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ABSTRACT

Two different definitions of strong solutions of a stochastic integral set-valued
equation are discussed. A selection property of a set-valued stochastic integral is
given.
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1. Imntroduction

In the theory of stochastic equations the definition of their solutions is quite natural. A
process z is a solution of the equation

t
T, = / f(2)dM_, 0<t<oo (1)
0
if the above is satisfied for all t.

In the set-valued approach there are two possibilities for defining a solution of a stochastic in-
clusion.

Let F be a set-valued predictable process and let the following stochastic inclusion be given:
t

xtE/FT(x)dMT, 0<t<oo (2)

0
(for required definitions see the next section).

Definition A: A process « is a solution of problem (2) if it satisfies

t
z,—z, € / F (z)dM, (3)

s

forall 0 <s<t<oo.

Definition B: A process z is a solution of problem (2) if there exists an M-integrable selector
f of F(x) such that
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t

z, = / fdM,, (4)
0
for all £,0 <1t < co.

Definition A is more natural because of its similarity to a single-valued case. In stochastic
set-valued investigations the two definitions have been used. In [1,10,11] the solutions were
investigated in the sense of B , while in [7,8] they were investigated in the sense of A. Avgerinos
and Papageorgiou in [3] used a combination of these definitions. They investigated a random in-
clusion of the type

&(w,t) € A(w)z(w,t) + F(w, t, z(w,t))
and as a solution they meant a process satisfying the inclusion
E(w,t) € A(w)z(w,t) + f(w)(t)

for f(w) being a selection of F(w, «,z(w, *)).

It is well known that, in the ordinary differential inclusion case, these two concepts of solu-
tions coincide only for convex-valued set-valued functions (see e.g., Integral Representation
Property in [2, p. 99]). The same is true for a stochastic inclusion with a Wiener process ([7, Th.
4.1]), but it is an open problem for the semimartingale case. It is clear that if z is a solution of
problem (2) in the sense of definition B, it is also a solution in the sense of A. The purpose of
this paper is to prove the converse, and this requires some selection-type theorem.

2. Preliminaries

Throughout the paper (Q,%,{%,}, > ¢; P) denotes a complete filtered probability space satisfy-
ing the usual hypothesis: (i) %, contains all P-null sets of ¥, (ii) ¥, =), F,, forall ¢, 0<
t < co; This means that a filtration {¥,}, s ( is right continuous. By a stochastic process z on
(2,%,P) we mean a collection (z;), s o of n-dimensional random variables z,: Q—R", ¢ > 0. The
process x is said to be adapted if z, belongs to ¥, (which means it is ¥F,-measurable) for each
t > 0. A stochastic process z is called cadlag if it a.s. has sample paths which are right contin-
uous, with left limits. Similarly, a stochastic process z is said to be cdglad if it a.s. has sample
paths which are left continuous, with right limits. The family of all adapted cadlag (caglad)
processes is denoted by D [L].

Let P(¥F,) denote the smallest o-algebra on R, xQ with respect to which every caglad
adapted process is measurable in (t,w), i.e. P(F,) = o(L). A stochastic process x is said to be pre-
dictable if z is P(F,)-measurable. The family of all such processes is denoted by ¥. One has
P(F,) C B, ®F, where § , denotes the Borel o-algebraon R | .

Denote X2 = {z € ®: || z|| g2 < oo}, where ||z || 2= || sup, > ol 2, | || 2 It can be verified
that (X2, | - || 52) is a Banach space (see e.g., [12, 13]).

Let M [or Aby] denote the set of all one-dimensional semimartingales [or vanishing at ¢t =0
respectively]. Given M € b, let M = N + A be a decomposition of M, where N is a local martin-
gale, A denotes a process with path of finite variation on compacts and [N, N] denotes the quadra-
tic variation process of N. Define

l o0
N A = NN NE+ [ a1,
A
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and

Il M|l inf J2(N,4),

%2 M=
where f |dA,| = f |dA,| and the infimum is taken over all possible decompositions of M.
Define 11-62 ={Me¢e ./fl: || M| 52 < oo}. We also let L(M) = {H € ¥: H is integrable with respect
to M} with anorm ||H ||, = ||H-M|| 102" Moreover, by H - M we denote [ H _dM,.

Let R™ be the n-dimensional Euclidean space and CI(R"), Comp(R") and Conv(R™) denote
spaces of all nonempty closed, compact, compact and convex, respectively, subsets of R™. Denote
by dist(a, A) the distance between a € R" and A € CI(R™). We put h (A, B) = sup,  p dist(a, A),
and h(A, B) = max{h (4, B),h (B, A)} for all A, B € CI(R™).

Consider a set-valued stochastic process ® = (R,); > o With values in CI(R"), i.e. a family of
F-measurable set-valued mappings R,: Q—CI(R™) for each t > 0. We call ® predictable if R is
P(%F,)-measurable in the sense of set—valued functions.

Given a predictable set-valued process ® = (R,); 5 o and M € My, let
$ag(R): = {H € L(M): H, € R, for all t}.

A set $,,(R) is called a subtrajectory integral of R.

A predictable set-valued process % is said to be integrable with respect to a semimartingale
M or, simply, M-integrable, if ¥,,(R) is a nonempty set. It follows immediately from the proper-
ties of stochastic integrals with respect to semimartingales (see Th. 3.2 of [6]) and Kuratowski
and Ryll-Nardzewski measurable selection theorem (see e.g. [9]), that every M-integrably bounded
and predictable set-valued stochastic process %R is M-integrable. Recall a set-valued stochastic
process R = (R,);>o is M-integrably bounded if there exists m € L(M)N X? such that
h(%;,{0}) < m, a.s., for each t > 0.

3. Selection Properties of Integrals

Convention: In this section we employ a notation f HdM instead of f H dM, for clarity of
formulas.

Lemma 1: Let M be a semimartingale in 362, let z = (z,), >0 bea cddlag process and let a
predictable set valued process G be integrably bounded by a process m = (m,), >0 ME L(M). If

T, —z, €Ecl 2f(de for every 0 < s <t<oo, then for all stopping times «,f, 0 < a < f <00,
there exists a sequence (9") C cly, )S’M(@) such that

8
dim, | eg=20)— [ g"db | 5 =0.

a

Proof: Let a,, = k-2~ " for w such that (k—1)2" "< a(w)<k2™"and f,=k-27" for w
such that (k—1)2""< f(w)<k2~™ Let A?={w:a>k-2""} and B} ={w:f>k-27 "}
Then we have

[0,0,] = ({0} x ) U( G k27" (k+1)2 7" x AD),



294 JERZY MOTYL

[O,ﬂn]———({O}xQ)UScfj (k-27" (k+1)27 "] x BE).
=0

Now, for each n = 1,2,... we obtain

[e.2]
Lo, = %o +kX_:OIA;;(“’(k +127 " Tk =)

and

(e8]

Since A} C B} then

o0
For every k =0,1,...and n = 1,2,... we can select g™* € #3/(G) such that
(k+1)2—"

| g rAM || 5 <e/(3-2)

(k+1)2= " Tpa—n~
k2™ "

and put
. k
n __ —_— . n, —_
9= I[O’o‘n]g +kz=:01(k2 T (k+1)27 " x BR\Ag g I(ﬂn,m)g !
where g € ¥,,(§) is an arbitrary selector.

It is easy to see that g™ belongs to cl LM ¥7(G) because of decomposability of ¥,,(§) and the
Lebesgue Dominated Convergence Theorem. Moreover,

B, (k+1)2~"
o0
/ g"dM = Iyn 4n / gmkdM.
“n K=o :2""

Since | gj'(w)| < my(w) for every (t,w), we obtain

A Bn oo
“ / gndM —_ / gndM “ L2 < \/g || / I(a,ﬂ]A(an’ﬂn]mdM ” %2,
o a, 0

where AAB denotes the set (A\B) U (B\A4). Therefore,

B
lop=20- [ gmanrl]

o
'@n
< lleg—2q—(2g —2a )l 2+ ll2g 24 = / gdM ||
o
n

(>}

+\/§|| / I(ayﬂ]A(anan]mdM”:}[;z.
0
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Since (z,); > o and the stochastic integral are cadlag processes, o, —a, f3,—f8 as n—oo, we can
select ng so great that first and third components are less than ¢/3 for n > n,,.

Next we have

ﬂn
— — n
2, =20~ [ a1l 5
an
(k+1)2™"
= | ZIB"\A" [m(k+1)2—"_xk2_"_/ g™ Fam]| L?
k2"

o0
< Z €/(3 -2k) =¢/3 forn=1,2,.
k=0
Since € > 0 is arbitrary and fixed, we obtain

B
Jim, | eg=20)= [ || ,=0. 0

[

Theorem 1: Let M be a semimartingale in %2 and let m be a process in L(M)ﬂX2. Sup-
pose B is a predictable set- valued process integrably bounded by m. If x = (‘”t)t>0 is a cadlag

process such that z,—z € cl Zf%dM a.s. for every stopping time T and s,t,T <s<1t< 00,
then for every € > 0 there exists a process H € clL(M)’:fM(%) such that

t
sup ||z, —x ——/HdM <e.
s leemer= [ B

Proof: Let € > 0 be fixed. By the Fundamental Theorem of Local Martingales and the Bich-
teler-Dellacherie Theorem M has a decomposition M = N + A such that the jumps of the local
martingale N are bounded by ¢(3C, || m || SZ) ~ 1. Define recursively

Ty=T

t t
Tppr=inf(t> T ( [ dN,N)2+ [ 1dA] 230, [Im]| )
Tr-1 T -

or |:ct—ka_1| > ¢/3}.

Then (T',) increase to infinity a.s. [12, p. 192].
By Lemma 1, for every k = 1,2,..., there exists a selector H}, € ¥;,(%) such that
T
llek—-mTk_l—— / HdM || 12 <21—k'6/3.

T
k-1
Next, take any Hg € 93,(%) and define H = HyI, + PR lHkI[Tk LT Let us claim

that H € i ?M(%) Indeed, the set clL(M)th(%) is closed in L(M) and decomposable.



296 JERZY MOTYL

Then H, = Holjo 1)+ Zg:lHkI[Tk_l,Tk) belongs to £,,(®). Since H, tends to H for all

(t,w) and |H,_| <m e L(M) for each n =1,2,..., then by the Lebesgue Dominated Convergence
Theorem H,, tends to H in L(M) [12].

Now we have

t t
sup ||z, — =z —/HdM = sup sup T, —z —-/ HdM
tZT” t— 2T Il ;2 e ]%_1$t<Tk“t T Il 2
T T
T
k-1
<sup sup z,—z + sup Ty —& / HdM
L P D N P AP C R 2
z-—l
+ sup sup. ||/ HdM || p2=nhtl+ 1
k>1 Ty _,<t<Ty
k-1

By the definition of T, we obtain SUPT, . <t<T | z, -7, | <e€/3 for k=1,2,..., and a.e.
w € Q. Therefore, I, < ¢/3. -1 k -1

k-1 !
I, <sup Ty — —/ H.dM
1<, 3 ller,—er AM |
T,
. 1
<Y lep —op, /HdM||L2<e/3Z .= ¢/3.
— 1"‘1
1—1

Now let us observe that

| [ HaMl S T g M @ S Tr, Ml
Ty
- t t
<Cylimll ([ dv, N2+ [ jaar g,
T 1 Ty -
Therefore, by the definition of (T;) we get I3 < ¢/3 and we are done. 0

Theorem 2: Let all assumptions of Theorem 1 be satisfied. If, moreover, R takes on convex
values, then there exists a process H € clL(M)ﬂ’M(G.R:) such that

xt::cT+/ HdM a.s. for eacht>T.

Proof: By virtue of Theorem 1, there exists a sequence (H™) in clL(M)ffM(‘:'R;) such that

t
sup ||z, —z —/ H"dM —0 as n—oo.
e

We show that the set (H"™) is weakly compact in L(M). Since
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N1y s ([ [y ([ [ rariaany
Q Q

then this norm is weaker from the norm defined by the sum of norms in £3(,2%(R 4+ /1)) and
22(Q, LY(R ++V)), where p and v denote measures generated by [N,N] and | A| respectively.
The set (H™") is integrably bounded, so it is weakly compact in the first space mentioned above
by [4, Th. IL.9]. It is also weakly compact in the second space, because the weak compactness of
bounded sets in £2(Q, E) and L}(Q, E) is equivalent ([4]) and it follows by [9, Th. 2.1] that the
set of selectors of integrable bounded set-valued functions is weakly compact in £}(Q,£l(v)) =
LY(QxR 4P xv). Therefore, we deduce that (H™) has a weak cluster point H in CIL(M)SM(%)'
t

On the other hand, z, —z1 and J HdM are weak cluster points of a weak convergent sequence
t

T t
%andM in L%(F,) for each t > T'. Therefore ¢, — z is a modification of (J:HdM)t >7- Then,
by (12, I. Th. 2],

t
T, =+ /HdM a.s. foreach t > T. |
T
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