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ABSTRACT

Fractional Brownian motion (FBM) with Hurst index 1/2 < H < 1 is not a
semimartingale. Consequently, the standard It calculus is not available for
stochastic integrals with respect to FBM as an integrator if 1/2 < H < 1. In this
paper we derive a version of It’s formula for fractional Brownian motion. Then,
as an application, we propose and study a fractional Brownian Scholes stochastic
model which includes the standard Black-Scholes model as a special case and is
able to account for long range dependence in modeling the price of a risky asset.
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1. Introduction

The It6 stochastic calculus has become a fundamental part of modern probability theory and
found substantial application in other disciplines. For example, in mathematical finance, It6’s
calculus is a powerful tool for dealing with stock price behavior. Stochastic differential equations
driven by semimartingales, particularly, Brownian motion, are routinely used to model the
dynamics of stock market prices.

A prominent feature of Brownian motion is its independent increments. More generally,
however, if {Xt} is a stationary process with finite variance and 7k cov(Xt, Xt +k) is the
covariance at lag k, then {Xt} is called short range dependent (SRD) or long range dependent
(LRD) according as = 17t converges or diverges. Equivalently, writing
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for the spectral density of {Xt} LRD corresponds to the case where the spectral density tends to
infinity as w tends to zero and SRD to the case where the spectral density is finite at w 0.

It is now widely accepted that the assumption of SRD is in various cases, only an approxima-
tion to the real LRD structure which occurs in geophysics, hydrology and economics. See, for
example, the introduction to the survey article by Beran [1], which includes a general discussion
of LRD. The presence of LRD, or the Joseph effect (see, for example, Mandelbrot [10]) is well
documented in many economic time series. See, for example, Peters [12] for strong advocacy of
the effect of LRD in finance.

Existing models for the dynamics of fluctuating behavior of financial markets are based on

the implicit or explicit assumption of SRD, which may not be satisfied in many cases. In a sense,
the widely used Black-Scholes model is an extreme case. Some authors (see, for example, Greene
and Fielitz [4]; Kunitomo [8]; Peters [12]) have argued that the Black-Scholes model would not be
an adequate process for stock price but should be replaced by a model in which the driving
process may be LRD.

In order to define a "revised" Black-Scholes model which includes the ordinary Black-Scholes
model and is able to account for LRD in stock market price movement, we need to generalize the
driving process from SRD to LRD.

Fractional Brownian motion (FBM) provides a suitable generalization of Brownian motion.
It is a one-parameter family of Gaussian processes, BH(t), t >_ 0 which has zero mean and covar-
iance

E[BH(S)BH(t)] 1/2(Is 2H -t- tl It- I H).

Here 0 < H < 1 and the case H- 1/2 correspond8 to ordinary Brownian motion. FBM arise8
naturally in a central limit context and from the 1950s it has been proposed as a model for LRD
in a variety of hydrological, geophysical and economic time series. See, for example, Hurst [6, 7],
Mandelbrot and Van Ness [11], Kunitomo [8] and Gripenberg and Norros [5].

The feature, which most distinguishes FBM from Brownian motion, is that FBM is no longer
a semimartingale for 1/2 < H <1 (e.g., Lin [9]). This necessitates a careful definition of the
stochastic integral with respect to FBM from first principles. See, for example, Gripenberg and
Norros [5], Lin [9] and Dai and Heyde [3] for contributions to this subject. For the purpose of
defining stochastic differential equations driven by FBM, it is necessary to derive the correspond-
ing ItS’s formula with respect to FBM. We turn to this matter in Section 3. In Section 4, a

plausible counterpart to the now-classical Black-Scholes model is suggested. Then we use the
results of Section 3 to prove the existence and uniqueness of the solution of the fractional Black-
Scholes stochastic differential equation.

Definition of Stochastic Differential Equations Driven by Fractional Brownian
Motion

In this section, we are concerned with the definition of stochastic differential equations with
respect to FBM. Several different ways of a defining stochastic integral with respect to FBM
have been suggested. See, for example, Gripenberg and Norros [5], Lin [9] and Dai and Heyde [3].
we use the definition given by Dai and Heyde. Here we assume that (f,J,P) is complete
probability space associated with a standard normalized FBM BH(t on a finite interval [0, T].
We further assume that 1/2 < H < 1.

Definition 1: Let a(t,w) and b(t, w)" [O, T] x aIt be two stochastic processes. We say that a
stochastic process {X(t):t E [0, T]} has a stochastic differential with respect to fractional Brown-
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Jan motion BH(t
dX a(t)dt + b(t)dBH(t), (1)

if for any (t,w) E [0, T] x f, the following holds

X(t,w)- Xo(w + / a(s,w)ds + J b(s,w)dBH(S,W), (2)
0 0

where X0 is a random variable. The stochastic integral f a(s,w)ds is an ordinary Riemann-
0

Stieltjes integral for each w e a while f b(s,w)dBH(S,W is denned as that given by Dai and
Heyde [3]. o

Remarks on Definition 1: Generally speaking, the integral fa(s,w)ds exists under standard
0

conditions on a(s,w). The integral fb(s,w)dBH(S,W exists only under the conditions given in
0

Dai and Heyde [3] for defining stochastic integrals with respect to Bti(t). We will discuss equa-
tion (1) in more detail in Section 3.

Definition 2: (Fractional Black-Scholes model). The stochastic differential equation

dS #Stdt + rStdBH(t) (3)
is called a fractional Black-Scholes model, where # and a are constants and the Hurst index
satisfies 1/2 <_ H < 1.

Remarks on Definition 2: When H- 1/2, (3) is the well known Black-Scholes model. Since
the Black-Scholes model has been studied thoroughly, we concentrate here on the case where
1/2 < H < 1. We discuss equation (3) in Section 4.

3. ItS’s Formula with Respect to Fractional Brownian Motion

When we consider stochastic differential equations driven by Brownian motion

dX a(t, Xt)dt + B(t, Xt)dB(t), (4)
It6’s formula is a powerful tool for dealing with their calculus. When we are concerned with
stochastic differential equations driven by fractional Brownian motion

dX a(t, Xt)dt + b(t, Xt)dBH(t),
we have noticed that a version of ItS’s formula plays the same role in dealing with equation (5).
The aim of this section is the following theorem.

Theorem 1: (It6’s formula with respect to fractional Brownian motion) Let (f,,P) be a

complete probability space. Let BH(r be a fractional Brownian motion on [0, T] such that

1/2 < H < 1 and BH(O 0 a.e. (therefore EBH(7 0 for any 7 e [0, T]). Assume stochastic
processes a(7-, w), b(7-, w) and X(7, w) are such that for any [to, t]C [0, T],

1. a(7, w) is Riemaun-Stieltjes iutegrable on [to, t] for each w G ft;

f b(r)dBH(7 exists in the sense described in Dai and Heyde [3];
0

Either of the following holds
3.1 for any 0 <_ s <_ t 1

_
t2, t3 <_ t4 <_ T, {b(v):0 _< 7- _< T} and {BH(7"):O <_ 7" <_ T}

are such that
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{E((b(tl)-b(s)) (b(t3)-b(s)) (BH(t2)-BH(t2) (BH(t4 BH(t4))}

{E((b(tl)- b(s)Xb(t3)- b(s))}E{(BH(t2)- BH(t2)XBH(t4)- BH(t4))}
(6)

the second derivative d2b(t)/dt2 exists, and for any 0 <_ s <_ tI <_ t2, t3 <_ t4 <_ T,
{b’(r)- db(r)/dr:s <_ r <_ max{tl, t3} } and (BH(tl),BH(t2),BH(t3),BH(t4)) are

such that for any random variables and such that and are measurable
with respect to r{b’(v):s <_ v <_ max{tl,t3} } and E]] 4 < cx:), E[r]] 4 < cx, the
following holds

E{(b’(s)t1 s)+ )) (b’(s)(t3 s)+ )) (BH(t2) BH(tl) (BH(t4) BH(t3))}

E{(b’(s)(tI s)+ )) (b’(s)(t3 s)+ 7))} E{(BH(t2)- BH(tl)) (BH(t4)- BH(t3))},
(7)

and furthermore,

<or, sup E d-t,w,
o < < T 0 < < T dt2

Xt Xto / a(T, )dT / b(T, )dBH(T),
o o

(8)

(9)

where the first integral in (9) is an ordinary Riemann-Stieltjes integral for each w E ,
while the second is an It6 integral defined in Dai and Heyde [3]. Assume that a two
variable function U(t,x):[O,T]R-R has uniformly continuous partial derivatives
OU/Ot, OU/Ox and 02U/Ox2. Assume further that

sup E IU(t, Xt) 2 < oo, (10)
0<t<T

iou 12sup E -t t, Xt) < c, (11)
0<t<T

12sup E t, Xt) < oo, (12)
0<t<T

sup E
0<t<T

--t, Xt + (1))(9x2,
OL2

<oo, (13)

sup E la(t) 12<oc,
0<t<T

sup EIb(t)l < ,
0<t<T

b(s) < const t- s , >_ O,

where OL2(1 means a term such that E OL(1) I2< c.

any 0 <_ t

_
T,

b(r, cgU
)dBH(V

0

Let U U(t, Xt).

(14)

(15)

(16)



It’8’s Formula with Respect to Fractional Brownian Motion and Its Applications 443

exists in the sense described in Dai and Heyde [3], then the following holds

0

or equivalently,

+ / b(v, Ou

o

OU (t OU } b(t,wOU(tw)-f(t, Xt) dt + ’Ox’ Xt)dBH(t)dYt -f(t, Xt) + a

(17)

(18)

l{emarks on Theorem 1"
1. Since E(BH(t + A)- BH(t))2 I/l H, where 2H > 1, there is no term

in (17), in contrast to that of the usual It$ formula with respect to Brownian motion.

2. The requirements on (r),b(r),X(r) and U(r, Xr) such as Conditions 1, 2 and 4 of the
theorem, and the moment conditions (10)-(15) are standard.

3. Conditions 3.1 and 3.2 are important for ItS’s formula to be true in the case of
fractional Brownian motion. Many stochastic processes can be chosen as b(r). For
example,

b(r) Aiv + A2,
where A1 and A2 are two random variable with EA < oo and A1 is independent of

{BH(V)}.
The proof of Theorem 1 will be given in Section 5.

4. Application of Stochastic Calculus of Fractional Brownian Motion

4.1 Summary of some other results on stochastic calculus of BH(t)
A number of authors have been interested in the stochastic analysis of BH(t). For example,

Lin [9] defined the stochastic integral with respect to BH(t in the case where the integrands are

either deterministic bounded functions or the compositions of deterministic bounded functions and

BH(t). He also investigated stochastic differential equations of the form

dX f(t, Xt)dt + g(t)dBH(t). (19)
In this subsection we summarize some of his results.

Definition 3: Let g(t): R-P be a bounded Borel function. Define

BH(t)

0 0

BH(t)

g(,)dr /linm E g(t_ 1)(BH(ty) BH(tj 1)), (21)
0

I-o

where the sequence of partitions of [0, t] is iven as the same s that of Di nd Heyde [3].
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Remarks on Definition 3: Definition 20 is a special case of Definition 7 of Dai and Heyde [3],
while (21) is a special case of Definition 6 of Dai and Heyde [3]. Lin studied the existence and
uniqueness of equation (19). He found the following result.

Theorem 2: (Lin, [9]) Let f(s,x) and g(s) be Borel functions such that
1. g: [0, c)P is bounded,

<gl l

Here K is a positive constant. Then the stochastic differential equation

dX f(t, Xt)dt + g(s)dBH(t)
Xo A(w)

(22)

has a unique solution, whose paths are continuous.

For the proof of Theorem 2, see Lin [9].

Here A(w) E L2().

4.2 The existence and uniqueness of the solution of the fractional Black-Scholes equation

In this subsection, we are interested in solving a stochastic differential equation- the
fractional Black-Scholes model defined in Section 2. We will use It6’s formula (18) and Theorem
2 to prove the uniqueness of the solution of the fractional Black-Scholes equation (3). In detail,
we have the following theorems:

Theorem 3: The stochastic differential equation

dS #Stdt + rStdBH(t

Sto- A(w)
(23)

has a solution
S A exp{#(t- to) + r(BH(t Bu(to))} (24)

a vo i,i   a.do. < a.d

Theorem 4: The solution of (23) is unique.

Remarks on Theorems 3 and 4: We derived a solution of (23) before we read the work of Lin.
Subsequently, we have used his result (Theorem 2) to prove the uniqueness of (23). The original
method we used to prove Theorem 3 is given in Subsection 5.5.2, Dai [2]. Here we use the result
of Lin to show the existence and uniqueness through Theorems 3 and 4.

Proof of Theorems 3 and 4: Let us consider a stochastic equation

dX #dr +rdBH(t),

Xt0 log A,

where #, r and A are as given in Theorem 3. Then it is easy to see that

X Xto -Jr- tz(t tO) q- r(BH(t BH(tO)
is a solution of (25) and furthermore, from Theorem 2, it is the unique solution. Now let

St-exp{Xt};
then by It6’s formula (18) we have

dS #exp{Xt}dt -t- r exp {Xt}dBH(t

#tdt + (rStdBH(t),

(25)
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therefore,
s exp{(- 0) + (B()- B(0))}

is the unique solution of equation (23).

5. Proof of Theorem 1

In order to prove Theorem 1, we need the following lemma, the proof of which will be given
after the proof of Theorem 1.

Lemma 5: Assume stochastic processes a(7) and b(r) satisfy the conditions of Theorem 1.
Th,, .fo a, , e [0, T] uch ha - I0, hav

a()d + j ()dBH() a(s)(t- s)+ b(s)(BH(t BH(S)) + OL2( t s (26)),
8 8

where OL2( t-- s means a term such that

(ElOL2(lt-8 [)12)1/2 o(It-8 ).

Proof of Theorem 1: For any interval [t0, t] [0, T] and any sequence of partitions

with (n) I0 as n, write

t5n) --thn 1 --tn)’ X5n) Xt(; 1 Xtn)’

B [t(n) )- BH(tn))B?j Hk j + l

for j 0, 1,..., q(n) 1, n 1, 2, Then we have
q(n)

()Y Yo u(t, x) U(to, xo) -ji u
j=0

From a knowledge of calculus we have

(27)

Ox2
where On-On(w) and 5n-hn(W) are random variable such that OOn, 5nl and

lim0n --limn5n --0 in the L2([ sense. Since OU/Ox is uniformly continuous and the
stochastic process X is continuous in the sense of L2( (as well as with probability one, see

Theorem 16, Dai and Heyde [3]), we have

lim
J= xtn) + Otn)’ Xt() t) (v,OU X)dT. (29)

’+1 to
From Lemma 5 and (9) we have
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where OL2(At.n) means a term such that

(E OL2(At)) )I/2 o(At.)).
Therefore, by (12),

q(n)-- 1
OU((,)

3--0

q(n) 1

og((,), ()

,_0

,Xt.n)){a(tn))At’n) + b(tn))ABI)j} + OL2(1),
where OL2(1) means a term such that limn__+E L2(1) 2 0. Hence

q(n) 1

lim (t X (.n))AXncx -3 =0 3

/ -x(7",Xr){a(7")-4- b(v)dBH(V)}.
o

From Lemma 5, (14), (15) and noticing that

we have

Then, by (13),

and hence

E(BH(t + r) BH(t))2 72HvH

Ox2 t3

q(n)- 1

n-,oolim E 02U(tn)’ X (.n) + 8nAX(’n)(AX(’n)) O.
j-o Ox2 t

(30)

(31)

Now, from (27), (28), (29), (30) and (31), we have

yt Yto / {OU_M.. (..Xr) + OUt.ox. Xr)a(’)}d" + i--’OUt’’
0 0

This finishes the proof of Theorem 1. Next we move to establish Lemma 5.

Proof of Lemrna 5: Since a(t, w) is Riemann-Stieltjes integrable, as It- s I0, from Lemma
16 of Dai and Heyde [3], we have

a(v)dv a(s)(t- s) + OL2( t-- s I).
8

Hence, in order to finish the proof of Lemma 5, we need only to show that

b(7")dBH(7 b(s)(BH(t BH(S)) + OLe( t- s I).

Without loss of generality, we assume s < t. Let a sequence of partitions of Is, t] be given as

(32)
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then

E b(v)dBH(V b(s)(BH(t BH(S))
8

lim E (33)

Now we consider the term on the right-hand side of (33) without taking the limit yet. We have
2n

E E(b(tn)- l)-b(s))(BH(t’n))-BH(t"n)- l))
j=l

An + Bn, say. (34)

If Condition 3.1 of Theorem 1 holds, then by (16),
n

An- E E(b(tn)- b(s))E(BH(t)) B.(tn)- ))
3--1

<_ const t- s + 2H o( t- s [). (35)

To deal with Bn in (34) under Condition 3.1 of Theorem 1, we use the notation Fj, k, AFj, k and
in Lemma 21 of Dai and Heyde [3]. Since Our/OyOx is integrable inappearing

s <_ x y <_ t}, by Lemma 21, Dai and Heyde [3], (16) and the Cauchy-Schwarz inequality, we
have

gn-- E {g(b(t’n)-l)-b(8))b(tn21)-b(8)}Aj,k

’E { yOx
(92F{ !.n_) 1’ tn) (t1 t 1)(tn) tl)constlt-- s to

+ C[t 1 tn) [2H -2-o((t) --t 1)(tn)-t 1)) + o((tn)-t 1)(tn) --tn)- 1))}
OyOx,XY) dydx o( t- s I). (36)

[,t]:
So, in the case of Condition 3.1, from (34), (35) and (36), Lemma 5 holds. Finally, we consider
the case of Condition 3.2. Following (34) and using the inequalities of Condition 3.2, we have

Z - E {(b’(s)(t --s)+oL4(t --s))2(BH(t))-BH(t ))2n 1 1 1
=1

q()
< st(t s) (tn) t )2H_ o(t--s). (37)con 1

=1
By the same argument, under Condition 3.2, we have

B <_ constlt- s 2 zXry, k constlt- s 12 + 2H o(t- s). (38)
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Thus, in the case of Condition 3.2, from (34), (37) and (38), Lemma 5 holds. This completes the
proof of Lemma 5, and hence Theorem 1.
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