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ABSTRACT

Local or global existence and uniqueness theorems for nonlinear stochastic
functional integral equations are proved. The proofs are based on the successive
approximations methods. The formulation includes retarded arguments and he-
reditary Volterra terms.
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1. Introduction

In this paper we shall consider a stochastic functional integral equation of the following type:

u(z) (z) [ f(r, ur)dT" + [ g(v, ur)dw(7"), z (x, Y) 2+ (1)

Iz Iz
(z) (z), z Zo. ()

The second integral in equation (1) is a stochastic integral in the plane [1], [7].
Equations of this type appear when one rewrites the partial stochastic functional differential

equation

Ou rz Ow (z (3)Oy’ y) f(x, y u(x y)) + g(x, y, u(x Y)OxOy’ y)’ (x, y) +,

(,) (, ), (, ) e Zo,

where 02w
OxOu is a space time white noise, as an integral equation.

An existence and uniqueness result for equation (3) (with h- 0) when the drift coefficient f
and the diffusion coefficient g satisfy a Lipschitz condition have been established by Gikhman and
Pjasetskaja [2] and by Tsarenko [8]. In this paper, using the usual Picard iterative method, we

investigate the local and global existence as well as uniqueness of solutions of problem (1), (2),
without assuming a Lipschitz condition in the last argument for f and g.

Partial differential equations with a retarded argument and differential-integral equations
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can be obtained from (1) by specializing given functions. Functional partial differential equations
with operators of the Volterra type are also the special cases of (1) (see Section 6).

2. Preliminaries

Let us introduce a notation for rectangles. Suppose z- (x,y) and z’-(x’,y’). We say that
z<z’iffx<x’and y<y’. We also writez<z’iffx<x’andy<y’. We shall use the notation

Iz z’ for the closed rectangle [x,x’] x [y,y’]. We denote the rectangle Io, z -[0,x] x [0, y] by Iz.
Tile parameter space will be the square of the plane Ia, where a (hi, a2).

Let J- I_h,o, where h-(hi,h2) and hl,h2 > 0. By C- C(J,R) we denote the Banach
space of all continuous functions u: J--,N endowed with supremum norm

Let I I_ h,a and Io I \Ia. For any function u: I --R and a fixed z Ia we define function

Uz: J--,R by Uz() u(z + ) for e J.

Let (,,) be a complete probability space. By w we denote a two-parameter Wiener pro-
cess. We introduce a family bz, z E I, of r-algebras of subsets of f] with the following properties:

(i) zC ,forz<z’<a;
(ii) for every z e Ia, w(z) is z-measurable;
(iii) for every z Ia, the Wiener measure of the rectangle Iz, z + ) C Ia, which can be intro-

duced as w(z + A)- w(z + A) w(z + A2) + w(z) is independent of

for A (A1,A2) e 2+, where

Let %(9) be the set of all functions v: Ia x f-,R with the following conditions:
(a) v(z,. ): --, is measurable for each fixed z Ia;
(b) v(., w):I is continuous for a.e. fixed w ;
(c) v(z, w) (z, w) for z e I0, w e f2.

It is easy to prove, similarly like in [5], by Borel-Cantelli lemma that %(9) with the norm

II (E(sup [v(z,w)[2)1/2
z

is a Banach space.

Let L2(f,C) be the set of all C(J,R)-valued, mean square integrable functions on f2 and let
be the closed ball of center 7 with radius r in L2(f2, C), that is, S- S(7, r)- {v L2(, C)"
v-7 II 2 _< r}, where r > 0 and

3. Assumptions and Lemmas

Assumption//1: Suppose that
1 the functions f,g’IaxCR are measurable and f(z,.), g(z,.) are continuous for

each fixed z Ia;
2 there is a function H:R3+--,R +, H(., v) is locally integrable for each fixed v R+ and

H(z, is continuous, monotone nondecreasing for each fixed z E 2+ such that

E If(z, v)] 2 + E lg(z, v)[ 2 _< H(z, E II , !12), (4)
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for all z Ia and all v E S;
3o 7(" ,w): I---, is continuous for a.e. w E , 7(z,. is 0-measurable, independent of the

two parameter Wiener process w and 7* E(supze
Now, we define the sequence of successive approximations {un(z)} as follows:

ttn+l(z
(Z) + f f(r, u)dv + f g(v, uT)dw(7"), z e Ia

I Iz z

o(z), z Io,

u(z) 7(z), z e .
Lemma 1: Let Assumption H1 be satisfied. Then, there is-d --(1,2) such that 0 < 5 < a

and the sequence of the functions {E II u ]] 2}, z I-5 is uniformly bounded.

Proof: It is easy to show that the integrals on the right-hand side of (5) are well defined.
Now, let us note, by condition 20 of H1, that the problem

Dzv(Z 3(4 + ala2)H(z v(z)) (6)

v(, 0) ,(), v(0, ) -/(), ()

02has a local solution with any initial functions a and /, a(0)-/(0) [3], [4], where Dz -OxOu"
Take c and / such that a(x)+/(y)-/(0) > 37", (x,y) Ia, and let v be the local solution of
(5) with the initial functions a and/. Now, we shall show that

E II u II 2 < v(z), (8)

and

hold for z E I, n- 1, 2,...

Utilizing Doob’s and Schwarz’s inequalities and condition (4) we obtain a0 such that
0 < ao < a and

1 2 uI 2Ellu:ll -Esupl (z/5)l
eJ

r
ur)dw(v) 2)

J 0I J 0I Jr, z i0 rl, z I0

/ o v(t_< 37" + 3(4 + ala2) H(v,E II ur [[ 2)d’r <
Iz

for all z Ia since v(z)> c(x)+/(y)-(0) > 37* and v(z) is the local solution of (6), where
r] (max(O, x- h1), max(O-y h2) ).

Since the function H(z, v(z)) is integrable on Iao there is such that 0 < < a0 and

1 2 / / 0)dw(7.) 2E II - II 2E( sup f(,u)dr 2) + 2E( sup g(,
0Iz 0I

i0 z i0
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_< 2(4 T ala2) / H(r, v(r))dr <_ r,
I
Z

for all z E In Assume that (8) and (9) hold for n k. Then, we have for n k + 1,

k+l 2 J k V(E II uz II -< 37* + 3(4 + ala2) H(r, E II ur II 2)dr < z),
I
Z

for all z E In Next, utilizing Doob’s and Schwarz’s inequalities we get

k+l k-Tz [[ 2 _< 2(4 -4- ala2) H(v, E II ur II 2)dr
I
Z

< 2(4 + ala2) J H(r, v(r))dv <_ r,
I

for all z In Thus, by induction, (8) and (9) hold for all n. Since v(z)is continuous on
n < C for all z In and every integer n > 0,there exists a real number C > 0 such that E I[ uz II 2

which completes the proof of the lemma.

Assumption//2: Suppose that
1 there is a function G:Ia[O,4r]--R+, G(.,v) is locally integrable for each fixed

v e [0,4r] and G(z,. is monotone nondecreasing, continuous for each fixed z e Ia such
that G(z, 0) 0 and

E[f(z,v)- f(z,)[ 2 + E[g(z,v)- g(z,-)[2 _< G(z,E II II 2), (10)

2o
for all z Ia and all v, S;
if a nonnegative continuous function r/satisfies the following inequality

(z) <_ A / G(r,
Iz

for all z e In, where A- 2(4 + ala2) and 0 < g < a and if r/(0)- 0, then r/(z)-0 on
In

Similarly, as in [6] we can prove the following lemma containing sufficient conditions under
which condition 20 of H2 is satisfied.

Lemma 2: Assume that
1 R(., v)" 2+ .__

+ is locally inlegrable for each fixed v e +
20 R(z,. )’ +---, + is continuous, monotone nondecreasing for each fized z 2+, and

R(z, O) 0 for all z +
30 (z) is a solution of the differential equation Dzrl(z -R(z, rl(z));
40 if (2 0 for some 2 Ia, then O(z) 0 for all z Iz ,a"

Then, if a nonnegative continuous function l(z), z G R2+ satisfies o(O) 0 and

o(z) [
I

for all z G Ia, then (z) O for all z G Ia.
z

mark: As an example of a function which satisfies 2 of H2 we can take R(z,v)-
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A(z)#(v), z e 2+, v e +, where A: 2+_+ + is locally integrable and it: +-+ + is a contin-
uous, monotone nondecreasing function with it(0) 0 such that f 1/it(v)dv oc.

0 +
If it(v) v, v E +

condition [2], [8].
and A(z)-L(L >0), then condition (10)implies global Lipschitz

4. The Local Existence of Solutions

Theorem 1: Let Assumptions H1 and H2 be satisfied. Then, the sequence {un(z)} defined by
(5) converges uniformly on some rectangle 1-5 to a unique local solution of (1), (2).

Proof: Let 1-5 be the rectangle which is obtained in Lemma 1.

{ik} of functions 5k: I-5 --,0{ + by
Now, we define a sequence

k(z) --sup(mn(Z): m >_ n >_

where
m(Z) E II uTM u II 2,

Since the sequence {E II II }, z e 1-5 is uniformly bounded by Lemma 1, we obtain a

positive and real number M such that

(z)

_
2E( II u II 2 + II u II 2) < M

for all z E 1-5. Next, we have that

m,(z) mn(S) <_ E( tl u u II + II uTM II )( II um u7 II + II u u II)

_< [E( II u- u II + II u- u II )211/2. [E(2 II u- u7 II 2 + 2 II uzn- usn II 2)]1/2.
On the other hand, utilizing Doob’s martingale inequality and Schwartz’s inequality we get

E II u II 2 2ala2E If(r, ur )l 2dr) + 8E( g(,u )1 d)
I I
S 2: 8 Z

n-1 2_< 2(4 + aia2) H(r,E ][ ur II )dr
i

2(4 + ala2) Q(z Q(s) [,

for all z,s I-5 and all integers n >_ 1, where Q(z)- f H(r,v(r))dr, and v(z)is a local solution
Iz

of (6). Thus, we obtain a positive and real number P such that

50(z)- .(s) _< P lQ(z)- Q(s) /2

for all m >_ n _> 0 and z, sE1-5. Hence, we have

0 <_ $k(z) < M
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and
a(z)- a(s) _< P[Q(z)- Q(s) /,

for all integers k _> 0 and z,s E I-, which implies that by Ascoli-Arzela’s theorem there is a

subsequence {6k(1)(z)} which converges uniformly to some continuous function ti(z) defined on I.
Now, for m >_ n >_ k(l + 1), since m- 1 _> n- 1 _< k(l), by using Doob’s and Schwarz’s inequali-

ties and condition 1 of H2, we get

mu(Z) EII uzm uz II 2

m- 1 n- 1))dT 12 / m- 1 n- 1 2)sup (f(r, ur f(v, u. + sup (g(v, u. g(v, u ))dw(r)2E(0e oeI
Io z io

m--1 n--1A e(r,E II il 2)d 
Iz

A - G(r, k()(r))dr,
Iz

for all z 6 I, where A 2(4 + all2) from which we deduce

k( + )(z) A G(v,k()(r))dr z I.
I

Thus, since (hk(1)(z)} converges uniformly to 5(z) as l, by the dominated convergence theor-
em of Lebesgue hd the continuity of G(z, v) in v for each fixed z 6 I, we have

z e
Iz

Therefore, by condition 2 of H2, we get (z) -0 on I.
Now, for m n k(! + 1), applying Doob’s martingale inequality and Schwarz’s inequality,

we obtain

E(sup lure(z)- un(z) 2)
zI-a

m- 1) n- 1 2 / -- 1) .- 1))dw(r) 2)
r

_< 2E(sup (f(v, ur f(v,ur ))dr + sup (g(T,ur g(v, urzEI- zEI- Ja I a Iz z

m--1 n--1 2_< 2(4 / all2) G(r,E II u.,. ur II )dr
I-a_

2(4 -b all2)/- G(T, k(l)(’))dv-,O
as l--oc, which implies that the sequence {uS(z)} is a Cauchy sequence in Banach space %-().
Therefore, there exists a stochastic process u(z) such that

.E(sup uS(z)- u(z) 12)0
z I
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as n-.cx. As usual, we can prove that u(z)is a local solution of (1), (2).
Finally, we shall show the uniqueness of the local solution. Let u(z) and v(z) be two local

solutions of existing on the rectangle I with u(z) v(z) 99(z), z E Io. Then, we get

E II Uz- Vz II 2 _< 2(4 + ala2)/G(r,E II ur- vr I] 2)dr,
Iz

for all zEIa from which using condition 20 of H2, we find Elluz-vzll2
Therefore, we must have uz-vz for all zEI, so u(z)--v(z), zI a.s.
proof.

-0 for all zI.
This completes the

5. The Global Existence of Solutions

Now, we shall present the existence and uniqueness of global solution of (1), (2).
Theorem 2: Let

1o Assumptions H1 and Io of H2 are satisfied with r-oc and a-oc (i.e., a1 -cx and
a2

2o for any fixed a > O, the differential equation (6) has a global solution for any initial func-
tions a and ;

3o for any fixed a > O, condition 2o of H2 holds.

Then, the sequence {ur’(z)} defined by (5) converges uniformly on any sunrectangle I of 2+,
to a unique solution of (1), (2).

Proof: Denote by I . the largest rectangle on which the sequence {un(z)} converges uni-form-
ly. By ’Theorem 1, we have that a1 > 0 and a2 > 0. Now, we suppose that a1 < cx3. Then, we
can take a1 such that a1 > 0 and a2 > 0. Now we suppose that aI < . Then, we can take a1
such that a < ’1 < cx3. Thus, by assumptions 1 and 2, we have a solution v(z) of (6) with
a (1, a2) which exists on I~, and estimate (8) holds on the rectangle I~. The rest of the

a a
proof follows as in Theorem 1, replacing a by . Similar arguments apply to the case a2
This proves the theorem.

The following corollary gives a special case of the comparison function G.

Corollary: Assume that
1 there are a continuous, monotone nondecreasing and concave function #" +--,+ with

It(O) 0 and e L]oc(R + ,R + such that

f(z, v) f(z, 2 "I" g(z, v) g(z, 2 ,X(z)It( II v II 2),

2o

4o

for v, E z E R+
f(’,0)], Ig(’,0) e Lo(n+,R+);
f 1/It()d x;

o +
condition 3o of H1 is satisfied.

Then, on any finite rectangle Ia, the sequence {un(z)}, z Ia, defined by (5), converges
uniformly to a unique solution of (1), (2).

Proof: Since It is concave by condition 1, we obtain

E f(z, v) f(z, v 12 + E a(z, a(z, v) 12 $(z)It(E II , II 2).
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From condition 1 we get

f(z,,)l : + g(z, )1

<_ 2[l f(z,v)- f(z,O) 2 + g(z,v)- g(z,O) I]2 + 211 f(z,O) 2.4_ g(z,O) 2]

_< 2(z)( II v II 2) + 2[ f(z 0) 12 + g(z

(11)

Since p is concave, there exist positive real numbers c and d such that p()_< c + d. Set
8(z) = 2cA(z) and v(z) 2d$(z)+ 21f(z 0) 12 + 21g(z 0) 12. Then p and v are locally integrable
with respect to z E R2+ Hence, combining with (11) we have

]f(z,v) 2 + Ig(z,v) 2 < (z)]] v I] 2_4_v(z).

Next, set H(z, v) (z)v + u(z), v >_ O, for all z e R2+. Then, since H is linear in v, condition 20
of Theorem 2 holds. Obviously, the rest of the assumptions of Theorem 2 are satisfied. There-
fore, by Theorem 2, we get the desirable conclusion, which completes the proof of the corollary.

6. Examples

(1).
We now give a few examples of differential equations which can be transformed to equation

If we define

f(x, y, v) f (x, y, v(o(x, y).- x, (x, y) y)),

then the differential equation with retarded argument

0--,,) ( ,u((, ), (, ))) + (, , (7(, ), (, ))oZ@’( )’

where a, fl, 7, " Ia"-* are given functions such that -hI _< c(x, y) _< x, -h2 _< 7(x, y) _< x, can be
transformed to equation (1).

The differential-integral equation

Ox(gy,,X, y) f (x, y,

,(, )

" (, ) (, )

/’1(, -,x,y)u(, ’)ddv)
(,)

(,) (,)

+ y (x, y, K2(, v, x, y)u(, v)ddv) (x, y)
(, u).

can be rewritten to the particular case o (1). In this case we define f and g by

KI(, r,x,y)v(- x, 7" y)ddv)
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Let us define on hi, 0] X h2, 0], where h - h + ai, 1, 2, by (x, y) a(x, y) for
(x, y) E I0 and (x, y) a( hi, h2) for (x, y) E hi, hi) x h2, h2). We introduce the
operator

(x, y)" C([ hi, 0] x h2, 0], R)-.C([x hi, x] x [y h2, y], R),

where~ (x,y)Ia, which is defined by ((x,y)v)(,r)-v(-x,r-Y),(,r)[X-hl,X]x
[y- h2, y]. If we take

f(x,y,v)- f (x,y,(Vl((x,y)V))(x,y))

then the differential-functional equation

cOxOy,X, y) f (x, y, (Ylu)(x, y)) + " (x, y, (V2u)(x y)zoxO/,x, y) (x, y) e Ia,

t(x, y) (x, y), (x, y) [-hl,O][-h2,0],

where Vj, j- 1,2, are operators of the Volterra type, can be transformed to the particular case of
(1), (2).
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