefore, I1 < e/3.

for k 1,2,..., and a.e.

T
k-1

f HidM l] L212 < sup E II XT XT 1k>2 i=l
Ti_l

T

HdM II L2 < /3 1 /3.< E IIXTi-xTi_l,=1 T.

Now let us observe that

II / HdM II L2 <-- II H" I(Tk_ l,t] M II $2 <- C2 II H I(Tk_ 1,t]" M II 392
Tk-1

<_ c2 II m II s2 II(f d[N,N])1/2-4- / dAI II L=.
Tk_ 1 Tk_ 1

Therefore, by the definition of (Tk) we get 13 < /3 and we are done. 13

Theorem 2: Let all assumptions of Theorem 1 be satisfied. If, moreover, takes on convex

values, then there exists a process H ClL(M)fM(Jb) such that

xT + / HdM a.s. for each t >_ T.

T

Proof: By virtue of Theorem 1, there exists a sequence (Hn) in ClL(M)M(% such that

sup II XT- / HndM II L as
t>T

T

We show that the set (Hn) is weakly compact in L(M). Since
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then this norm is weaker from the norm defined by the sum of norms in 2(f,2(+,.. #)) and

2(,,1(N+ ,1])), where # and u denote measures generated by [g,N] and ]A respectively.
The set (/_/n) is integrably bounded, so it is weakly compact in the first space mentioned above
by [4, Th. II.9]. It is also weakly compact in the second space, because the weak compactness of
bounded sets in (a,E) and 1(a,E)is equivalent ([4]) and it follows by [9, Th. 2.1] that the

integrable bounded set-valued functions is weakly compact in ,1(,1(/))_set of selectors of
(f x N+ ,P x u). Therefore, we deduce that (//n) has a weak cluster point H in ClL(M)SM(%).
On the other hand t-r and f IIdM are weak cluster points of a weak convergent sequence

T
f IIndM in L(t) for each t >_ T. Therefore t- T is a modification of f tIdM)t > r. Then,
T T
by [12, I. Th. 2],

xT + /HdM a.s. for each t >_ T. El

T
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