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ABSTKACT

We introduce and study a class of operators of stochastic differentiation and
integration for non-Gaussian processes. As an application, we establish an analog
of the It6 formula.
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1. Introduction

Operators of stochastic differentiation D and an extended integration I D* play an impor-
tant role in stochastic calculus. In the Gaussian case and for certain special martingales, D and I
can be defined with the aid of an orthogonal expansion (cf., T. Sekiguchi, Y. Shiota [3]). Also, D
and I can be defined by means of the usual differentiation with respect to the admissible transla-
tion of the probability measure (A.A. Dorogovtsev [2]). In all these situations there are some com-
mon features. In this article we consider a general scheme in which the operators D and I are con-
structed for a non-Gaussian case. Since I plays the role of stochastic integration, an analog of the
It6 formula is also established.

2. Stochastic Derivative and the Logarithmic Process

Let {(t);t E [0, 1]} be a random process defined on a probability space (, ,P). A subset K
of n is said to have the conic property if for every x E K, there exists a cone, Cx, with the non-
empty interior and a neighborhood, Ux of x such that x Ux V Cx C K.

Suppose that the support of any finite-dimensional distribution of has the conic property.

Let A be the Lebesgue measure on the Borel r-algebra %([0, 1]).
Definition 1: A family of the random elements {(t);t [0,1]} from L2([0,1],P. is

called a differentiation rule if
1) Yt [0, 1]:((t). X(t,11 0 (mod P),
2) for every tuple tl,...tn [0, 1], al,...,an E , n _> 1, G 4, such that

(al(tl) +... + an(tn))XG = 0 (mod P),
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the following equality holds

(ale(t1) +... + an(tn))XG 0 (mod P ).
Definition 2: Let :Rn--,R be bounded, continuously differentiable and have a bounded deri-

vative. For a random variable

the sum
c ((tl),...,(tn)), tl,...,tn E [0,1],

fll ((tl ), ., (tn))((tl + + ((tl),..., (tn)) ((tn)

is called a stochastic derivative of c and denoted by Dc (so D(t)- ((t)).
In the sequel, denote the set of all random variables from Definition 2 by tt. Jtt is a linear

subset of L2 (f,, P). Also for t E [0,1], denote by 2tl, the subset of 2 which is only from
{(s), 0 _< s <_ t}. Obviously, tl,

1 20"
Lemma 1: D is well-defined on 2.

Proof: Consider o,:Rn which satisfy the conditions in Definition 2, and let tl,...,tn be
such that

((tl),...,(tn)) ((tl),...,(tn)) (modP).

Then, it follows from the assumption about that for all i- 1,..., n,

((tl),...,(tn) ((tl),...,(tn))(modP).

Thus, the corresponding sums in Definition 2 are equal. The lemma is proved.

Definition 3: A random process is said to have a logarithmic derivative with respect to a dif-
ferentiation rule if there exist a random process {pA, A %} indexed by the Borel subsets of
[0,1] such that

1) VAE%, Mp< +ca;
2) Va E .Ab and VA ( %;

M j Dc(r)dr Ma’pA.

In the sequel, suppose that the process ( satisfies the conditions in Definition 3.

Definition 4: Denote for t E [0, 1],
re(t)- P[0, t]"

The process {m(t);t e [0, 1]} is called the logarithmic process.

Let for t e [0,1], t- a({(s);s _< t}). Note, that analogous processes were considered in dif-
ferent situation in A. Benassi [1].

Lemma2: For O < s < t < l,

M(m(t)- rn(s)/s) 0

Proof: For c 2s consider

(modP).

M(m(t) m(s)) a MP[o, tl a Mpt0,s] c
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8

M/ Da(r)dr
(s,t]

M o((r),...,(rn) .(ri)(r)dr O(mod P).
(,t]

Since the set dig
s is dense in L2(f2 5s, P then the statement of the lemma follows.

For further considerations the following result will be useful.

Lemma 3: The operator D can be closed as a linear operator from C L2(f,,P to
L2(f2 [0, 1],P ,).

Proof: Consider a sequence {an; n >_ 1} C dig, such that there exists
for

2Man--}O
1

M f (Dan(r) u(r))2,(dr)--,0, n--ec.

0

Then, for every A E % and fl 31,,

Mfl. /v(r)dr-nlirnMfl. f Dcn(r)dr

=nlirn(Man. PA- Man f D(r)dr
A

Since A was arbitrary,

The lemma is proved.

=nli__,rnooMan(. pA f D(r)dr) 0

u(r)dr- 0 (mod P).

’-0 (mod P x ).

(mod P).

Denote the closure of D by the same symbol. The domain of D is denoted by W1.

Integral with Respect to the Logarithmic Process and the Procedure of
Approximation

Definition 5: The adjoint operator

I D*: L2(f2 x [0, 1]; P x ,)L2(f2 , P)
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is called a stochastic integration with respect to the process m. The domain of I is dented by .
In the following, suppose that

and, that the correspondence A+pA can be extended by the bounded linear operator A:
L2([0 1],,)W1 (the inner product in W1 is defined in the usual way, as a sum of L2-products of
random variables and their stochastic derivatives). Note that under this assumption, each o E
L2([0 1]) also belongs to and

I( A(o).

To have I act on random elements of L2([0 1]), i.e., to define an extended stochastic integral with
respect to the process m, we need the following.

Let {gn;n >_ 1} be a sequence of symmetric kernels defined on [0,1]2 such that
1) g

n L2([0 112, x )),
2) /o L2([0 1], ,),

where Kn is an integral operator in L2([0 1],) with the kernel Kn. Denote for n > 1,

1

hn(s,r D( j Kn(s,v)dm(v))(r).
0

It follows form the existence of the o’perator A that

/n >_ 1;hn L2([0,112,, x,) (modP).

Conslder the following sequences of integral operators with random kernels"

Vo L2([0 1], ,) and Vn _> 1;

1 1

hn(s,r)Kn(t,v)drds,

1

0 0

Suppose that for the every o there exist

L2 -li_,rnB(o)- B(o)and L2 -nlirnCn(O)- C().

Then the operators B and C are strong random linear operators (A.V. Skorokhod [4]) which are
continuous in L2-sense.

Definition 6: A random element x from L2([0 1],,)is said to belong to the domain of B (or
C) if the sequence {Bn(x);n >_ 1} converges in L2-sense ({Cn(x);n >_ 1} respectively).

The following statement can be verified.

Lemma 4: Let H be a separable real Hilbert space embedded into L2([O; 1],A) by the Hilbert-
Schmidt operator, and let x be an essentially bounded random element of H. Then, x (B) and
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e

Now, consider the stochastic integration.
the highest derivatives are symmetric, i.e.,

Suppose that the differentiation rule is such that

D2a(rl, r2)-D2a(r2, rl) (modPxx,).

The space of random variables which have kth stochastic derivative will be denoted by Wk.
Lemma 5:

sum

and

For every bounded OZl,... Ozn E W2 and for every 1, 2," n L2([0; 1],,), the

x aio E
i=1

1

I(x) ,’1aiI(i) ,1 Dci(r)oi(r)dr’

MI(x)-O,

{/1 }MI(x)2 M (Bx)(r)x(r)dr + tr(Dx. Dx)
0

Proof: First consider x- a.o. For every

So, a.p E ) and

Consequently,

1

M[cI(o)- / Dc(r)(r)dr].
0

1

I(a o) a 1(9 / Da(r)o(r)dr.
0

1
n

I(ilOqi) --,ZlOqI(oi)--il / Dq(7")i(v)d’r
o

n n

aiI(oi)- tr(DZ aii)"
i=1 i=1

To prove that MI(x)- 0 it is sufficient to see that D1- 0 and use the equation I- D*.
Now, consider the following chain of equalities"

1

Me(x)2 M OilCti2l(cflil). I(9i2)- 2 OilI(9il Doq2(v)92(r)dv
li2 1 li2 1 0
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. 1 1 ]
7172 1 0 0

=M D(I(71))(v)" + Z qlI(71) Dq2(v)i72(r)drZ 01710li2 72(T)dT
’1’2- 1ill2 1 0 0

q- Q2I(71)
7172 1 0

1

noql(V)o72(’r)d’r- 2 OqlI(71 i nq2(v)i2(v)dv
7172 1 0

n
1 1 ]

"t- I nQl(7")’il(T)dT"" I nq2(7")oi2(T)dT
ill2 1 o

i172 1

1 1

"I J-7172- 1 0
Dai2(r)il(r)dv.

o
Dail(’r)i2(r)dv

1 1

qT. Q2 s I D2l71(7"lT2)i71(7"1)72(T2)dTldT2
ill2 1 0 0

1 1

1/2’ 1 0
D71(7")71(7")dT"

0
n72(7")72(T)dT"

1 1- ql i i D2i2(7l’2)il(7l)i2(72)dT1dT2
ill2 1 o o

1 1

9":: DOql(v)o71 (v)dr Da72(v)i2(v)i2(v)dr"
’1’2 1 0 0

=M [ili2 1

1 n
1 1 ]

0z71072 J D(I(71))(T)72(T)dT + I DQ2(T)71(T)dT S DQl(T)72(T)dT
o 7172 1 o

1

M O71072 D(S(il))(r)i2(r)dr + tr(Dx)2.
7172 1 0

Note that, due to the previous lemma, x E (B), and

0 0 0

So, from the assumption about the operator A, it follows that

n>l.
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0

Consequently,
1

E ilOQ2
il 2 1 0

E"l--1

D(I(il ))(7")99i
2

1

(v)dr- j B(x)(r)x(v)dr.
0

The lemma is proved.

From this lemma and from the fact that I is a closed operator, it follows that every random
element x that satisfies the conditions of Lemma 4 and has a stochastic derivative belongs to ,
and the equalities from Lemma 5 are valid.

The famous particular case of this situation is as follows. Let H be a Sobolev space of the
first order on [0, 1]. Then elements of H have usual derivatives with respect to parameters from
[0, 1]. Suppose that x satisfies the conditions of Lemma 4 and that Dx is a.s. a nuclear operator.
Then,

1

I(x) z(1)m(1)- / m(t)x’(t)dt- trDx.
0

Note also that in this case,

{ i
I

i
1

ill
I }I(x) P -lim x(t) Kn(t r)dm(r)dt- nx(t)(r)Kn(t r)drdt

"0 0 0 0

(1)

This expansion enables one to establish the It6 formula.

Theorem (The It6 formula): Let a function F: [0, 1] xR have a continuous bounded deriva-
tive of the first and second order, and let the random process x satisfy the conditions:

1) x has the second stochastic derivative;
2) for every 7" E[O, 1], x and Dx(.)(v) satisfy all integrability conditions (considered

above);
3) Dx(.)(-) C([O, 1]2) (modP);
4) x, Dx and D2x are bounded.

Then, the following random process

z(t)

is well-defined and it holds true that

i x(v)dm(r),
0

t [0,1]

F(t, z(t)) F(O, O) + i Fi (s, z(s))ds
0

i F’2(s,z(s))x(s)dm(s + j x(s)F’2’2(s’z(s))C(x)(s)ds
0

0 0
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The proof follows directly from the expansion (1) and approximation arguments.

4. Examples

Example 1" (Wiener case) Let (t)- w(t), t [0,1] be a Wiener process. Consider the
differentiation rule of the form (t)-[,]-X0 t, t [0, 1]. Then the stochastic derivative D which is
obtained from this rule is a well-known stochastic derivative of L2-integrable Wiener functionals
(T. Sekiguchi, Y. Shiota [3]) and re(t) w(t), t [0, 1].

Now the operator B is the identity operator and C- 1/2B. Then, from the previous theorem
we can obtain the It formula for the extended stochastic integral in the Gaussian case"

0 0

s

0 0 0

Example 2: Let the distribution of the process in the space C([0, 1]) be absolutely contin-
uous with respect to the Wiener measure with the density p. Suppose, that

1) 0<infp_<supp< +oc,
2) p has a bounded continuous derivative on C([0, 1]).

Consider the differentiation rule from Example 1: (t)tl0s t [0 1]. Then the stochastic
derivative of the random variable a from the family tdl to] type

Hence, for the Borel subset

Da D((tl),...,(tn) pX[o, ti].
t--1

M Da(r)dr Mi(ti XA(r)dv).
A i--1 0

Here i is Dirac 5-function with respect to the point t. Denote by UA the function

$

Us(S) / Xa(r)dr, s E [0, 1],
0

by u the distribution of , and by # the Wiener measure. Also, denote by (I) the following func-
tion on C([0,1])"

Vv E C([0, 1]), (I)(v) 9(V(tl),... V(tn)).

Then,

/((p(v)(v))’;uA)#(dv f (p’(v);uA).qP(v)#(dv) /#P(v)p(v). /dv(r)#(dv)
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Here the symbol of integration is used for the integration through all C([0, 1]), and the integral

is a measurable linear functional on C([0, 1]) with respect to the measure u #. Note also that
the function

dv(r)- ((lnp(v))’;

is square-integrable with respect to the measure u. Consequently, has a logarithmic derivative,
and

So, the operator D is closed, and for every bounded functional , which has a bounded continuous
derivative on C([O, 1]), the random variable () belongs to W1; in particular, In p() E W1 and

d In p()(r)dv ((ln p())’; UA).

Hence, the logarithmic process is of the form

re(t) (t) / DIn p()(r)dr.
0

Now the second stochastic derivatives are symmetric. So to estimate the second moment of the
extended stochastic integral only the operator B is essential. To describe theoperators B and C
let us find the stochastic derivative of the integral

Using the approximation by step functions, it can be verified that

D f(r)dm(r) (s) f(s) + f(r). D21n p()(r, s)dr, s

_
[0,1].

0 0

Consequently, for the n > 1,

Hence,
[ -]1 1 1

Bn()(t) Jo 7(s) fo Kn(s’ r)+
o

Kn(s r)D21n p()(r, ’)dr Kn(t v)drds.

1

B(o)(t) o(t) + J D21n p()(t, s)o(s)ds.
0
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In a similar way,

C()(t) 1/2(t) + j D21n p()(s, t)(s)ds.
0

Now the second moment of the extended stochastic integral and the It6 formula have the form

(jl )2 jlM x(t)dm(t) M x2(t)dt + M D21n p(()(t, s)x(t)x(s)dtds + M(tr(Dx)2,
0 0 0

s

+ F22(s z(s))x2(s)ds + 22,

0 0 0

8

0 0
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