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ABSTRACT

In the paper we study the existence of solutions of the random differential in-
clusion

2t a(t, xt) P.l,t [0,T]-a.e.
(z)

x0 #,

where G is a given set-valued mapping value in the space Kn of all nonempty,
compact and convex subsets of the space n, and # is some probability measure
on the Borel a-algebra in Rn. Under certain restrictions imposed on F and #, we
obtain weak solutions of problem (I), where the initial condition requires that the
solution of (I) has a given distribution at time t 0.
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1. Preliminaries

Problems of existence of solutions of differential inclusions were studied by many. In particu-
lar, random cases were considered in [3], [5], [7]. This work deals with the inclusion with a purely
stochastic initial condition. First, we recall several notions and results needed in the sequel. Let
Kc(S be the space of all nonempty compact and convex subsets of a metric space S equipped
with the Hausdorff metric H (see e.g., [1], [4])" H(A,B)- max([I(A,B),(B,A));A,B E gc(s),
where H(A,B)-sup inf p(a b). By [IA [[ we denote the distance H(A,O). For S being a

aEAbEB
separable Banach space, (Kc(S),H) is a polish metric space.

Let I- [0, T], T > 0. For a given multifunction G:I--.Kc(S by DHG(to) we denote its
Hukuchara derivative at the point to E I (see e.g., [2], [9]) by the limits (if they exist in gc(S))

lim
F(t + h)- F(to)

lim
F(t)- F(t- h)

h-,o + h h-o + h

both equal to the same set DHF(Io) Kc(S).
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For S- Rn and Kn- Kc(Rn), we denote by CI -C(I,Kn) the space of all H-continuous set-
valued mappings. In CI we consider a metric p of uniform convergence

p(F, G): sup H(X(t), Y(t)), for X, Y CT.
0<t<T

Then C1 is a polish metric space.

Let (f2, , P) be a given complete probability space. We recall now the notion of a multival-
ued stochastic process. The family of set-valued mappings X- (Xt) > 0 is said to be a multival-
ued stochastic process if for every t > 0, the mapping Xt: f2Kn is me-surable, i.e., Xt(U): {w:
Xt(w gl U :/: 0} , for every open set U C_ n (see e.g., [1, 4]). It can be noted that U can be
also chosen as closed or Borel subset. We restrict our interest to the case when 0 _< t < T, T > 0.
If the mapping t-,Xt(w is continuous (H-continuous) with probability on (P.1), then we say
that the process X has continuous "paths."

Let us notice that the set-valued stochastic process X can be though as a random element X:
ft--CI. Indeed, it follows immediately from [3] and from the fact that the topology of the
uniform convergence and the compact-open topology in CI are the same.

Definition 1: A probability measure # (on Ci) is a distribution of the set-valued process
X (Xt)o < < T if one has #(A) P((A)) for every Borel subset A from CI.

A distribution of X will be denoted by pX.

Definition 2: A set-valued mapping F: I x Kn--Kn is said to be an integrably bounded of the
Caratheodory type if: T

1) there exists a measurable function m:I-,R+ such that fm(t)dt<oc and
I! F(t, A)II <_ re(t) A E Kn. o

2) F(t,. )is H-continuous t-a.e.
3) F(. ,A) is a measurable multifunction for every A Kn.
Let us consider now the multivalued random differential equation:

DHX F(t, Xt) P.1, t e [0, T]-a.e. (II)

Xo d

where the initial condition requires that the set-valued solution process X (Xt) E I has a given
distribution # at the time t =0. By a weak solution of (II) we understand a system
(,,P(Xt)tE I) where (Xt)te I is a set-valued process on some probability space (,,P)such
that (II) isomer.

We state the following theorem (see e.g. [6]).
Theorem 1: Let F: I x Kn---Kn be an integrably bounded set-valued function of the Caratheo-

dory type and let # be an arbitrary probability measure on the space Kn. Then there exists a
weak solution of (II).

2. Weak Solutions of Random Differential Inclusions

As an application of Theorem 1, we show the existence of a weak solution of the random
differential inclusion

k G(t, xt) P.1, t [0, T]-a.e.
do- . ()
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The weak solution of (I) is understood similarly as above, where # is now a given probability mea-
sure on

Let To denote the family of nonempty open subsets of Rn, and let C- {Cv; V E if0}, where
CV {K Kn: K 3 V :/: 0}. Then we have that %n_ g(C) (see e.g. Proposition 3.1 [4]), where
%n is a Borel g-field induced by the metric space (Kn, H).

Lemma 1: The following hold true"
i) K C,
it) if A1, A2,... C then J An C,

n--1

iii) if CV C CV C... then V1C V2C1-- 2--

Proof: The property i) is obvious. Let V1, V2,... G 0 be such that An- CV for n- 1,

2, To establish ii), let us observe that [.J An -C o
n=l J Vn

n:l

Let us suppose that iii) does not hold. Then for some k >_ 1, Vk Vk + 1" Hence there exists
a point xGVk such that xVk+l. But then {x}ECvk and {x}CYk+l contradicts to

Cyk C_ Cyk + .
To obtain our main result we need the following lemma:

Lemma 2: If is a probability measure on the Borel g-algebra (Rn), then there exists a

probability measure fi on the space gn such that "fi(Cv) #(V), Y G o"
Proof: Let C be the family generating Borel r-field %n. We define a set-function u on C by

u(Cy) #(Y). Let us observe that u is well-defined. Indeed, if Cv1 CV2 and #(Yl) /z(V2)
then V1 -7(= V2. Hence VI\V2 0 or V2\V1 . Without loss of generality we may assume the
first case. Then there exists x V2 such that x V1. But then {x} CV2 and {x} Cv1 which

contradicts with an equality Cv1- Cv2. Similarly, it can be shown that if the sets Cv1 and

Cv2 are disjoint, then the sets V1, V2 have the same property too. Hence we get u(Cyl tA

Cv2 u(Cyl + u(Cy2 for disjoint Cv1 and Cv2. From Lemma 1 we conclude that,, if Cv1 C_

Cv2 C_..., then oo oo

U Cv eCandu(U Cv )-limu(Cy ).
n=l n n=l n n

Finally let us observe that u is g-subadditive. Next we define another setMoreover, u(Kn) 1.
function as follows:

(A)" -inf{u(D)" A C D,D C}, A C Kn.
Standard calculations show that " is an outer measure on Kn. Thus from the Caratheodory

Theorem, is a probability measure on the g-field of -measurable subsets in Kn. Setting -[%n, we obtain a desired probability measure.

We now present the following existence theorem.

Theorem 2: Let us suppose that G" I x n--,Kn is an integrably bounded multifunction of the
Caratheodory type. Then for any probability measure p on Rn, there exists a weak solution of
problem (I).

Proof." Lemma 2 yields the existence of a probability measure on the metric space (Kn, H)
with the property: fi(Cy)- #(Y), Y o" Let F:I x KnKn be a multifunction defined by
F(t,A)- -bG(t,A), for A gn. Hence from Lemma 1.1 [9], the set-valued mapping F is
integrably bounded of the Caratheodory type too. Consequently, by Theorem 1, there exists a

probability space (gt,Y,P) and the set-valued stochastic process X- (Xt)0 <t< T (on it) with
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continuous "paths" and with values in Kn which is a weak solution of the equation

DHX F(t, Xt) P.l,t E [0, T]-a.e.

Xo d

From Kuratowski and Ryll-Nardzewski Selection Theorem [4] we can choose :fn as a

measurable selection of X0. Then by Theorem 4 [5] (see also [3]), there exists a stochastic process
x (zt)o < < T as a selection of X that is a solution (in strong sense) of the random differential
inclusion’-

t G(t, xt) P.1, t [0, T]-a.e.

z0 U P.1,

where U(w)= {(w)} for w e f.

To complete the proof, it is sufficient to show that z0
d

#; Let us notice that {W:Xo(W
V} {w: (w) E V} C {w: X0 VI Y # q}}, Y 0" Because of X0 a- and "fi(Cv) #(Y) we have

Px(v) < #(V). (.)

Using regularity properties of probability measures (on a separable metric space) (see e.g., Th. 1.2
[8]), we have that

PX(B)- inf{pX(V): B C V, V 0}

and #(B)= inf{#(V):B C V,V 0} for every Borel subset B of n.
we get PX(B)< It(B). But Px and It are probability measures.
equgl.

Hence from inequality (,)
Therefore they have to be
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