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ABSTILACT

A review of the work of V.E. Bens and P. Brmaud on a single-server queue
G/G/1 is interpreted in terms of point processes and associated martingales.

A concept of a discounted workload is introduced, and its connection with
random Dirichlet series and associated semigroups is investigated.
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1. Introduction

This. paper is devoted to comments on a topic of great interest which well illustrates general
principles in Queueing Theory. This is the case of the waiting time in a single server queue,
G/G/1 with a general input and a general service time, without any assumptions of indepen-
dence.

It was V. Bens who, in his rather thin, but delightful and very well-written book which was

published in 1963, developed the general theory free of special assumptions on type of processes;
see [1]. In a book published in 1981, P. Brmaud used martingale methods to study waiting time,
queue length, and other problems in the G/G/1 system; see [2].

The present paper summarizes the work of Bens and Brmaud, and compares their
approaches. In addition, a new interpretation arising from this study is presented in the last
section of the paper.

2. Bens’ Theory

The primary ingredient of Bens’ theory is the idea of describing traffic offered to a queue by
a single-stochastic process K- (Kt) where Kt represents the workload offered in the interval
[0, t], for each t _> 0. The process K has nondecreasing and right-continuous paths, and can be re-

1The paper is an extended version of a talk presented at the 3rd INFORMS Telecommunicat-
ions Conference in Boca Raton, Florida during March 1995.
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presented in the following form:

Kt E ZnI(Tn < t)’ t > O
rt --1

where Tn is the instant of arrival of the nth customer and Zn is the amount of service required
by that customer; IA denotes the indicator of an event A.

Hence, K is in fact a marked point process with mark space R. Note that no assumptions on

processes (Tn) and (Z) are imposed (in particular, no independence); therefore, the theory is free
from effects of such assumptions.

Bens targeted the virtual waiting time V (for strict order service) defined as the time a
customer would have to wait for service if that customer arrived at time t. Evidently, the process
(Vt) is a functional of the workload process (Kt) more specifically,

Vt-7"(Ks,s<t), t>O,

where r is an operator. Thus, V is regarded as the residual work at time t. Paths of the process
(Vt) are familiar saw-tooth right-continuous functions with jumps of magnitude Z occurring at
times T,, and decreasing with slope 1 between jumps.

In terms of this interpretation, Bens derived the following stochastic integral equation for the
virtual waiting time"

Vt-Kt-t+ / H(-Vu)du t>O,
0

where H is the unit step, and the integral represents the total time during which server was idle
up to t.

An explicit solution of the equation (obtained by E. Reich) has the form:

vt sup (t- )
O<s<t

provided z has a zero in [0, t], and V t when x > 0 for z E [0, t]. Here t Kt- t, if posi-
tive, represents the excess of arriving load in the interval (0, t] over the elapsed time t; it is there-
fore the overload up to t.

Bens was interested in finding distribution of Vt, and showed that it can be obtained in
terms of distribution of K and the conditional probability

n(t, , ) e( - < V 0).

This leads to the following equation valid for w > 0:

0 / R(t,e(yt < )- (t <_ )--g-
0

, )e(v= O)d

where P(Vu 0); therefore, the probability that the server is idle at time u, must be determined
from the separate Volterra integral equation of the first kind. It is the above integral equation
whose modified form became the starting point of applications to fluid models in ATM systems;
see Roberts [10] and Norros [8].

Explicit solutions of the Bens integral equation for the distribution of the virtual waiting
time process are hard to get, even by applying the Laplace-Stieltjes transform to this equation.



Comments on a Single-Server Queue 333

Of special interest is the recent study of the Bens equation using Malliavin calculus, [3].
To achieve some simplification, Bens introduced two assumptions"

i) ."weak stationarity" expressed by the requirement that the function R depends only on
time difference, R(t, u, w) R(t u, w);

ii) "weak Markov property" expressed in terms of the first zero of t; this is weaker than
the requirement that such a zero is a regenerative point.

His book is essentially devoted to the study of the effects of these assumptions. He illustrated
his theory on the example of the M/G/1 queue, where the process K is Markovian. Bens,
however, did not use explicitly the usual terminology of marked point processes and did not
consider martingales. These ideas were extensively utilized by Brmaud. He mentioned the same
representation for a point process K, but preferred to rather work with a queueing process (Qt)
defined

Qt Qo + At- Dt, t >_ O,

where (At) and (Dr) are point processes without common jumps.

Here Qt is the number of customers in the system at time t, and A and D denote the
number of arrivals and departure up to t, respectively.

The study of the point process (Kt) by martingale approach is presented below in section 3.

3. Brdmaud’s Theory

The first application of martingales to the study of queueing systems was carried out by
Brmaud in his doctoral thesis and subsequent papers; results were summarized in his book [2].
The folio’wing is an outline of this approach. For basic concepts of processes and properties of
point processes used here, see [2], [4], [6], [7], and [9].

Consider the increasing right-continuous process K- (Kt) already defined above. It follows
from the general theory of processes that there exists a unique (up to equivalence) right-
continuous predictable increasing process B- (Bt), such that

T Tn

for all non-negative predictable processes C- (Ct).
(predictable) compensator of K.

Moreover, the process M- (Mr) defined by

B is called a dual predictable projection, or a

Mt-Kt-Bt, t_O,

is a local martingale (with mean value zero), relative to the natural a-fields of K, namely F
a(Ks, s <_ t) for each t. This means that for Tn---.oc the process (Mr^ T is a uniformly inte-
grable martingale for each n >_ 1.

n

The localization is needed because, in general, the process K is not integrable (only locally
integrable, [VKT < cx for each n).

In the case of the process K considered here, its jump times Tn are totally inaccessible, so the
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compensator B is continuous. In particular, when B is absolutely continuous with respect to the
Lebesgue measure, it Radon-Nikodym derivative (taken predictable) is called the intensity of K.

In the theory of point processes, it is natural to take smaller r-fields (also called internal his-
tories) for which explicit expressions for compensators can be obtained. Consider first a counting
process defined by

Nt(A)
n = l

I(Zn E A)I(Tn <_ t)

for any Borel subset A of +. Then, define a-fields

F r[Ns(A), 0 <_ s _< t, A E % + for each t > 0,

where superscript # indicates a random measure #(dr, dz) such that

/{(0, t],A} Nt(A).
The double sequence (Tn, Zn) and the random measure #(dt, dz) are identified and both are

called a (primitive) marked point process. Note that Ft is also generated by indicators of events
(Zn E A) and (Tn _< t). One can show that for each Tn,

F tr(Ti, Zi, O < < n) and F r(Ti, Zi, O < < n-1;Tn).

Let F be a history of #(dr, dz) suitable completed such that

F Fo V F.
Suppose that for each n > 1 there exists a regular conditional distribution of (Tn + 1
given FT of the form:

P(Tn + 1 Tn ds, Zn + 1 dz ]FT, G(n + 1)(ds, dz) g(n + 1)(8, dz)ds

Tn,

with the marginal distribution

a(n 4-1)(ds, + G(n + 1)(ds).
Then, it is shown that there exists a positive predictable random measure

g(n + 1)(s Tn, dz)dsu(ds, dz)
1 G(n + 1)(8 Tn)

hs(dz)ds’ for Tn < s < Tn + 1

which defines intensity As(dz). Thus, for any Borel set A, the intensity of the point process K
may be written as As(A), and the compensator B has the form:

Bt(A j As(A)ds’
0

with left-continuous process As(A), or alternatively:

Bt(A BTn(A + / As(A)ds’
T

for Tn < t <_ Tn+ 1.
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In other words, for each n and each Borel set A, the family of r.v.’s

tAT

Nt ^ Tn(A) / As(A)ds
o

is a martingale, relative to (Ft). Alternatively, the difference of random measures #{(0, t],A}-
{(0, t],A} for t >_ 0 is a local martingale.

Finally, the following representation holds for any martingale (Mr) relative to (Ft) and
vanishing at zero:

/ /  z)l
o o

where H is a predictable process integrable with respect to As(dz)ds for any t > 0.
for H(s, z) z,

In particular,

EK EB

as it should be.

For example, for the usual M/G/l/ queue with service time having arbitrary distribution
function F with density f and mean m, we get

g(s, dz)ds Ae Sf(z)dz

for each n. Hence
As(dz Af(z)dz,

and thus

B Amt.

4. Applications

As already indicated, the virtual waiting time as well as other quantities of interest, are

essentially obtained by appropriate transformations of the workload process K = (Kt). By using
well-known methods, explicit results are rarely obtained, even in the form of various transforms.
It is, therefore, of interest to consider other transformations of the process K which may lead to
functionals useful in characterization of a queueing system.

There are several possibilities and the choice should be made based on the properties of a

selected functional. Some examples given below are based on the martingale approach. It should
be noted that this is not a reinterpretation of the virtual waiting time, but rather a study of
another property of a G/G/1 system.

4.1 a-process

In general, K diverges when
workload K defined by

To insure convergence, consider the discounted
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Then,

so

Next, recall that

K / e-aSdKs forc>Oandt>_O.
0

K E Zue UI(Tn < t) fort>0,
n=l

u(ds, dz)- As(dz)ds for Tn < s < Tn + 1,

where intensity Xs(dz depends on n. Then, the compensator (B) of the process (K) has the
form:

Ti+lAt
B7 e aSzv(ds, dz) e ,sas,

0 0 i=0
TiAtwhere

Obviously,

Consequently,

A**o s- f az).
0

Ti+l
e &saS.

is a local martingale, in agreement with the representation of (M)

M7- / e-aedMs,
0

t>0

as a stochastic integral of a continuous function, with respect to a local martingale.

Assume now, that FK < cx. Then, according to [4], the potential generated by an inte-
grable increasing process (K) is given by

U7 E(K F)- K7, t >_ 0,

where the first term on the right is an uniformly integrable martingale, and (U) is a super-
martingale with :U-0 as t-cx3.

Next, denot.e.by K2) the convolution of K with itself, so (K)2 is the Laplace-Stieltjes
Ua Katransform of K2). Then, the energy of a potential (t), or of an increasing process (t), is

defined by the expression:

en 2- l[=(K(aa)2;
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see

For example, in the M/G/1 queue,

EK EBo Amc- 1,

and energy is

m(2)A m2A3en- 4c +c2(2+c)
where rn and m(2) are the first and the second moment of the service time distribution, respective-
ly.

4.2 Dirichlet series

The series for Ko defined earlier in 4.1 with Zn > 0 and Tn
random Dirichlet series. Writing K oo as

Zn e s,
n--1 0

< Tn + 1’ Tn’->cx3, is known as a

indicates that its properties are analogous to properties of Laplace-Stieltjes transforms.

As in the case of non-random series, if the series converges for some s0, then it converges also
for each c such that a > s0. Infimum of such c that Ko converges is called the abscissa of
convergence of the series, and is a random variable denoted by

F inf(c"K < cx3).
From standard results (see [12]), one can deduce that

where
r lim sup(logSn)/Tn,

Sn Z1 -[-...-[- Zn for n >_ 1, and SO O,

is the total service time up to n.

Of special interest is the case when Zn
is a positive random variable. Then,

is constant for all n, say c, and Tn log(nT) where T

Ko- cT- a(c) and F- 1,

where (a) is the Riemann zeta function (converging for a > 1).

4.3 Semigroup

Another interpretation of the "discounted" workload Ka may be obtained by considering an
operator Pa acting on the space f of random sequences S (Sn) such that

Zn Sn- Sn- 1 > 0, rt > 1, with SO 0.

Assume that the norm on the space is defined by:

II s II sup Zn.
In particular, one can take for (Sn) a random n

sequence whose terms represent total service time
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up to n, as defined in 4.2.

Suppose that
0 < T1 < Tn < Tn + 1 and Tn---*o.

Then, consider partial sums

Kna- .(Sk-Sk_l)e k for n>_l, K--0,
k=l

and form a random sequence Ka (Kna). This sequence belongs to , and its norm is

II Ka II supE(Kna Kg_ 1)"

Observe that for fixed n, KgSn as c0, but linmSn -Soo is infinite by assumption. Further

more, for fixed c, linmgan g coincides with go defined earlier and is finite for a > F.

Now define the transformation pa which maps random sequences S on random sequences Ka

by:
PS K.

Thus, the nth component of PaS is the nth partial sum of the Dirichlet series Ko.
Theorem: The family (pa) forms a semigroup of linear transformations on the space into

itself
pa+ = pap, t > O, fl > O,

with the norm not exceeding Ee -aT1.
The proof may be patterned on that for the non-random case; see [5]. Here, only the

semigroup property is verified. From the definition, (P[3S)n- Kn, so

(Pag)n E (gi gi 1 )e aTi E Zi- Tie aTi .a +
i=1 i=1

An equivalent definition of the transformation pa is obtained by introducing the triangular
matrix Ta (tj), where

-aTj -aTj_ 1 -aT.
tj- e -e j < i, t- e ’, tTj O,j > i.

Then, it is easy to verify that TaS Ka.
Furthermore, the infinitesimal generator of the semigroup (pa) is the operator Q taking

random sequences S into random sequences QS (Dn) where

Dn- E ZkTk"
k=l

This transformation is also based upon a sub-diagonal matrix A- (aij) where

aij Tj + Tj, j < i, aii Tj, aij O, j > 1,

for i- 0,1,2,... with state 0 absorbing. Note that

AS OS.
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4.4 Example

It may be helpful to see an example of this approach to a non-conventional G/G/1 queue
with some dependence.

Suppose that the joint density of the input Tn / 1 Tn and the service Zn / 1 has the form

#(A + #)e- ASe- uz for z > s
f(s,z)

0 for z<s

independent of n. In agreement with standard notation, A and # are positive constants and tt
should not be confused with measure # introduced earlier.

The marginal densities are

fl(8) ( -}- p)e -(A / tt)s and f2(z)

for s > 0 and for z > 0, respectively, indicating a dependence.

Take now

g(n + 1)(s, dz)ds f(s,z)dsdz for z > s.

Then, the random measure u(ds, dz) has the form:

v(ds, dz) #( + #)eu(s Tn)e UZds dz, on Tn < s <_ Tn + 1"

Consequently, for Tn < t < Tn + 1, the compensator B is

(; + I)t/l + ( +/)2-1 E (Tk + 1 Tk)2 + (t- Tn)2

k=0

Rather tedious evaluation yields for c > 0:

Bo ( + )1() + ( +)- -( +)- 1E (Tn + 1 Tn)e
n-’O

On the other hand, the random measure #(ds, dz) is

#(ds, dz) --nlI(Tn= e ds)I(Zn e dz)"

Hence,

and for a > O,

Kt z#(ds, dz) E ZnI(Tn <_ t)’
0 0 n=l

I oo Zne n.
n=l
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As already noted, for a >_ 0:

EK EBb.
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