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ABSTRACT

If al, a2,...,an are independent, normally distributed random variables with
mean 0 and variance 1, and if n is the mean number of zeros on the interval
(0, 2r) of the trigonometric polynomial alcos x + 21/2a2cos 2x +...n1/2ancos nx,
then n 2 /2{(2n + I) + D + (2n + i)- 102 + (2n + i)- 203} + O{(2n +
i)-3}, in which D- -0.378124, D2 = -1/2, D3- 0.5523. After tabulation of
5D values of un when n- i(i)40, we find that the approximate formula for
obtained from the above result when the error term is neglected, produces 5D
values that are in error by at most i0 -5 when n >_ 8, and by only about 0.1%
when n- 2.
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1. Introduction

Suppose that n is an integer, greater than 1, that aj (j- 1,2,...,n) are independent, normally
distributed random variables with mean 0 and variance 1, that p is a real number greater than

1
2’ and that unp is the mean value of the number of zeros on the interval (0, 2r) of the random

trigonometric polynomial

E jPajcos jx. (1.1)

Das [4] has shown that, for large n,

Unp 2#pn -t- 0(nl/2), #p ((2p / 1)/(2p / 3)}1/2.

The author ([6] when p-0 and [7] when p is a positive integer) has exhibited constants Dop- 1,
Dlp, D2p and D3p such that

3

Unp-(2n+ 1)#pE (2n+ 1)-rDrp-t-O{(2n+ 1)-3}. (1.3)
r--0

It follows that the error term O(n1/2) in the Das result is actually O(1) when p is a nonnegative
1integer. In this paper we will prove that a relation of the form (1.3) is also valid when p- .

This proof emulates the analysis in [7], although that analysis actually fails when p is not a posi-
tive integer.
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After a statement of the basic formulas on which our analysis rests, we devote Section 2 to
the derivation of a series representation of n 1/2 that converges when n is sufficiently large.
(Henceforth we will omit the subscript 1/2.) Asyltotic representations of the first four coefficients
in that series are derived in Section 3, and are used to deduce (1.3) when p- 1/2. We tabulate in
Section 4 5D values of n when n- 1(1)40. We find that the approximation to n, obtained
from (1.3) when the O{(2n / 1) -3} term is neglected, produces 50 values that differ from the
tabulated values by at most 10- 5 when n _> 8 and by only about 0.1% when n- 2. In Section 5
we show that the series representation of n, derived in Section 2, actually converges when n >_ 2.

2. Preliminary Analysis

It is a consequence of the basic formulas in [7] (that were copied from [3, p. 285] or [2, p.
107]) that, when n >_ 2,

/2

vn 4-1 / Fn(x)dx, (2.1
0

in which

)1/2Fn(x A2 (AnCn B2n (2.2)

An E jcs2jx, Bn E j2sin jxcos jx, cn E j3sin2jx" (2.3)
j=l 3=1 j=l

We will need the explicit representations of An, Bn and Cn stated in the following lemma.

Lemma 1: It is true that

8An (2n / 1)2g0(z)/ (2n / 1)g1 / g2, (2.4)

16Bn (2n + 1)3ho(z) + (2n + 1)2hi + (2n + 1)h2 + h3,

32Cn (2n + 1)4k0(z) + (2n + 1)3kl + (2n + 1)2k2 + (2n + 1)k3 + k4,

in which

z (2n + 1)x,f(x) cscx x- 1. (fl(x) f2(x) + 2x- If(x) csc2x x- 2

go(z)- (21-)+ z-lsinz- z-2(1- cosz),gI f(x)sinz,

ho(z g(z) z I cos z + 2z 2si z 2z 3(1 cos z),

(2.7)

(2.9)

(2.10)

h1 f(x)cos z, h2 2f’(x)sin z, h3 ’(x) + f"(x)cos z,

(1/4)-z-lsi, z- 3z- 2cosz + 6z- 3si, z 6z-4(1ko(z) z)co8

(2.11)

(2.12)

kI f(x)8i. Z, k2 3f’(x)COSZ (1/2). k3 3f"(x)8i. Z, (2.13)
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(2.14)

With the help of a known trigonometric summation [5, p. 133, Eq. (31)], we see that

8An 4E j / 4E j cos 2jx
j=l j-1

2n(n + 1)+ 2{(n + 1)sinz-sinx}cscx + {cos(z + x)-cos2x}csc2x.

A little trigonometric and algebraic manipulation then suffices to establish (2.4), (2.7), (2.8), and
(2.9). The remaining results of the lemma are consequences of these and the inferences from (2.3)
that

2Bn -dAn/dx’2Cn E ja-dBn/dx {n(n + 1)/2}2-dBn/dx.
j=l

We calculate the first factor A" 1 in (2.2) in the following lemma.

Lemma 2: There is a positive integer no such thai, if 0 <_ x <_ r/2 and n >_ no,

(8an) a (2n + 1)- 2go- E (2n + 1)- rbr, (2.15)
r-’O

in which b0 1, bI gl/go, b2 b -(g2/go)’ b3 (2glg2/g) -- b, The series (2.15)
converges absolutely and uniformly when 0 <_ x <_ r/2 and n >_ no.

It is a consequence of (2.8) that
1

go- / t(1 +coszt)dt. (2.16)
0

Therefore, go >0 when 0<z< +c and limg0-1/2, so that both go and go- a are bounded
z---oo

functions of z. Because the functions gl and g2, defined in (2.8) and (2.9), are obviously
bounded, uniformly in x and n when 0 _< z _< /2 and n >_ 2, it follows that there exists a positive
integer no so large that

(2n + 1)- 1 gl/gol + (2n + 1)- 21g2/gol < 0.65 (2.17)

when n >_ no and 0 <_ x <_ r/2. The expression (2.4) can be inverted for such values of x and n;
this process yields (2.15), in which the first four coefficients are those specified in the lemma.

A straightforward calculation based on (2.4), (2.5) and (2.6), proves the following lemma.

Lemma 3: It is true that
6

256(ANC" B2n) (2n + 1)6E (2n + 1)- rfr
r--0

in which
r

fr- E (gmkr-m hrnhr-rn) (r- 1,2,...,6),
rn=O

and gm-O if m>2, hm-O if m>3 and km-O if m>4.
We calculate the second factor (A,C,- B)/ of (2.2) in the following lemma.

Lemma 4:

(2.18)

The integer no of Lemma 2 may be chosen so that, if O <_ z <_ r/2 and n >_ no,
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16(AnCn B2n)1/2 (2r -[- 1)aflo/ (2n + l)- c, (2.20)
r--0

in which co 1, c1 fl/(2fo), c2 f2/(2fo)- f/(8f), ca f3/(2fo)- flf2/(4f)+ f3/
(16f03), The series (2.20) converges absolutely and uniformly when 0 <_ x <_ r/2 and n >_ no.

We infer from (2.10) and (2.12) that

1 1

h-i t2sin zt dt’ k i t3(1 cos zt)dt,
0 0

(2.21)

so that (2.16) and the Schwartz inequality imply that fo g.oko-h > 0 when 0 < z < +cx.
Moreover, f0 z2/48 -t-O(z4) for small z, and f0- 1/8-t-O(z-) for large z.

Because f(x)is an odd analytic function of x when ]] <r, and because
0 <_ x- z/(2n + 1)_< z/5 when n >_ 2, it follows from (2.21) and (2.11) that h_--O(z) (r- 0,1,
2,3), uniformly in x and n, and from (2.21), (2.13) and (2.14) that /%--O(z) (r- 0,1,7,3,4),
uniformly in x and n. It is now a consequence of (2.19) and the earlier observation that
gr- O(1) (r- 0,1,2), uniformly in x and n, that fr-O(z2) (r- 1,2,3,4,5,6), uniformly in x
and n. Because it is obvious that hr -O(1) and kr -O(1), uniformly in x and n, we conclude
that fr/fo- O(1), uniformly in x and n (whether or not z is small). Hence we can choose no so

large that (2.17) holds, and
6

(2n/ 1)-l f/fol < 0.92 (2.22)
r--1

when n >_ no and 0 _< x _< r/2. For such values of x and n the square root of the expression (2.18)
can be written in the form (2.20), the first four coefficients of which are those specified in the
lelTllTlao

We will show in Section 5 that the inequalities (2.17) and (2.22) hold when n k 2. Therefore,
Lemmas 2 and 4 (also Lemmas 5 and 6 below) are valid when no 2.

If we use (2.2) and Lemmas 2 and 4, we obtain the following lemma.

Lemma5: It is true when O <_ x <_ r/2 and n >_ no that

2Fn(x (2n + 1)G(z) (2n + 1)- rut,
r--0

in which

r

G(z)- fl(z)lgo(z),u,.-

_
b,c,_,.

rn:O

Moreover, the series (2.23) converges absolutely and uniformly in x and n.

The final lemma in this section is a consequence of (2.1) and Lemma 5.

Lemma6: It is true when n >_ no that

un (2n + 1)E (2n + 1)- rvr,
r--0

in which
/

G(z)urdx.

(2.23)

(2.24)

(2.25)

(2.26)
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Moreover, the series (2.25) converges’ absolutely and uniformly when n >_ no.

13. Proof of (1.3) when p

In the next four lemmas we will exhibit constants Srm(0 _< m < 3-r, r- 0,1,2,3) and Sr

(r 0, 1, 2, 3) such that
3--r

21/2V
r (2n-k-1)-mSrm+(-1)n(2nW1)r-3SrWO{(2n+l)r-4} (3.1)

rn--0

when r- 0,1,2,3. In the proofs of these lemmas, it will be convenient to use Tq(z) as a generic
symbol for a trigonometric sine polynomial of degree q not necessarily the same at each
occurrence.

Lemma 7: Equation (3.1) is true when r- 0 if

S00 1, S01 (2/r)/ {21/2G(z)- 1}dz, (3.2)
0

So2- 1/r2, S03- 0, SO -32/r3. (3.3)

It follows from (2.19), (2.8), (2.10) and (2.12) that

8f0 1 2z 1sin z 10z 2(1 / cos z) + 32z 3sin z 8z 4(1 cos z)2

32z- 5(1 cos z)sin z + 16z- 6(1 cos z)2.

For sufficiently large z we conclude that

(8f0) 1 1 + 2z 1sin z + 2z 2(6 + 5 cos z cos 2z) + z 3T3(z -+- O(z 4),

(8/0)1/2 1 z- lsinz (4z)- 2(21 + 20 cos z cos 2z)

(3.5)

(3.6)

W z 3T3(z T O(z 4).

Because it follows from (2.8) that

(2g0) 1 1 2Z 1sin z + 2z 2(2 cos z cos 2z) + z 3T3(z - O(z 4),

we infer from (2.24) and (3.6) that

2i/2G(z)- 1-3z-lsinz-(4z)-2(1 + 28cosz + 11 cos2z) (3.8)

+ z-3T3(z + O(z-4).

If we define A to be (2n + 1)r/2, it follows from (2.26) that

21/2V0-- 1-)-1J {21[2G(z) l}dz )- l / {21[2G(z) l}dz; (3.9)

the improper integrals exist by virtue of (3.8). Repeated integration by parts of the last term in
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(3.9) now shows, with the help of (3.8), that the lemma is true.

Lemma 8: Equation (3.1) is true when r- 1 if

10 0, ’11 (5/7r) / x- lf(x)dX,l 24/r3,
0

(3.10)

’12-- --(3)- 1/
0

z{21/2H(z)- 3sinz- (2z)- 1(5 -k 11 cos2z)}dz, (3.11)

in which

H(z) [{(2f0 l(g0 ko) + g" 1}sinz f" lh0 cosz]G(z). (3.12)

It follows from (2.19), (2.8), (2.11)and (2.13)that

fl {(go- k0)sin z- 2hocsz}f(x), (3.13)

and then from (2.8), (2.10) and (2.12) that

fl {4 lsin z + 2z 1 z 2sin z z 3(5 4cos z cos 2z) (3.14)

+ 6z -4(1 cos z)sin z}f(x).

We can now deduce from (2.24), Lemmas 2 and 4, and (3.13) that

(3.15)

in which H(z) is the function defined in (3.12). With the help of (3.5), (3.7), (3.8) and the defini-
tions (2.8), (2.10) and (2.12), it is easy to see that, for large z,

H(z) H*(z) + O(z 3) (3.16)

in which

21/2H*(z) 3sinz + (2z)- I(5 + 11 cos 2z) (3.17)

/ 8- az- 2(151sinz-60sin2z-69sin3z).

Moreover, H(z)- O(1) and H*(z)- O(z -1) for small z. Hence (3.16) is true for all positive z.
It now follows from (2.26) and (3.15) that

--7rv1/2 11 -[- 12 q- 13, (3.18)

in which

I1 ] if(x) --(x/6)}{H(z) H*(z)}dx,
0

I J (/6){//()-//*()}d,
0

(3.19)

(3.20)
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I3 f f(x)H*(z)dx.
0

We recall the identity 6, Lemma 2],

f(x)- E (-1)m-l(2m-2)f12mx2m I()’
m--1

(x/6) / (7x3/360) / (31x5/15120) /...,

(3.21)

(3.22)

in which 2m is the Bernoulli number of order 2m [1, p. 804]. It is known [1, pp. 75, 805] that
the power series in (3.22) converges when xl < r, and that all of its nonzero coefficients are posi-
tive. We conclude from (3.22), (3.16), and (3.19) that

I1 i O(x3)O(z 3)dx O{(2n + 1)- 3}.
0

(3.23)

Similarly, we deduce from (3.16) that

612 (2n + 1)- 2 i z{g(z)- H*(z)}dz
0

: (2n + 1)-2 ./ z{H(z)- H*(z)}dz -(2n + 1)-2 i zO(z- 3)dz,
o

6.21/212--(2n+1) -2 [i z{21/2H(z)-3sinz
0

(3.24)

(2z)- (5 + 11 cos2z)}dz llr/8] + O{(2n + 1)- 3}.

In order to evaluate the integral I3, we use the results [7, Eqs. (3.15)1,

f(x) sin z dx (2n + 1) 2(4/r:)( 1)n + O{(2n + 1) 3},
/ -/

.i f(x)z- l dx (2n + l)- i i f(x)x- ldx,
0 0

f(x)z_lcos2zdx_O{(2n + 1)- 31,
0

f(x)z 2sin qzdx (2n + 1)- (/12) + O{(2n + 1)- 3},

when q > O. Therefore,
/2

2t/2I
3 (5/2)(2n + 1)- 1 /

0

f(z)z idz + (12/r:)(2n + 1)- 2( 1)n (3.25)
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+ (llr/48)(2n + 1) 2 + O{(2n -4- 1)- 3}.

We now combine (3.23), (3.24) and (3.25) with (3.18) to conclude that Lemma 8 is true.

Lemma 9: Equation (3.1) is true when r 2 if

(3.26)

in which

$21 (1/3’) J {21/2j(z) + 1 7 cosz}dz, S2 56/"3,
0

J(z) [(1 cosz){(2fo i(ko 3go)- go- 1} _f_ 2fo-- lhosinz
+ 6g0- 1 3f0-- lk0]G(z).

It follow from (2.19), (2.8), (2.9), (2.11)and (2.13)that

f2 {(3go ko)cs z + 4hosin z}f’(x) f2(x) ko(X (go + ko)/2, (3.29)

and then from (2.24), Lemmas 2 and 4, (3.13) and (3.29) that

Gu2 f’(O)J(z) + {if(x) f’(O){K(z) f2(x)L(z) + {p(x) (0)}M(z), (3.30)

in which J(z)is defined in (3.28) and

K(z) [{(2f0 l(3g0 ko) + go- 1}TM 4" 2hof" lsinz]G(z), (3.31)

L(z) [(1 -cos 2z){(4fo 2[(g0 ko)2 -4ho2] -(4fogo)- l(g0 k0) (3.32)

(2g02) 1} -4- {go- 1 (2f0) l(g0 k0)}(2f0 lhosin 2z

+ (2f)- l(h "4- fo)]G(z),

M(z) {go- 1 (2fo) lko}G(z). (3.33)

With the help of (3.5), (3.7), (3.8) and the definitions (2.8), (2.10) and (2.12), it is easy to see

that, for large z,

212j(z) 1 + 7 cos z z- (31 + 15cos z)sin z + O(z- 2). (3.34)

In fact, (3.34) is valid for all positive z because J(z) and z-lsinz are bounded. It then follows
that

2112j(z)dx -(r/2) + [7(- 1)n + j {2i/2J(z) + 1 7cosz}dz
0

(3.35)
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/ (21/2j(z)/ 1-7cosz}dz](2n+ 1) -1

In view of (3.34) the two improper integrals converge, and the last integral in (3.35) is
O{(2n + 1)- 1}. In a similar manner, we find that

21/2K(z) 7 cos z 15z asin z cos z + O(z 2), (3.36)

21/2L(z) (5 + 11 cos 2z)/4 + z 1(111 sin z 69 sin 3z)/8 + O(z 2), (3.37)

21/2/
0

21/2M(z) 1 2z- 1sin z + O(z- 2);

{if(x) f’(O)}K(z)dx 7{(2/r)2 -(1/6)}( 1)n(2n + 1)- 1

+ + 1)-

,/ ,/

21/2 [ f2(x)L(z)dx (5/4)
o o

/
21/2 / {(x)-(0)}M(z)dx- / (x)dx- 1) 2}.

o o

It now follows from (2.26), (3.30), (3.35), (3.39), (3.40) and (3.41) that Lemma 9 is true.

Lema 10: Equation (3.1) is true when r- 3 if $30- 0, S3 -0.

It follows from (2.19)and (2.8)through (2.13)that

(3.39)

(3.40)

(3.41)

f3 (3gosin z 2h0cos z)f"(x) + f(x)o(x)sin z 2h0’(x), (3.42)

and then from (2.24), Lemmas 2 and 4, (3.13), (3.29) and (3.42) that

21/2Gu3 f"(x)N(z) + f(x)o(x)P(z) + o’(x)Q(z) + f(x){f’(x) f’(O)}R(z) (3.43)

+ f3(x)U(z)+ f(x)V(z),

in which N, P, Q, R, U and V are certain explicitly definable functions of z concerning which we

need to know first that, for large z,

N(z) 6sinz +O(z-1), P(z) 5sinz +O(z-1),Q(z) O(z- 1), (3.44)

R(z) 7.5 sin 2z + (4z) 1(193 cos z 97 cos 3z) + O(z 2), (3.45)

U(z) 8- 1(23sin 3z- 37 sin z)- (16z) 1(95 / 132 cos 2z (3.46)

99 cos4z) + O(z- 2),

V(z) 5sinz- (35/6)sin 2z + O(z- 1). (3.47)
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We also need to know that, for small positive z, the functions N(z), P(z), Q(z), and V(z) are
bounded (they actually have limits as z0 +), and the functions R(z) and U(z) are O(z-2).
Hence equations (3.44) through (3.47) are valid for all positive z. Each of the integrals with res-
pect to x on the interval (0, zr/2) of each of the six terms on the right hand side of (3.43) is, there-
fore, O{(2n-4- 1)-1}. In view of (2.26), this remark suffices to prove Lemma 10.

Our principal result, stated in the following theorem, is an immediate consequence of Lemmas
6 through 10 and the observation that SO + S1 + S2 -4- 5’3 0.

Theorem: When p-1/2 and n > no, the mean value of the number of zeros on the interval
(0, 2r) of the random trigonometric polynomial (1.1) is

3

tn (2n + 1)2 1/2E (2n + 1)- rDr + O{(2n + 1)- 3}, (3.48)
r--0

in which

Dr E Sr m, m (r 0, 1, 2, 3). (3.49)
m--0

If we use the explicit formulas for Srm furnished in Lemmas 7 through 10, it follows that

D0-1, D1-(2/r)j {21/2G(z)-l}dz, D2=
0

D3 (1/3r)/ {21/2j(z) + 1 7cosz}dz
0

(3.51)

(1/3r) / z{21/2H(z) 3sinz (2z)- 1(5 + 11 cos2z)}dz.
0

-/2
(For the calculation of D2, it is necessary to know [6, Eq. (3.156)] that f o(x)dx- 2/’.)

0

4. Numerical Results

With the help of (3.8), (3.16), (3.17), and (3.34), we can transform the conditionally conver-
gent integrals in (3.50) and (3.51) into absolutely convergent integrals, i.e.,

D1 (2/r)/ {21/2G(z)- 1 + 3z-lsinz}dz- 3,
0

03 (1/3r)/ [21/2{J(z)-zH(z)} / 3zsinz / 2-1(7 14cosz / 11 cos2z)
0

(4.1)

(4.2)

-4- (8z)- 1(399 sin z 69sin 3z)}dz (55/8).

We calculated the integrals in (4.1) and (4.2) over the interval (0,25r) by Simpson’s rule. The
integrals over the interval (25r,) were calculated using the asymptotic relations,
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21/2G(z)- 1 + 3z- lsinz (2z)- 2(1 + 28cos z + 11 cos2z)

/ (2z) 3(19 sin z / 60sin 2z + 23 sin 3z)- 2- 6z- 4(1063 / 2376 cos z

+ 716 cos 2z- 776 cos 3z- 179 cos 4z)/ z- 5T5(z + O(z-6),

21/2H(z)- 3sinz- (2z)- 1(5 -{- 11 cos 2z) (4.4)

2-3z 2(151 sin z 60 sin 2z 69 sin 3z)

2- 4z- 3(207 + 1028 cos z + 612cos 2z- 388 cos 3z

179 cos 4z) + z- 4Ts(z + O(z- 5),

21/2j(z) -t- 1 7cosz -t- (2z)- l(62sin z + 15 sin 2z) (4.5)

= 2 3z 2(46 335 cos z 478 cos 2z 97 cos 3z) + z aT4(z) + O(z 4);

these relations contain one or two more terms than (3.8), (3.16) and (3.34). In this manner, we

find that D1 -0.378124, D3 -0.5523. Hence

21/2
n (2n+ 1)- 0.378124- 2-1(2n + 1) -1 + 0.5523(2n + 1) -2 + O{(2n + 1)-3}. (4.6)

We have also used Simpson’s rule to calculate numerical values of the integral (2.1) when
n- 2(1)40. The results for n are recorded to 5D in Table 1. (The tabulated value 1 2 is ob-
viously correct, but is not a consequence of (2.1) which is nugatory when n-1.) The
approximation 2-1/2(2n + 1/ D1) produces 5D values that exceed the values in Table 1 by
about 0.00756% when n- 40, 0.0292% when n- 20, 0.110% when n- 10 and only 1.61% when
n 2. The more accurate approximation 2-1/2{2u + 1 + D1 -(4n + 2)- 1} produces 5D values
that are less than the values in Table 1 by about 6 x 10- 5 when n- 40, 23 x 10- 5 when n- 20,
89 10- 5 when n- 10, and only 0.0189 or 0.588% when n- 2. The most accurate approxima-
tion 2- 1/2{2n + 1 / D1 (4n + 2)- 1 + 0.5523(2n / 1)- 2} produces 5D values that agree with
those in Table 1 when n >_ 8, except for a discrepancy of one unit in the last decimal place when
n- 14. Moreover, it produces a 5D value when n- 2 that is less than the Table 1 value by only
0.00328, or 0.102%.
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1 2 21 30.13021
2 3.21635 22 31.54477
3 4.64048 23 32.95930
4 6.06232 24 34.37381
5 7.48196 25 35.78829
6 8.90016 26 37.20275
7 10.31741 27 38.61720
8 11.73400 28 40.03163
9 13.15013 29 41.44605
10 14.56592 30 42.86045
11 15.98145 31 44.27484
12 17.39678 32 45.68922
13 18.81195 33 47.10359
14 20.22699 34 48.51795
15 21.64194 35 49.93231
16 23.05679 36 51.34665
17 24.47158 37 52.76099
18 25.88631 38 54.17532
19 27.30098 39 55.58965
20 28.71561 40 57.00397

Table 1. Values of the mean number of zeros of the random trigonometric
1polynomial (1.1) when p g.

5. The Integer no

Although it is not logically necessary to know a specific value for the integer no in the
theorem and Lemmas 2, 4, 5 and 6, it is interesting to observe that no can actually be chosen as
small as 2. We begin the proof of this assertion with the following lemma.

Lemma 11" It is true that go(z) > 0.206715 when

It follows from (2.16) that
1

g’o(Z) / t2 sin zt dt < 0 when 0 < z <
0

and from (2.10) that

(5.1)

g’o(Z) > 0 when 37r/2 < z < 27r.

If we define W(z) to be z4gg(z), we infer from (5.1) and (2.10) that

Z

W(z) / u3cos u du z3sin z 3z2cos z / 6z sin z 6(1 cos z).
0

Therefore, if 7r < z < 37r/2, W’(z) -z3cosz > 0, so that W(z) > W(Tr) 3(7r2- 4) > 0. Hence
g(z) > 0 when 7r _< z _< 37r/2, and there exists a unique zI such that 7r < zI < 37r/2, g’o(Zl) O.
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By virtue of (5.1) and (5.2), the minimum value of go(z) on the interval (0,2r)is g0(zl).
We use Newton’s method, starting with the value z- 4r/3, to locate the point zI with suffi-

cient accuracy to determine that go(z1) > 0.206715, so that go(z) > 0.206715 when 0 < z < 27r If
z > 27r, we conclude from (2.8) that go(z) > 2- z- 1 2z- 2 > 2- (27r)- 1 2(2r)- >
0.290184. The proof of the lemma is now complete.

Lemma12: It is true when O < x < Tr/2 and n > 2 that

gll <1-2r-1<0.363381, g2[ <3/2. (5.4)

Because the nonzero coefficients in the power series (3.22) for f(x) are positive, we infer from
(2.8) and (2.9) that ]gl < f(z) < f(r/2) 1 2r- 1, [g21 < (1/2) + (z) + if(z) < (1/2) +
(r/2) + f’(Tr/2) 3/2. It is helpful to note that

(x) + if(x) (1 -4- cosx) 1. (5.5)

Lemmal3: It is true when O < x < r/2 and n > 2 that

](2n+ 1)-lga/g0l + [(2n+ 1)-2g2/g01 < 0.641832.

Therefore, Lemma 2 is true when no 2.

The lemma is an immediate consequence of Lemmas 11 and 12, and the fact that (2.17) is
implied by (5.6). (Although adequate, this result is rather crude. It is possible to show, with the
help of numerical calculations similar to those we will use below in the proofs of Lemmas 14 and
15, that the left hand side of (5.6) does not exceed 0.299394.)

The analysis to show that (2.22) is true when n > 2 and 0 < x < 7r/2, so that Lemma 4 is true
when no 2, is somewhat more recondite. We begin with the following assertion.

Lemma 14: The left hand side of (2.22) does not exceed 0.884786 when 0 < x < 7r/2, n >_ 2
and z (2n + 1)x > 67r.

This lemma will be a consequence of the inequalities,

f0 > 0.105264, fx < 0.128401, f21 < 1.20476, If31 < 1.08086,

f41 < 5.57529, [fhl < 4.51528, If61 < 3.95661, (5.s)

when n > 2. We now proceed to prove these inequalities when 0 _< z < 7r/2 and z > 67r.

If we write (3.4) in the form,

8fo- 1 2z- 1(1 16z- 2)sinz lOz- 2(1 + cosz) (5.9)

8z 4(1 2z 2)(1 cos z)2 32z 5(1 cos z)sin z,

and observe that 1-16z -2 and 1-2z -2 are positive (when z >4), that sin z < 1 and
1 < cosz < 1, and that (1-cosz)sinz < 33/2/4, we see that

8f0>l-2z-l(1-16z-2)-20z-2 32z 4(1 2z 2) 24.31/2z 5 (5.10)

The right hand side of (5.10) is an increasing function of z when z > 6r, because its derivative
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2z 2(1 48z 2) + 40z 3 + 128z 5(1 3z 2) + 120.31/2z 6,

is positive (when z2> 48). If we replace z by 6r in the right hand side of (5.10), we conclude
that the first inequality in (5.7) is true when z >_ 6r.

If we write (3.14) in the form

4fl [(1 4Z 2)sin z + 8z 1 { 1 z 2(1 cos z)(3 / cos z)} (5.11)

+ 24z 4(1 COS z)sin z]f(x),

and observe that 0

_
(1 cos z)(3 + cos z)

_
4, that 1 4z 2

f(x) <_ f(r/2)- 1- 2r- 1, we see that
(when z > 2), and that

4If1 _< (1 -4z- 2 + 8z- 1 + 18.31/2z- 4)(1 27r- 1). (5.12)

The right hand side of (5.12) is a decreasing function of z when z >_ 6r, because its derivative,

{ 8z 2(1 z 1) 72.31/2z 5}(1 2r 1),

is negative (when z > 1). If we replace z by 6r in the right hand side of (5.12), we conclude that
the second inequality in (5.7) is true when z >_ 6r.

With the help of (2.8), (2.10), and (2.12) we can write (3.29) in the form,

24f2 6{f’(x)- f’(O)}Pl(Z 24f2(x)- 24(x)ko(z P2(z), (5.13)

in which

Pl(Z) 5cosz q-4z-2(8- 3cosz- 2 cos2z)

8z 3(4 cos z)sin z / 24(1 cos z)cos z,

(5.14)

P2(z) 9-- 5cosz--4z- 2(11 q- 3cosz-- 2cos2z) (5.15)

/ 8z 3(13 cos z)sin z 24z 4(1 cos z)(3 + cos z).

Because 3 _< 8 3cosz 2cos2z _< 73/8, ](4 -cosz)sinz 4.11667, and [(1 -cosz)cosz

_
2,

we see that

Pl(Z) < 5+ 36.5z -2 -t- 32.9334z -3 +48z -4 < 5.10803 (5.16)

when z _> 6r. Moreover, it follows from (2.12) and (2.21) that

0 < ko(Z {1 4z- 1(1 6z- 2)sin z 12z- 2(1 2z- 2)cosz 24z- 4}/4 (5.17)

_< {1 +4z-1(1- 6z-2) + 12z-2(1- 2z-2)-24z-4}/4

0.310505 when z > 6r.

Because 4 _< 9 5cosz _< 14, 6 _< 11 / 3cos z- 2cos2z _< 97/8, [(13 -cos z)sinz _< 13.0382, and
0 <_ (1- cos z)(3 / cos z) _< 4, we see that, when z >_ 6r,
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P2(z) _< 14- 24z- 2 + 104.306z- 3 < 14, (5.18)

P2(z) _> 4- 48.5z-2 104.306z 3 -96z -4 > 3.84716. (5.19)

Hence

P2(z) < 14 (5.20)

when z _> 6r. It now follows from (5.13), (5.16), (5.17) and (5.20) that

24 f2 <_ 5.10803{6f’(r/2)- 1} + 24f2(r/2) + 7.4521240(r/2) + 14.

If we observe that f’(r/2) 4r- 2, f(r/2) 1 2r- 1, and o(r/2) 1 -4r- 2, the third in-
equality in (5.7) is a consequence of (5.21).

It follows from (3.42), (2.8)and (2.10)that

f3 f"(x)P3(z)- 2’(x)ho(z) + f(x)o(x)sin z,
in which

P3(z) { 1.5 z 2(3 + cos z)}sin z / z 1(3 cos2z) (5.23)

+ 4z 3(1 cos z)cos z.

Because 0<1.5-4z-2<1.5-z
I(1 -cos z)cos z <_ 2, we see that

-2(3+cosz)<1.5 (when z2>8/3), 13-cs2z] _<3, and

P3(z) _< 1.5 + 3z 1 + 8z 3 < 1.66035 (5.24)

when z k 6r. Moreover, we infer from (2.10) that

ho(z)]

_
z- 1

_
2z- 2 + 4z- 3 < 0.059278

when z _> 6r. It now follows from (5.22), (5.24) and (5.25) that

Yzl _< 1.66035f"(r/2) + 0.118556o’(r/2) + f(r/2)o(r/2). (5.26)

Because f"(r/2)- 1- 16r-3, o’(r/2)- 16r -3, f(r/2)- 1-2r-1 and o(r/2)- 1-4r-2, we
conclude that the fourth inequality in (5.7) is true when z >_ 6r.

It follows from (2.19) that

If41 -< gok41 + glk31 + g2k21 +21hlh31 + h. (5.27)

We infer from (2.16) and (2.8)that

]g0] gO <--(1/2)’- z-1 < 0.553052 (5.2s)

when z k 6r, and from (2.14) that

k4 f’"(x)(1 cos z) (x), (5.29)

in which
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is an increasing function for which (0) 0, (r/2) 7/4. Hence

k4 < f’"(x)(1- cosz) < 2f’"(r/2)- 192r -4 < 1.97107,

k4> -(x)> -7/4- -1.75,

and we deduce from (5.28) that

1.09011. (5.31)

We infer from (2.13) that k3[ <_ 3f"(r/2)-3(1-16r -3) < 1.45193, so that an appeal to
Lemma 12 shows that

gl]3

_
0.527604. (5.32)

Similarly, it follows from (2.13) and Lemma 12 that

(){(21_) ()} (18)_
and from (2.11)and (5.5)that

f(){’()+ f"()} f() < 0., (.a4)

If we use (5.24) and (5.31) through (5.35), we conclude that the first inequality in (5.8) is true
when z > 6r.

It follow from (2.19) and some results from the previous paragraph that

If51 -- glk41 - Ig2131 -I- 21h2h31

< 192r- 4(1 2r-1)+ ()(1 16r -) + 16r-2. (5.36)

Therefore, the second inequality in (5.8) is true. Similarly,

f6l _< g2k41 + h32 _< 288r-4 -4- 1,

so that the third inequality of. (5.8) is true. The proof of Lemma 14 is now complete.

Lemma 15: The left hand side of (2.22) does not exceed 0.919051 when 0

_
x

_
r/2, n

_
2

and z -(2n / 1)x

_
6r.

We define so that

min(, ).
It is clear that 0 _< x < when n _>. 2. It then follows from (3.14) that

If1 -< Po(z)f(), (5.39)

in which
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Po(z) 14-1sinz+2z-l-z-2sinz-2z-3(1-cosz)(3-4-cosz) (5.40)

+ 6z 4( 1 cos z)sin z I.
Similarly, it follows from (5.13) and (5.22) that

If21 _< 24- l[{6f’()- 1} Pl(z) + P2(z)I + f2() + ()ko(Z), (5.41)

f3l < f"()lP3(z)l + 2’() h0(z) + f()()I sin z I. (5.42)

(We have used the implication of (2.21) that ko(z > 0.)
The analysis for f4 is more elaborate. We first deduce from (5.29) that

{f’"(0)(1- cosz)- (f)}g0(z) _< gok4 <_ f’"(f)(1-cosz)go(z), (5.43)

and from (2.8) and (2.31) that

0 <_ glk3- 3f(z)f"(x)sin2z < 3f()f"()sin2 z. (5.44)

We next use (2.9)and (2.13) to see that

+ { 1 + 3(x) + 6f’(z)}f’(x)(1 cos z) 3f’2(x)(1 cos z)2,

so that

{(21-) + :(> + f’(>}{(1/2)-3f’(>} + {1 + 3(0)+ 6f’(O)}f’(O)(1- cosz>
3f’2(t)(1 cos z)2 < g2k2 < {1 + 3() + 6f’()}f’()(1 cos z)

(5.45)

3f’2(0)(1 cos z)2.

We now use (2.11) to see that

2hlh3 2{’(x)+ f"(x)cos z}f(x)cos z < 2{’() + f"()}f().

We observe that -2hlh3 is a quadratic function of cos z whose absolute minimum is

-’2(x)f(x)/2f"(x). We have tabulated the function ’2(x)f(x)/f"(x) when x- 0 (r/36)r/2,
and have observed that it is an increasing function of x. Therefore,

-’2()f()/2f"() <_ -2hlh3 _< 2{’()+ f"()}f().

Finally, we use (2.11) to see that

4f’2()sin2z <_ h 4f’2(x)sin2z <_ 4f’2(0)sin2z. (5.47)

It now follows from the definition of (2.19) of f4, the inequalities (5.43) through (5.47), and
the numerical values, if(O)- 1/6, f’"(O)- 7/60, 9(0)- 1/3, obtained from (3.22), that

max{IP4(z) l,
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in which

P4(z) [f"’()go(z) + {1 + 3o(5) + 6f’(5)}f’(5)

12-1(1 cos z)](1 -cos z)+ {3f()f"()- ())sin2z

-t- f’()}((21-) 3f’()} W 2- 1(1 --cos z)- 3f2()(1 --cos Z)2

o’2()f()/2f"() 4f2()sin2z.

(5.49)

(5.50)

It follows from (2.19), (2.9), (2.11), (2.13) and (2.14) that

f5 {P6(x)cs z / PT(x)}sin z, (5.51)

in which

P6(x) f(x)f"’(x)- f’(x)f"(x), (5.52)

We have tabulated the functions P6() and PT()- P6() when - O(r/36)r/2, and have observ-
ed that each of them is a positive increasing function of z when 0 < r/2. We conclude that

_< {PT() + P6()cs z} sin z 1. (5.54)

It follows from (2.19), (2.9), (2.11) and (2.14) that

f6 Ps(x) + P9(x)cs z T Plo(x)cos2z, (5.55)

in which

Plo(X) f’(x)f’"(x)- f,,2(x).

(5.56)

(5.58)

We rewrite (5.55) in the form

f6 (Ps + P9 + PlO)- (P9 + 2P10)(1 -cos z)+ P10(1 -cos z)2, (5.59)

and observe, after tabulating P9(x) and P10(x) when x 0(r/36)r/2, that each of them is a posi-
tive increasing function of x when 0 <_ x _< r/2. Moreover,

8{Ps(x + P9(x)+ P10(x)} (13 3cosx 9 cos2x cos3 x)/(1 + cos x)3, (5.60)

so that Ps(x) + Pu(x) + Po(X) is also a positive increasing function of x when 0 < x _< r/2. We
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conclude that

{P9(x) + 2Plo(x)}(1 cos z) < f6 < Ps(x) + P9(x) + Plo(x), (5.61)

so that

f61 max[P8() + P9() + PlO(), {P9() + 2Plo()}(1 cos z)].

If we let f(z) (r 1,2,...,6) be the right hand sides of the inequalities (5.39), (5.41), (5.42),
(5.48), (5.54) and (5.62), respectively, then the left hand side of (2.22) does not exceed

6

0(Z) f0- 1(z)E 5- rf*r(Z (5.63)
r--1

when n > 2. We have tabulated O(z) when z- 0 (r/18)6r, and used these results to search, by
appropriate subtabulation, for max0 < z < 60(z) In this way, we find that O(z) < 0.919051. This
completes the proof of Lemma 15.

Lemma lfi: The inequality (2.22) is true when n > 2 and 0 < x < r/2.
4, 5 and 6 are also true when no 2.

Therefore, Lemmas

The first sentence in Lemma 16 is an immediate consequence of Lemmas 14 and 15. There-
fore, Lemma 4 is true when no 2. This remark and Lemma 13 then show that Lemmas 5 and 6
are true when no -2.
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