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ABSTRACT

We investigate the external approximation-solvability of nonlinear equations
an upgrade of the external approximation scheme of Schumann and Zeidler [3]

in the context of the difference method for quasilinear elliptic differential equa-
tions.
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1. Introduction

Based on the inner approximation schemes of Petryshyn [1, 2] for projection methods,
Schumann and Zeidler [3] applied an external approximation scheme to difference method for
quasilinear elliptic differential equations. Here we generalize the approximation-solvability of
nonlinear operator equations corresponding to an external approximation scheme, which upgrades
the external approximation of Schumann and Zeidler. Finally, we consider an application to the
abstract generalization.

For details on the approximation-solvability, see [1-5].
Next, let ro {X, F, Xn, X*, X, A, W, An, Rn, Kn, En} be an external approximation scheme

represented by a diagram

w A X*F - X -
TEn $R, (1)

K A
Xn Xn X*

where X,F,Xn are real Banach spaces with F reflexive and dim Xn < c for all n E N. Here
Rn: X-*Xn is a restriction operator, En: Xn--F is an extension operator, Ks: Xn-.Xn is a linear
continuous operator, and W:X--F is a synchronization operator. All operators Rn, Kn and En
are linear and continuous with sup II Rn II < cxz, sup II h’n II < cxz and sup II En [[ < cx. The
operator W is linear, continuous and injective. Furthermore, all operators An are continuous.

The approximation scheme r0 coincides with the following external approximation scheme of
Schumann and Zeidler [3], 7rl-{X,F, Xn, X*,X,A,W, An, Rn, En} when g

n is the
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identity:

w A X*F X

En Rn (2)
AnXn ---* Xn

and r0 reduces to the inner approximation schemes of Petryshyn [1, 2] for projection methods
when F- X, and W and Kn are the identities.

Let us recall some definitions for the sake of the completeness. In what follows, the symbols
"---," and "" shall denote the strong convergence and weak convergence, respectively.

DI.1 (Admissible external approximation scheme): The approximation scheme r0 is called
an admissible external approximation scheme if the following implications should hold"

(I1) Compatibility condition: For all x E X, as n---,cx,

EnKnRnx--*W(x) in F.

(I2) Synchronization condition: The weak limits in F of the sequences {EnKnxn} and their
subsequences are synchronized, that is, if

wEn,Kn,xn,f in F as nc,

then f W(X).
D1.2 (Discrete convergence): For a sequence (Zn) of elements with

n N, (n) is said to convere discreel to n iff

for all

D1.3 (Discrete* convergence): For a sequence (x,) of functionals with xn e Xn

the sequence (x,)is said to convere discretely* to * E X* n---, iff

for all

lim [x*,Zn]Xn -[z*,Z]XC

holds for all sequences (xn) xn e Xn with sup II Xn II < and

EnKnxn---W(x in F as

2. External Approximation-Solvability

In this section, we consider the unique approximation-solvability of the initial value problem

Ax- b, x X, (3)

and corresponding discretized problem
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Anxn-bn, xn E Xn, n-l,2,..., (4)

with respect to the approximation scheme 7r0 represented by the diagram (1).
Theorem 2.1: Suppose that the approximation scheme 7ro represents an admissible external

approximation scheme, and the following assumptions hold:
(A1) Weak Consistency: For all x X,

d*A,R,z Ax.

(A2) Stability: For all x, y Xn and n > no,

(A3)

> (ll -yllx ),II Anx- AnY II X*n
where # is a suitable gauge function.
Approximation of the term b in (3): For each b e X*, there exists a sequence (bn) such
that

d*bn bforbnX*n and for alln_>no

Then the following conditions are equivalent"
(C1) Solvability: For each b X*, the equation

Ax b, x X,

has a solution.
(C2) Unique approximation-solvability: The equation Ax- b is said to be uniquely approxi-

mation-solvable if the following implications h01d"
(i) For b x*, the equation Ax- b has a unique solution x X.
(ii) For each bn X and all n > n0, the approximate equation

Anxn bn

(iii)
has a unique solution xn Xn.
As n----(x:)

d*- dbn --*t)==C.Xn---*x and EnKnxn---W(x in F.

(C3) A-properness: The operator A:XX* is A-proper with respect to the approximation
scheme 7r0, that is, if the following implications hold:

d*An,xn, --b and sup II II X,
imply the existence of a subsequence (Xn,,) such that

d
x ,,x and Ax- b.

More precisely, the theorem can be expressed as follows: If the approximation scheme r0 is
an admissible external approximation scheme with weak consistency and stability, then the
equation Ax b, x X, is uniquely approximation-solvable iff A is A-proper.

Remark 2.2: Let the assumptions (A1)-(A3) hold. Then we have two different situations for
using Theorem 2.1"
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(S1)

(s2)

Abstract existence theorems imply the unique approximation-solvability, that is, if the
equation Ax- b, x E X, has a solution, i.e., (C1) holds, then, by Theorem 2.1, the
equation Ax- b is uniquely approximation-solvable, and A: X--X* is A-proper.
A-properness implies the unique approximation-solvability, that is, if we show the A-
properness of A:XX* by a direct argument, then the equation Ax b, x X, by
Theorem 2.1, is uniquely approximation-solvable.

Corollary 2.3: Theorem 2.1 reduces to the theorem of Schumann and Zeidler [3] when Kn
the identity.

Before proving Theorem 2.1, we give a lemma, crucial to the proof.

Lemma 2.4: Let 7ro be an admissible external approximation scheme.
implications hold:

(i) te <te*::sttPn II *. II <
d** ---O=alim II n II O,(ii) ten no

*

d** --,* Assume sup II n II < does not hod,Proof: (i) Let ten
te*quence, again denoted by (n), such that

i’3

Then the following

Then there is a subse-

As
that

II II > n for all n.

II , II up{[, .]: II . II 1}, there exists a subsequence, again denoted by (ten), such

II n II 1 and[ n, Zn] > n for all n.

Since SUpn II En II < o and SUPn II Kn II < oo, we have supn II EnKnten II < oo.
reflexive,

Given that F is

wEnKnxn---f in F as n--,c.

The synchronization condition (I2) implies that

* d--*x* leads toThus, ten

y- w().

which contradicts (5).. d*(ii) Let ten---0. Since

there exists a sequence (ten) with II n II 1 and.

II II -[. n, ten]l < for all n.

By similar arguments as in the proof of (i), there is a subsequence, again denoted by (ten),
such that

EnKnXn--*W(te in F as n--oe.
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d* --,0 this implies thatSince x..

and hence

Proof of Theorem 2.1" To prove (C3)=(C2), we first show that, for fixed b.. E X, the
equation Anxn bn has exactly one solution xn X.. for all n _> n0.

Since the operator An: X..--X is injective, by the stability condition (A2), the set A..(Xn)is
open by the Brouwer theorem on the invariance of domain ([6], Theorem 16C). Next, to show
that the set An(Xn) is closed, let A..xk---,z as k---,c. Then (A..xk) is a Cauchy sequence in Xn.
It is easy to see that (xk) is also a Cauchy sequence, by the stability condition (A2), in X...
Hence, xk--,x as k--*cxz. Since A.. is continuous, we get Anx- z, that means, z A..(Xn). To
this end, since the nonempty set An(X.. is both open and closed, this implies that
An(X,, X*,*"

Second, we proceed to show, for fixed b G X*, that the equation Ax- b has at most one

solution x G X. Let us assume Ax- Ay. Then, by the stability condition (A2), we obtain

By the weak consistency condition (A1), we get

d*AnR..x- A..Rny "-0,

and by Lemma 2.4(ii), we have

Thus,

This implies that

II Rz- R..y II-0 as n-,

It follows that

II EnK..R..x- EnK..R..Y II < (sup It E II )(sup II K II)11 R-Ry II 0 s n---cx,

and by the compatibility condition (I1),

w(.-)-0,

that is, x- y.

Third, we show that, for b X*, the equation Ax-b has exactly one solution x E X.
d*Let us choose a sequence (bn) such that bn ---,b as in (A3), Anxn -b.. as in the first part of the

proof. Then it follows from (A1) and Lemma 2.4(i) that
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dAnRn(O ---A(O) and sup II AnRn(O) II < o,z.

Since Rn(O -O, we have

II bn II II Anxn II >- II Anxn- An(0)II II An(0)II

This implies that

Since A is A-proper, we obtain

d
z ,z and Ax- b.

Fourth, we show that bn
d--b and Anxn --bn imply that

dxnx and EnKnxn--W(x in F.

It follows from the preceding part that each subsequence (xn,) of (xn) has another subsequence
(z,,) such that

d
x ,,--,x and Ax- b.

The limit element x remains the same for all subsequences since Ax- b has exactly one solution
x. Thus, the convergence of the whole sequence follows, that is,

Finally, we show that

dxn--*x:::EnKnxn---*W(x) in F.

dSince znz and r0 is an admissible external approximation scheme, we get, as n,

II EnKnxn- W(x) II II EnKnxn- EnKnnnx + EnKnnnx- W(x) II

< II EnKnxn- EnKnRnx II -4- II EnKnRnx- W(x)I[

(sup ]] En II )(sup II Kn II)ll .- n. II + [I E,K,R,z- W(z)II 0.

The proof of (C2)=v(C1)is trivial.

Finally, we prove" (C1)=(C3).
(xn). Let

We denote the subsequence of a sequence (xn) again by

with supn li xn II < cxz.

We further choose a point x E X with Ax b as in (C1). It suffices to show that
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d

that is, the condition (C3) holds. By (A1), we have

d*AnRnx -Ax.

It follows that

dsAnxn AnRnx -0,

and by Lemma 2.4(ii),

II Anxn- AnRnx II-0 s n<,

Then, by the stability condition (A2), we get, as noc,

( II -R II) < II Anxn- AnRnx II 0,

This implies that

that is,

This completes the proof.

Theorem 2.5: Let 7co {X, F, Xn, X*, X, A, W, An, Rn, Kn, En} be an admissible external
approximation scheme represented by the diagram (1). If X0 is dense in X, then

EnKnRnx--*W(x for all x Xo

implies that

EnKnRnx--*W(x for all x X.

Proof: Let E,K,,R,zW(z) as noc for all x E X0, where Xo is dense in X. We need to
show that, for all y E X,

EnKnRnyW(y as

Let yXande>0befixed. Then

]1EnKnRnY W(y) II < II EnKnRnY- EnKnRnx II + II EnKnRnx- W(x) II + II w()- W(y) II

< (sup II E II II K II II R II)11 Y- II + II EnKnRnx- W(x)II + II W II II Y- II
(supr II En II l] Ku II I[ Rn II + I1 W II)11 Y- II + II EnKnRrtx- W(x)II

for all n >_ n0(e),
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where z E X0 is so chosen that [[ y- z [[ is sufficiently small. This competes the proof.

3. Application

Let us consider the following external approximation scheme r2 -{X,F, Xn, X*,A,W
An, Rn, Kn, En}"

W A ,F X --* X

TEn .Rn (6)
Kn AnXn - Xn --* X

0 o N
where X- Wp(G), Xn Wp(gh ), the Sobolev spaces, and F- I-I Lp(G), 2 < p < c. Here G

n i--1
is a bounded region in N N > 1, with sufficiently smooth boundary, that is, 5G E C’1. A
sufficiently small positive number h0 is chosen so that the set gh of interior lattice points is not
empty for all h, 0 < h < h0. Furthermore, fh(P) represents the integral mean value of f over the
cube Ch(P belonging to P, that is,

?h(P) h- N/ f(t)dt.
Ch(P)

The operators W: X-.F, Rn: X--Xn, Kn: XnXn and En: Xn--,F are defined as follows:

W(x)-(X, DlX,...,DNx),

and

(nnx)(P)
k- N f x(t)dt for P gk,1

Ch(P)

0 for P

_
gk,1,

EnKnzn (Xn, V lXn,..., V NXn).

Now, we can apply Theorem 2.1, for example, to the boundary value problem

N
E Di(lDiz p-2Diz) +sz- f on G,
i=1

z 0 on 5G,

with corresponding difference equations
N
E V [- ([ V iXh(P) p- 2 V iXh(P)) + SXh(P
i=1

Xh(P --0

for all P gh

for all P 6gh.

(7)

(8)
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