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ABSTRACT

We give necessary and sufficient conditions for the existence of invariant
probability measures for Markov chains that satisfy the Feller property.
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1. Introduction

The existence of invariant probabilities for Markov chains is an important issue for studying
the long-term behavior of the chains and also for analyzing Markov control processes under the
long-run expected average cost criterion. Inspired by the latter control problems, we present in
this paper, two necessary and sufficient conditions for the existence of invariant probabilities for
Markov chains that satisfy the Feller property. Our study extends previous results using stronger
assumptions, such as the strong Feller property in Bene [1], nondegeneracy assumptions (see
condition (2) in Bene [2]), and a uniform countable-additivity hypothesis in Liu and Susko [8].
As can be seen in the references, it is also worth noting that there are many reported results pro-
viding (only) sufficient conditions for the existence of invariant measures; in contrast however,
our conditions are also necessary.

The setting for this paper is specified in Section 2, and our main result is presented in Section
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2. Notation and Definitions

Let X be a a-compact metric space, and let {xt, t 0, 1,...} be an X-valued Markov chain
with time-homogeneous kernel P, i.e.,

P(BIx) Prob(x + 1 ( B Ixt x)W 0,1,..., x x, B e %(X),

where (X) denotes the Borel r-algebra of X.
to be invariant for P if

A probability measure (p.m.) # on (X)is said

#(B) J P(B x)#(dx VB %(X).
x

Here, we give necessary and sufficient conditions for the existence of invariant p.m.’s when P satis-
fies the Feller property:

x--, J u(y)P(dy x) is in C(X) whenever u C(X), (1)

where C(X) denotes the space of all bounded and continuous functions on X. Our conditions use
a moment function, defined as follows.

Definition: A nonnegative Borel-measurable function v on X is said to be a moment if, as

noc, inf {v(x) x gn}oo for some sequence of compact sets KnTX.
Moment functions have been used by several authors to study the existence of invariant mea-

sures for Markov processes (e.g., see Bene [1, 2], Hernndez-Lerma [6], Liu and Susko [8], and
Meyn and Tweedie [9]). The key feature used in these studies is the following (easily proved)
fact.

Lemma: Let M be a family of p.m.’s on X. If there exists a moment v on X such that
sup

_
M f vd# < cx), then M is tight, i.e., for every positive e there exists a compact set K such

that #(K) > 1- e for all p M.

Therefore by Prohorov’s Theorem [3, 9], the family M in the lemma is relatively com___m_p_.t,
i.e., every sequence in M contains a weakly convergent subsequence.

Our theorem below (see Section 3) extends a result by Bene [2] where our conditions (a) and
(b) are new and, most importantly, we do not require Bene’ "nondegeneracy" condition, accord-
ing to which

xlkrnpt(KIx) 0 for t 1,2,...,K compact,

with pt(. ix being the t-step transition probability given the initial state x0 x. This condition
"m "excludes important classes of ergodic Markov chains, such as those that have a inorant see

e.g., mynkin and Yushkevich [5], or condition RI in Hernndez-Lerma et al. [7]. See also
Remarks 2 and 3 (Section 3) for additional comments on related results.

3. The Theorem

If t, is a p.m. on X, E(. stands for the expectation given the "initial distribution"

Theorem: If P satisfies the Feller property, then the following conditions (a), (b), and (c) are
equivalent:
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(a) There exists a p.m. v and a moment v such that

lim supJn(u < cx,

whereJn(u)’-n-lE, E
t--

There exists a p.m. u and a moment v such that

limsupVa() < c,

where Va(u)"-(1-a)Eu [kt=0ttv(xt)];
(c) There exists an invariant probability for P.

Proof: We will show that (a)=(b)(c)=V(a).
(a) implies (b): This follows from a well-known Abelian theorem (e.g., see Sznajder and Filar

[11], Theorem 2.2), which states that

lim supVa() <_ lim supJn().
al"l n-,oo

(Since a direct proof that (a) implies (c) is surprisingly simple, it will also be included here; see
Remark 1 below.)

(b) implies (c): Suppose that (b) holds and for each c E (0, 1), let Pa be the probability mea-
sure on X defined as

p(B) (1 -a) a pt(B z)(dz), B e (X).
t=0 X

Then we may write Va(u)as Vc,(u f
and, by (b),

Let {c%} be a sequence in (0,1) such that c%T1

limal,lSUpV,(u) =nli__,rnV(n(U) =n_..,oolim f vd#a
n
< oo.

By the lemma in Section 2, {#a } is tight and therefore, by Prohorov’s Theorem, {#a } contains
a weakly convergent subsequence, which we denote by {p } again; that is, there existsa probabi-
lity measure # on X such that

lim /n udizan
We claim that # is invariant for P.

ud# Vu C(X).

To see this, first note that by the Markov property, we may write

#(B) (1 ()u(B) + ( / P(B

Hence, for any u G C(X),

f udp- (1- c)J u(z)u(dz)+c//

as

Vc (0, 1), B (X).

u(y)P(dY x)#a(dx),
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and furthermore, note that by the Feller property (1), f u(y)P(dy )is in C(X). Thus, replac-
ing c by c% and letting ncx, we obtain

/ udlz //u(y)P(dy,x)Iz(dx). (2)

Finally, since u E C(X) was arbitrary, we conclude from (2) that/ is invariant for P.

(c) implies (a): Let v be an invariant probability for P, and let {Kn} be an increasing se-
quence of compact sets such that KnTX and (Kn + 1- Kn) < 1/n3, n- 1,2, (Here we have
used the fact that every p.m. on a a-compact metric space is tight; see [3], p. 9.) Define a func-
tionv(.)’-0onKlandv(x):=nforxKn+l-Kn,nl. Then v is a moment and

limsuPJn(u v(x)u(dx) n-2 < .
n=l

Remark 1: We will prove directly that (a) implies (c). Suppose that (a) holds and for every
1, 2,..., let #n be the probability measure on X defined as

[
t=O J

so that we may rewrite the condition in (a) as

sup / vd#n < cx:)lim
J

Hence, by the lemma in Section 2, {#,} has a subsequence {/,.} which converges weakly to some
probability measure u. We will show that (cf. (2))

/ c c(x), (3)0

where Lu(x):= f u(y)P(dylx u(x), thus showing that # is invariant for P.

Indeed, for any bounded measurable function u on X, the sequence
n--1

Mn(u)’-u(xn)-ELu(xt), n 1,2,...,
t--O

with Mo(u := U(Xo) is a martingale, which implies

Eu[Mn(u)]-- Ev[Mo(u)]Vn

Finally, let u be in C(X); replace n by ni; multiply by 1/ni; and then let i--,c to get (3).
Remark 2: In [8], it is shown that

sup f f g(y)pt(dylz)u(dz)< (4)
t>l

for some moment g and initial p.m. v, is also a necessary and sufficient condition for existence of
invariant probabilities provided that the Markov chain satisfies the uniform countable-additivity
property



Invariant Probabilities for Feller-Markov Chains 345

lim sup P(A x)- 0 (5)
AIO x E K

for every compact set K in x.

Note that (4) is stronger than our condition (a) and that (5) implies: For every compact set
g C X, the family of p.m. ’s (P(. x)}x e K is tight.

Remark 3." It is worth noting that the theorem still holds if we replace "lim sup" by "lim inf"
in both conditions (a) and (b). Now, (b):=(a) by a well-known Abelian theorem [11]. With
similar arguments as in Remark 1, (a):=v(c). We finally prove (c):=v(b) by exhibiting the same
moment function v and show that

lim,nfVc(u -lim].nf(1- c)EvE tv(xt v()u(d) <_ n- < c.
t=O t=O

In conclusion, we mention that the theorem can be extended in the obvious way to contin-
uous-time Markov processes, as in [2]. Conditions for uniqueness and ergodicity of invariant mea-
sures can be found, for instance, in [4, 7, 10] and references therein.
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