ON WEAK SOLUTIONS OF RANDOM DIFFERENTIAL INCLUSIONS

MARIUSZ MICHTA¹

Technical University
Institute of Mathematics
Podgorna 50, 65-246 Zielona Gora
Poland

(Received January, 1995; Revised April, 1995)

ABSTRACT

In the paper we study the existence of solutions of the random differential inclusion

$$\begin{split} \dot{x}_t &\in G(t,x_t) \quad P.1, t \in [0,T] \text{-a.e.} \\ x_0 &\stackrel{d}{=} \mu, \end{split} \tag{I}$$

where G is a given set-valued mapping value in the space K^n of all nonempty, compact and convex subsets of the space \mathbb{R}^n , and μ is some probability measure on the Borel σ -algebra in \mathbb{R}^n . Under certain restrictions imposed on F and μ , we obtain weak solutions of problem (I), where the initial condition requires that the solution of (I) has a given distribution at time t=0.

Key words: Set-Valued Mappings, Hukuchara's Derivative, Aumann's Integral, Tightness and Weak Convergence of Probability Measures.

AMS (MOS) subject classifications: 93E03, 54C65, 60B10.

1. Preliminaries

Problems of existence of solutions of differential inclusions were studied by many. In particular, random cases were considered in [3], [5], [7]. This work deals with the inclusion with a purely stochastic initial condition. First, we recall several notions and results needed in the sequel. Let $K_c(S)$ be the space of all nonempty compact and convex subsets of a metric space S equipped with the Hausdorff metric H (see e.g., [1], [4]): $H(A,B) = \max(\overline{H}(A,B),\overline{H}(B,A)); A,B \in K_c(S),$ where $\overline{H}(A,B) = \sup_{a \in A} \inf_{b \in B} \rho(a,b)$. By ||A|| we denote the distance H(A,0). For S being a separable Banach space, $(K_c(S),H)$ is a polish metric space.

Let I = [0, T], T > 0. For a given multifunction $G: I \to K_c(S)$ by $D_H G(t_0)$, we denote its Hukuchara derivative at the point $t_0 \in I$ (see e.g., [2], [9]) by the limits (if they exist in $K_c(S)$)

$$\lim_{h \to 0} + \frac{F(t_0 + h) - F(t_0)}{h}, \lim_{h \to 0} + \frac{F(t_0) - F(t - h)}{h},$$

both equal to the same set $D_H F(t_0) \in K_c(S)$.

¹This work was supported by KBN grant No. 332069203.

Printed in the U.S.A. ©1995 by North Atlantic Science Publishing Company

For $S = \mathbb{R}^n$ and $K^n = K_c(\mathbb{R}^n)$, we denote by $C_I = C(I, K^n)$ the space of all *H*-continuous set-valued mappings. In C_I we consider a metric ρ of uniform convergence

$$\rho(F,G) \colon = \sup_{0 \, \leq \, t \, \leq \, T} H(X(t),Y(t)), \ \text{ for } X,Y \in C_T.$$

Then C_I is a polish metric space.

Let $(\Omega, \mathfrak{F}, P)$ be a given complete probability space. We recall now the notion of a multivalued stochastic process. The family of set-valued mappings $X=(X_t)_{t\geq 0}$ is said to be a multivalued stochastic process if for every $t\geq 0$, the mapping $X_t\colon \Omega\to K^n$ is measurable, i.e., $\bar{X}_t(U)\colon=\{\omega\colon X_t(\omega)\cap U\neq\emptyset\}\in \mathfrak{F},$ for every open set $U\subseteq\mathbb{R}^n$ (see e.g., [1,4]). It can be noted that U can be also chosen as closed or Borel subset. We restrict our interest to the case when $0\leq t\leq T,\ T>0$. If the mapping $t\to X_t(\omega)$ is continuous (H-continuous) with probability on (P.1), then we say that the process X has continuous "paths."

Let us notice that the set-valued stochastic process X can be though as a random element X: $\Omega \rightarrow C_I$. Indeed, it follows immediately from [3] and from the fact that the topology of the uniform convergence and the compact-open topology in C_I are the same.

Definition 1: A probability measure μ (on C_I) is a distribution of the set-valued process $X = (X_t)_{0 < t < T}$ if one has $\mu(A) = P(\bar{X}(A))$ for every Borel subset A from C_I .

A distribution of X will be denoted by P^X .

Definition 2: A set-valued mapping $F: I \times K^n \to K^n$ is said to be an integrably bounded of the Caratheodory type if:

- there exists a measurable function $m: I \to \mathbb{R}_+$ such that $\int\limits_0^T m(t)dt < \infty$ and $||F(t,A)|| \le m(t)$ t-a.e., $A \in K^n$.
- 2) $F(t, \cdot)$ is H-continuous t-a.e.
- 3) $F(\cdot, A)$ is a measurable multifunction for every $A \in K^n$.

Let us consider now the multivalued random differential equation:

$$D_H X_t = F(t, X_t) \ P.1, t \in [0, T] \text{-a.e.}$$

$$(II)$$

where the initial condition requires that the set-valued solution process $X = (X_t)_{t \in I}$ has a given distribution μ at the time t = 0. By a weak solution of (II) we understand a system $(\Omega, \mathfrak{F}, P(X_t)_{t \in I})$ where $(X_t)_{t \in I}$ is a set-valued process on some probability space $(\Omega, \mathfrak{F}, P)$ such that (II) is met.

We state the following theorem (see e.g. [6]).

Theorem 1: Let $F: I \times K^n \to K^n$ be an integrably bounded set-valued function of the Caratheodory type and let μ be an arbitrary probability measure on the space K^n . Then there exists a weak solution of (II).

2. Weak Solutions of Random Differential Inclusions

As an application of Theorem 1, we show the existence of a weak solution of the random differential inclusion

$$\dot{\boldsymbol{x}}_t = G(t, \boldsymbol{x}_t) \quad P.1, t \in [0, T]\text{-a.e.}$$

$$x_0 \stackrel{d}{=} \mu.$$
 (I)

The weak solution of (I) is understood similarly as above, where μ is now a given probability measure on \mathbb{R}^n .

Let \mathfrak{T}_0 denote the family of nonempty open subsets of \mathbb{R}^n , and let $C = \{C_V; V \in \mathfrak{T}_0\}$, where $C_V = \{K \in K^n: K \cap V \neq \emptyset\}$. Then we have that $\mathfrak{B}^n = \sigma(C)$ (see e.g. Proposition 3.1 [4]), where \mathfrak{B}^n is a Borel σ -field induced by the metric space (K^n, H) .

Lemma 1: The following hold true:

- $\begin{array}{ll} \vdots & \vdots & \vdots \\ ii) & if \ A_1, A_2, \ldots \in C \ then \ \bigcup_{n=1}^{\infty} A_n \in C, \\ iii) & if \ C_{V_1} \subseteq C_{V_2} \subseteq \ldots \ then \ V_1 \subseteq V_2 \subseteq \ldots. \end{array}$

Proof: The property i) is obvious. Let $V_1, V_2, ..., \in \mathcal{T}_0$ be such that $A_n = C_{V_n}$ for n = 1, Proof: The property , $2, \dots \text{ To establish } ii), \text{ let us observe that } \bigcup_{n=1}^{\infty} A_n = C \underset{n=1}{\overset{}{\bigcirc}} V_n.$

Let us suppose that iii) does not hold. Then for some $k \ge 1$, $V_k \not\subseteq V_{k+1}$. Hence there exists a point $x \in V_k$ such that $x \notin V_{k+1}$. But then $\{x\} \in C_{V_k}$ and $\{x\} \notin C_{V_{k+1}}$ contradicts to $C_{V_k} \subseteq C_{V_{k+1}}$.

To obtain our main result we need the following lemma:

Lemma 2: If μ is a probability measure on the Borel σ -algebra $\mathfrak{B}(\mathbb{R}^n)$, then there exists a probability measure $\widehat{\mu}$ on the space K^n such that $\widehat{\mu}(C_V) = \mu(V)$, $V \in \mathcal{T}_0$.

Proof: Let C be the family generating Borel σ -field \mathfrak{B}^n . We define a set-function ν on C by $\nu(C_V) = \mu(V). \quad \text{Let us observe that } \nu \text{ is well-defined. Indeed, if } C_{V_1} = C_{V_2} \text{ and } \mu(V_1) \neq \mu(V_2) \\ \text{then } V_1 \neq V_2. \quad \text{Hence } V_1 \backslash V_2 \neq \emptyset \text{ or } V_2 \backslash V_1 \neq \emptyset. \quad \text{Without loss of generality we may assume the first case.} \quad \text{Then there exists } x \in V_2 \text{ such that } x \notin V_1. \quad \text{But then } \{x\} \in C_{V_2} \text{ and } \{x\} \notin C_{V_1} \text{ which } \{x\} \in C_{V_2} \text{ and } \{x\} \notin C_{V_2} \text{ and } \{x\} \notin C_{V_2} \text{ and } \{x\} \notin C_{V_2} \text{ which } \{x\} \in C_{V_2} \text{ and } \{x\} \notin C_{V_2} \text{ and } \{x\} \text{ and } \{x\} \notin C_{V_2} \text{ and } \{x\} \text{ and } \{x\} \notin C_{V_2} \text{ and } \{x\} \text{ and }$ contradicts with an equality $C_{V_1} = C_{V_2}$. Similarly, it can be shown that if the sets C_{V_1} and C_{V_2} are disjoint, then the sets V_1 , V_2 have the same property too. Hence we get $\nu(C_{V_1} \cup$ $C_{V_2} = \nu(C_{V_1}) + \nu(C_{V_2})$ for disjoint C_{V_1} and C_{V_2} . From Lemma 1 we conclude that, if $C_{V_1} \subseteq C_{V_2}$ $C_{V_2} \subseteq \ldots$, then $\bigcup_{n=1}^{\infty} C_{V_n} \in C \text{ and } \nu(\bigcup_{n=1}^{\infty} C_{V_n}) = \lim \nu(C_{V_n}).$

Moreover, $\nu(K^n) = 1$. Finally let us observe that ν is σ -subadditive. Next we define another set function $\hat{\nu}$ as follows:

$$\widehat{\nu}(A) := \inf \{ \nu(D) : A \subset D, D \in C \}, A \subset K^n.$$

Standard calculations show that $\hat{\nu}$ is an outer measure on K^n . Thus from the Caratheodory Theorem, $\hat{\nu}$ is a probability measure on the σ -field of $\hat{\nu}$ -measurable subsets in K^n . Setting $\hat{\mu} =$ $\widehat{\nu} \mid_{\mathfrak{P}^n}$, we obtain a desired probability measure.

We now present the following existence theorem.

Theorem 2: Let us suppose that $G: I \times \mathbb{R}^n \to K^n$ is an integrably bounded multifunction of the Caratheodory type. Then for any probability measure μ on \mathbb{R}^n , there exists a weak solution of problem(I).

Proof: Lemma 2 yields the existence of a probability measure $\hat{\mu}$ on the metric space (K^n, H) with the property: $\widehat{\mu}(C_V) = \mu(V)$, $V \in \mathfrak{T}_0$. Let $F: I \times K^n \to K^n$ be a multifunction defined by $F(t,A) = \overline{\operatorname{co}}G(t,A)$, for $A \in K^n$. Hence from Lemma 1.1 [9], the set-valued mapping F is integrably bounded of the Caratheodory type too. Consequently, by Theorem 1, there exists a probability space $(\Omega, \mathfrak{F}, P)$ and the set-valued stochastic process $X = (X_t)_{0 < t < T}$ (on it) with continuous "paths" and with values in K^n which is a weak solution of the equation

$$D_H X_t = F(t, X_t) \ P.1, t \in [0, T]$$
-a.e.

$$X_0 \stackrel{d}{=} \widehat{\mu}$$
.

From Kuratowski and Ryll-Nardzewski Selection Theorem [4] we can choose $\xi: \Omega \to \mathbb{R}^n$ as a measurable selection of X_0 . Then by Theorem 4 [5] (see also [3]), there exists a stochastic process $x = (x_t)_0 \le t \le T$ as a selection of X that is a solution (in strong sense) of the random differential inclusion:

$$\dot{x}_t \in G(t, x_t)$$
 P.1, $t \in [0, T]$ -a.e.

$$x_0 \in U \quad P.1,$$

where $U(\omega) = \{\xi(\omega)\}\$ for $\omega \in \Omega$.

To complete the proof, it is sufficient to show that $x_0 \stackrel{d}{=} \mu$. Let us notice that $\{\omega : x_0(\omega) \in V\} = \{\omega : \xi(\omega) \in V\} \subset \{\omega : X_0 \cap V \neq \emptyset\}, \ V \in \mathfrak{T}_0$. Because of $X_0 \stackrel{d}{=} \widehat{\mu}$ and $\widehat{\mu}(C_V) = \mu(V)$ we have

$$P^{x_0}(V) \le \mu(V). \tag{*}$$

Using regularity properties of probability measures (on a separable metric space) (see e.g., Th. 1.2 [8]), we have that

$$\boldsymbol{P}^{x_0}(B) = \inf\{\boldsymbol{P}^{x_0}(V) \colon B \subset V, V \in \mathfrak{T}_0\}$$

and $\mu(B) = \inf\{\mu(V): B \subset V, V \in \mathcal{T}_0\}$ for every Borel subset B of \mathbb{R}^n . Hence from inequality (*) we get $P^{x_0}(B) \leq \mu(B)$. But P^{x_0} and μ are probability measures. Therefore they have to be equal.

References

- [1] Himmelberg, C.J. and Van Vleck, F.S., The Hausdorff metric and measurable selections, Topol. and its Appl. 20 (1985), 121-133.
- [2] Hukuchara, M., Sur l application semicontinue dont la valeur est un compact convexe, Funkcial. Ekwac. 10 (1967), 43-66.
- [3] Kandilakis, D.A. and Papageorgiou, N.S., On the existence of solutions of random differential inclusions in Banach spaces, J. Math. Anal. Appl. 126 (1987), 11-23.
- [4] Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer 1991.
- [5] Michta, M., Set-valued random differential equations in Banach space, *Discussines Math.* (1994), (submitted).
- [6] Michta, M., Weak solutions of set-valued random differential equations, *Demonstratio Mathematica* (1994), (submitted).
- [7] Nowak, A., Random differential inclusions: measurable selection approach, Ann. Pol. Math. XLIX (1989), 291-296.
- [8] Parthasarathy, K.R., Probability Measures on Metric Spaces, Academic Press, New York 1967.
- [9] Tolstonogov, A., Differential Inclusions in Banach Spaces, Nauka, Moscow 1986 (Russian).