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1 INTRODUCTION

Let E be areal Hilbert space, ¢ : E > R, F:E=33Eand K : E 3 E
point-to-set maps. Consider the following Generalized Quasi-Variational
Inequality (in short, GQVI): find y € K(y) and F € F(y) such that

(F,x —y)+¢(x) —9(®) =0, Vx € K(y). 1.1

We suppose that K(y) := {x € X(y) : g(y;x) € C}, where X : E =3 E
is a point-to-set map, g : X(y) x X(y) —» R™, m € IN\{0}, and
Cc IR"is aclosed and convex cone with apex at the origin. Of course, when
g(y; x) € C is identically true, then the equality K(y) = X (y) holds and
shows that the present format is not less general than the usual ones. When
X(y) and g(y; x) are independent of y and F(y) is a singleton Vy € &
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(in which case they will be denoted by X, g(x) and F(y), respectively),
then (1.1) collapses to a Variational Inequality (in short, VI). (1.1) recovers
a Generalized Quasi-Complementarity System (in a Hilbert space), when,
Vy € &, K(y) is a closed and convex cone with apex at the origin and
=0

yeK®y), FeF(y)NK*(y), (F,y) =0, 1.2)

where K*(y) denotes the (positive) polar of K(y). If K is independent
of y and F(y) is a singleton, then (1.2) collapses to the usual (nonlinear)
Complementarity System [12]. (1.2) is motivated by the following:

ProrosiTion 1.1 If, Vy € B, K(y) is a closed and convex cone with apex
at the origin, and ¢ is identically zero, then y is a solution of (1.1) iff it is a
solution of (1.2).

Proof “If”.y € K(y) and F € F(y) are obvious. F € K*(y) implies
(F,x) = 0Vx € K(y); subtracting side by side from this inequality the
equality in (1.2) yields (1.1) at ¢ = 0.

“Only if”. Again y € K(y) and F € F(y) are obvious. Ab absurdo, assume
that F ¢ K*(y). Then 3x(y) € K(y) such that (F, x(y)) < 0, and hence
(F,w —y) < 0 where w := y + x(y) € K(y) since K(y) is a convex
cone. The latest inequality contradicts the assumption that y be the solution
of (1.1). Hence F € K*(y). This relation and y € K (y) imply

(F,y) = 0.

Now, suppose that (F, y) > 0. This implies y ¢ 0. Since X := % y € K(y),
we find

- 1
(F,X —y)=—5(F,y) <0,

which contradicts the assumption that y be solution of (1.1). Hence (F, y) =
0, and y is solution of (1.2). This completes the proof. a

When K is independent of y and convex, ¢ convex, and F is the
subdifferential of a convex functional, say f : & — IR, then (1.1) gives

a 1st order necessary condition for the problem

min[ f(x) + ¢(x)], st x €K,
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as it is easy to show. If, in addition, f is differentiable, then the above format
shows an interesting splitting of the objective function into a differentiable
part and a nondifferentiable one.

2 A SEPARATION SCHEME

When the domain is explicitly given in terms of (generalized) level sets,
as in (1.1), then a Variational Inequality or its generalizations can be
associated with a separation scheme; this can be considered as a root for
developing several topics. Such an approach starts from the obvious remark
that y € K(y) is a solution of (1.1) iff 3F € F(y), such that the system
(in the unknown x):

u=(F,y—x)+¢(@) —ekx) >0, vi=g(y;x)€C, x€X(y) 2.1)

is impossible. The space where (#, v) runs is the image space associated with
(1.1), and the set

K@y, F):={u,v) € R x R":u=(F,y —x)+ 9 —¢kx),
v=2g(;x), x€X(¥)}, y€E, FeF®y),
is the image of (1.1). System (2.1) is associated with the set:

H:={u,v)e Rx R":u>0, veCl}
Another obvious remark is that the impossibility of (2.1) holds iff
HNK(y, F) = @. Separation arguments appear now as a useful tool to show
disjunction between the above sets. To this end let us introduce a family of
functions y : E x R™ x @ — IR defined in the following way. The set of
parameters w, i.e. €, is given and must verify, Yy € &, the conditions:

levoolu+y(y;v;®)] 2 H, 2.2)
() levsolu + y(y; v; )] = ¢l H, 2.3)

we
where lev and cl denote level set and closure, respectively; the level sets
are considered with respect to (u, v) only. The function w(y; u, v; @) =
u + y (y; v; w) is called weak separation function [7,14].

ProposiTioN 2.1 y € K(y) is a solution of (1.1) if 3w € Q and IF € F(y)
such that

w(y; (F,y —x) + o) — o), g(y;x);0) <0, Vx € X(y). (24)
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Proof Taking into account the definition of K(y, F), it is easy to see that
(24) implies

K(y, F) € leveow(y; u, v; ),

where the level set is considered with respect to (u, v) only. Because of (2.2)
the above inclusion implies H N K(y, F) = @, which shows that y is a
solution of (1.1). This completes the proof. O

The sufficient condition (2.4) can be considered as a starting point for deriving
several theories. See [6-10, 14] for some details.

Instead of (1.1) consider the following inequality: find y € K (y) such that

(Ff,y—x)+9(y) —9(x) <0, VF* € F(x), Vx € K(y).  (2.5)

When X is independent of y and convex, ¢ is convex, F is monotone and
upper semicontinuous, then y is a solution of (1.1) iff it is a solution of
(2.5); see [9]. If, moreover, F is single-valued (F(x) is a singleton), then
such an equivalence is the classic Minty Lemma [3, 13]. When equivalence
between (1.1) and (2.5) holds, then the image set — which can in any case be
defined for (2.5) as well as K has been defined for (1.1) — of (2.5) is another
interesting set to be associated to (1.1) [9].

3 GAP FUNCTIONS

Consider the set K% := {y € B : y € K()}. A function ¥ : K - IRis
said to be a gap function iff Y(y) > 0¥y € K% and ¥(y) = Oiff yisa
solution of (1.1); K is the set of fixed-points of the point-to-set map K.
Gap functions can be obtained as a by-product of the separation scheme
introduced in Section 2. To this end we consider a particular case where:

I:={1,...,m}, g(y;x) = (gi(y; x),i € 1),
0,:=0,...,00€ R?, C=0, x R}7?,
pmeZ,0<p<m C=R}if p=0and C=0, if p=m.
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Then, we consider, as separation function®*,
wy;u, v; A, @) :=u+{A, Giy;v;w),ue R,ve R*", A eC* weQ,
where C* :={A € R™:); >0, i = p+1,..., m}is the (positive) polar
of C, and

GOy v; @) :=(G;(y; vi; w;), i € 1),

m
G;:E8x R x Qi-—> ]R,co:(w,-,iel'), a)iEQ,‘, Q= XQ,’.
i=1

i=
Each G can be considered as a transformation of g;; the particular cases of
G; exponential have been shown to be useful at least when (1.1) is a VI and
p =0 (sothatC = R7): or
Gi(y; vi; wi) = v; exp(—wiv;),
Gi(y; vi; w;) = 1 — exp(—w;v;), (w;i € Q; := Ry).
The inequality (2.4) now becomes:
(F,y—x)+o(Q)—ex)+ (A, G(y; g(y; x); 0)) <0, Vx € X(y). (3.1)

The study of condition (2.4), namely (3.1), leads to the introduction of the
following function:

Y(y, F) :=min max [(F,y—x)+¢(y) — @)+ (X, G(y; g(y; x); »))].
reC* xeX(y)
(3.2

Under suitable assumptions it is possible to show that v is a gap function for
(1.1); see [7]. In such cases a solution can be found by solving the problem:

miny(y, F), st. y € K(y), F € F(y). (3.3)

A particular case of special interest is met when a GQVI collapses to (1.2),
F is single-valued, and ¢ = 0; in this case (3.3) becomes (F is now denoted
by F itself):

min (F(y),y), st y € K@), F(y) € K*(y), (3.4)

where K* is the (positive) polar of K. (3.4) shows a gap function for a
Quasi-Complementarity System.

*Without any fear of confusion, we use the same symbol w as in Section 2, even if the
function is different.
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4 PENALIZATION

Let us go back to the separation function w of Section 2. By specializing
y in a suitable way we can achieve penalization for (1.1). For the sake of
simplicity, in this section we assume that F be single-valued and replace
F(y) with the notation F(y). Assume that K (y) be closed Vy € E, and y
continuous in E x IR™ x Q and such that, Vo € Q,

=0, Vv e R", if ye int K(y), or
,Yvel(C, if ye frt K(y),
<0, VveR™\C, if ye frt K(y),
>0, Vv e C\{0}, if ye X()\K(),
where {0} is cut off to embed the linear case; int and frt denote interior and
frontier, respectively. Moreover, we assume that 3wp € 2 such that

y(y; v; w) 4.1)

—00, Yv e R™\C, Vye fit K(y),

+o00, Yv eC, Yy € X()\K(y). 4.2)

Jim 1y (y; v; ) {
Thus, we are considering (weak) separation functions of type:

wy;u,v;w)=u+yQy;v;w), o€ Q,

where y satisfies (4.1)—(4.2). The inequality (2.4) becomes:

(F3),y—x)+ o) —ex)+y(y; g(y; x); w) <0, Vx € X(y). (4.3)

Of course, (4.3) is fulfilled iff the inequality (in the unknown x):

(F(y),y—x)+ o) —px)+y(; g(y; x);w) >0, Vx € X(y) (4.4)

is impossible. This suggests a penalization. To this end consider a neighbour-
hood of wg as

{weQ: |lo—awol <€}, if |lwoll < o0,
Q(e) := (e e Ry \{0}).
{wesz:"—j)ﬁ«}, if lwoll = +o0,

Itis now intuitive that, if w is close enough to wp, then y acts as a penalization
and forces y to fulfil (4.3). Indeed, the following proposition holds [8].
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ProrosiTioN 4.1 Let y be the function defined by (4.1)—(4.2) and assume
thatVo € Q(€) Ay, € X (yy) such that (4.4) is impossible. Then, 3¢ €10, €]
such that, Vo € Q(€), y, belongs to K(yy) and is a solution of (1.1).

As a consequence of Proposition 4.1, we have that a solution of the inequality:
find y € X (y) such that

(F(y),x =y)+ox)—e(®) —y(y;g(y;x);w) =0, Vx € X(y), (4.5)

with w close enough to wy is a solution of (1.1) too. Hence, we have achieved
exact penalization.

Inequality (4.5) may receive special forms. For instance, if in (1.1) we set
m=1_C=R4, 2 =Ry, wy = +00, and

g;x) =V (y;x—y), y(y; g(y; x); ®) = —wg(y; x) = —0¥ (y; x—y),

where ¥ : E — IR is a directionally derivable function whose directional
derivative fulfils (4.1)—(4.2), then (4.5) becomes:

(F),x = y) +9x) —o() + 0¥ (y;x —y) >0, Vx € X(y), (4.6)

and has a more “variational aspect” than (4.5).
One might desire to handle a W which is differentiable on X (y). This can
be obtained by weakening (4.1), in the sense that we renounce to distinguish

between interior and frontier of K(y) and to control v outside C; (4.1) is
replaced with

=0,Vv€C, lnyK()’),
>0,VeC, ifyé¢K(®y).

Now, the thesis of Proposition 4.1 is no longer guaranteed; however we
obtain penalization even if not necessarily exact. In the particular case where
¢ = 0 and (4.7) is of type:

y(y; v; ) { 4.7

Yy v @) = —0(G(y),y — x),

G being an operator which is not necessarily a gradient of any functional,
then (4.6) becomes:

(F(») +0G(y),x —y) 20, ¥x € X(y). (4.8)
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Here we are faced with a Quasi-Variational Inequality having an operator,
which is a pencil of the given operator and the penalization one. Since in
case (4.7) we cannot replace (1.1) with only one inequality of type (4.8), it is
natural to set up a sequence of (4.8), such that a corresponding sequence of
their solutions converge in some sense to a solution of (1.1). More precisely,
we can construct a sequence {y,, }°2; such that y,, be a solution of (4.8) at
w = w, and lim o, = wp. If X(y) is open, then in (4.8) we must have

r—+o00
equality, so that we are led to find y,, as a solution of the equation

F(y) + orG(y) = 0.
This result embeds the classic one for VI (K independent of y); see [2].

5 FURTHER DEVELOPMENTS

In the preceding two sections we have seen that, starting from a separation
scheme (Section 2), we can carry out two theories, which appear different
because they require different “technical tools”, but they substantially differ
in the language only. This does not mean that the two theories should be
joined; it means that it is suitable to carry them out within the common
framework of separation of sets.

The topics outlined in Sections 3 and 4 are not the only ones which can
be embedded in a separation scheme. The classic question of regularize a
VI [3,13] is strictly related to penalization and then can be developed by
exploiting the approach of Section 2; see [9]. A topic, which has not yet met
a full treatment, is that of defining a dual VI. Starting from (2.4), instead
of operating as in Section 3, we can merely look for the inf,, of the sup,
of function w; this leads to a dual problem of (1.1), which deserves further
investigation [1].

The generalizations of Variational Inequalities and of Complementarity
Systems have been numerous; often they have been proposed independently
of each other. Hence, a format which embeds at least most of them might be
useful. One possible format might be the following: find y € H(y, K(y))
and F € F(y) such that

(F,x —y) +9(x) —0(y) 20, Vx € K(y), (5.1
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where H : E x2% =3 B is a given point-to-set map. The classic formats of VI
and Quasi- VI are obviously embraced by (5.1), as well as Complementarity
and Quasi-Complementarity Systems. Beside this, some new formats might
be embraced. For instance, by means of a suitable transformation, it is
possible to reduce to (5.1) the new VIintroduced and studied in [11]; see also
[12, p. 169]. The remarkable aspect of (5.1) would be that the beginning of a
theory for it would already have existed for several years, even if not explicitly
developed for any kind of problem as (5.1). More precisely, Theorem 2.1 of
[15] should give an existence result for (5.1) at least when K is independent
of y.
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