
J. of Inequal. & Appl., 1997, Vol. 1, pp. 253-274
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1997 OPA (Overseas Publishers Association)
Amsterdam B.V. Published in The Netherlands under

license by Gordon and Breach Science Publishers
Printed in Malaysia

O-Regularly Varying Functions in
Approximation Theory
STEFAN JANSCHE

Mathematisches Seminar, Christian-Albrechts-Universitt zu Kiel,
Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
e-mail: stj@numerik, uni-kieLde

(Received 10 June 1996)

For O-regularly varying functions a growth relation is introduced and characterized which
gives an easy tool in the comparison of the rate of growth of two such functions at the limit
point. In particular, methods based on this relation provide necessary and sufficient conditions
in establishing chains of inequalities between functions and their geometric, harmonic, and
integral means, in both directions. For periodic functions, for example, it is shown how this
growth relation can be used in approximation theory in order to establish equivalence theorems
between the best approximation and moduli of smoothness from prescribed inequalities of
Jackson and Bernstein type.

Keywords: O-regularly varying functions; growth relation; best approximation; rate of conver-
gence; Jackson and Bernstein inequalities.

1991 Mathematic Subject Classification: Primary: 26A12, 41A17. Secondary: 26A48, 26D15,
41A50, 42A10.

1 INTRODUCTION

In 1930 J. Karamata [20] introduced regularly varying (RV) functions, namely
functions f having the property that there is a real number p such that the
limit

lim f(’x)
Xp

xc f(x)

exists for all > 0. Since then, especially after the publication of W. Feller’s
book [15] on probability, which contains material on this subject, the
Karamata-theory has been developed in many directions. In the textbooks of
E. Seneta [23] and N.H. Bingham, C.M. Goldie and J.L. Teugels [6], one can
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254 S. JANSCHE

find a systematic treatment of this theory; in the latter there can also be found
many applications to number theory, (integral) transform theory, probability
theory, the theory of Tauberian theorems, etc. One of the possible extensions
of RV functions, due to V.G. Avakumovi6 [2], is to drop the requirernent that
the limit of the quotient f(x)/f(x) has to exist. If the limes superior and
the limes inferior of the term above are both finite and positive, then f is said
to be a O-regularly varying function.
The aim of the paper is twofold; first, we wish to point out some algebraic

properties and introduce a growth relation -< for (9-RV functions which

gives an easy tool for comparing the rate of growth of such functions.
Furthermore, for (9-RV functions we establish characterizations in terms
of this growth relation concerning the validity of inequalities connecting
functions and certain means thereof, as well as their monotonicity properties.
Secondly, although the well-known paper of N.K. Bari and S.B. Stekin
[3] already contains some material on O-RV functions, there seems to be
a lack of communication in dealing with (9-RV functions in approximation
theory properly. Nevertheless, the Bari-Stekin setting was extended in some

approximation theoretical papers; see e.g.P.L. Butzer and K. Scherer 11 ],
P.L. Butzer, S. Jansche, and R.L. Stens [9], Z. Ditzian [13], as well as
in S. Jansche and R.L. Stens [19], and E. van Wickeren [25]. In a brief

application to best approximation by trigonometric polynomials, we will
show how such functions can be used with success in approximation theory.

2 DEFINITIONS

We use the common convention in not distinguishing the constants in various
estimates; thus the value ofthe constantM > 0may differ in each occurrence,
but always independently of the varying parameters. If necessary, we indicate

dependencies by M(C), etc. Furthermore, we make use ofthe Landau symbol
O in the usual way, and f g means that f O(g) as well as g O(f).
For our purpose it is convenient to consider the origin as limit point instead
of infinity. This leads to the following definition of O-regularly varying
functions.

DEFiNiTiON 2.1 A (Lebesgue-) positive measurable function b: (0, 1] --is a O-regularly varyingfunction (O-RVfunction), if for each to E (0, 1)

qg, 1 on [to, 1],
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and if
(ct) (ct)

0 < lim inf lim sup < cx (2.1)
t0+ (t) t-0+ (t)

for all C E (0, 1]. The class of all O-regularly varying functions is denoted
by P.
The above definition can be found in S. Aljani6 and D. Arandelovi6 1 ],

except, as mentioned above, that in l] the limit --> cx is considered instead
of --+ 0+. Via the relations f (x) p(1 Ix) and ;k 1 /C one can transform
the limit point to infinity.

For instance, for o-, p E the function

(t) tl logtl p, (0, 1/2]; (t) 1, 6 (1/2, 1],

belongs to cp, but not functions having exponential growth like (t) e-
It is convenient to define

(ct)
*" (0, 1 --+ , *(C) lim sup;

tO+ q(t)
(ct)

b,: (0, 1] --+ ], q,(C) := liminf
,o+ (t)

By condition (2.1) for e P the functions * and , are positive but not

necessarily measurable. The following bread and butter theorem on CO-RV
functions, due to S. Aljani6 and D. Arandelovi6 1 ], ensures the local uniform
boundedness of the quotient (Ct) ! (t). For sake of completeness, we give
a slightly modified proof following [6, Theorem 2.0.1.].

THEOREM 2.1 Let dp and Co E (0, 1); then there exists a constant

M M(Co) > 0 such that

(Ct) (t)
sup < M, sup < M

cetc0,1] q(t) c[c0,1] ck(Ct)

for all (0, 1 ].

Proof The function g(x) := log (e-X), x 6 [0, xz), is measurable, and
the assertion is proved if we can show that for arbitrary a0 > 0,

sup g(x+a)-g(x)l <x, x>_O.
a[O,ao]
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Supposing the contrary, we can choose sequences {Xn}nr C [0, cxz) and
{an }nr C [0, a0] such that

Ig(xn 4- an) -g(x)l > 2n, n 6 1.

On the other hand, by the definition of I,, for all a > 0 we can find an upper
bound no no(a) > 0 satisfying

Ig(x) g(x + a)l < no, x 6 [0, cxz). (2.2)

Setting x Xn, we find that

Ig(Xn 4-an)- g(Xn 4- a)l > n, n > no. (2.3)

Now we define

Ij "= {a [a0, 2a0]; Ig(x,, + an) g(xn 4- a)l > n Yn > j},

then by the measurability of g the sets Ij, j 10, are also measurable, and,
on using (2.3), we obtain

[ao, 2ao] U Ij.
jNo

We pick one Ijo, jo No, of positive measure, i.e., m(Ijo > O, to derive that
the set

J "= NU :=ak--Ijo,
i=1 k=i

is contained in [-2a0, 0], and

m(J Jk) > m(ai Ijo) m(Ijo), N.
k=i

By isotony ofthe measure it follows that m(J) > m(ljo) > 0. Letb J; then
by construction of J we find a subsequence {ki }ieN C N such that b Jk,
for all N. This means that ak, b Ijo, N, and by definition of Ijo
we have

Ig(x:, 4- a:,) g(xki 4- aki b)l _> ki >_ i, i>jo,

contradicting (2.2) for a -b.

An immediate consequence is the following
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COROLLARY 2.2 If dp , thenfor all C (0, 1) we have

* 1, ,-- 1 on [C, 1].

In particular, there exists a constant M M(C) > 0 such that

1
--qb(t) <_ d(h) <_ Mc(t)

for alI C < t/ h < 1, h, e (O, 1].

(2.4)

Concerning the behaviour of O-RV functions in a neighbourhood of the
origin, we have for the power function (t) , r R, that *(C),(C) C. Taking the logarithm, the order cr is given by

log *(C)
log C

Thus for the power function we can extract the rate of growth cr using this

quotient of logarithms. For arbitrary functions the term may not be constant.

This leads to the definition of the Matuzewska indices, see W. Matuzewska
and W. Orlicz [21], and the literature of the authors cited there. For q
the numbers

log *(C) log ,(C)
or(C) := sup and /3() := inf

ce(o,1) log C ce(o,1) log C

are called the upper and lower Matuzewska index, respectively. Some basic

properties of the indices are collected in the following

LEMMA 2.3 Let ot or(C) and /3() be the Matuzewska indices of
eel.
(a) The indices are real numbers or, fl e ]R, ot <_ fl, and there hold

log*(C) log ,(C)
oe() lim fl() lim (2.5)

c0+ logC c-,0+ logC

(b) For a given e > 0 there exists some Co 6 (0, 1) such that

c’ _< *(c) < c’-, cz+ < ,(c) _< cz, c e (o, Co].
(2.6)

In particular,

,(C) < C < Ca < *(C) C e (0, 1]. (2.7)
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Concerning the proof of (a) (which easily implies (b)) one uses the fact that

* is submultiplicative, i.e., 4)* (C1 C2) < 4)* (C1)4* (C1), obtained from the
definition. After taking the logarithm an application of a theorem of E. Hille
and R.S. Phillips 17, Theorem 7.6.2, 7.6.3] on subadditive functions ensures
the existence of the limit and implies (2.5). This was carried out in [21 for
monotonic functions and in [1].

In view of the estimates in (2.7), note that just the existence of the limit

(Ct)
lim g(C)
t-+O+ (t)

implies that g(C) Co for a suitable p e . Hence the subset OR
{ e P; or(e) fl()} is exactly the set of Karamata’s regularly varying
functions, cf. [6, Theorem 1.4.1], [23, Theorem 1.3.]. Simple calculations
lead to further relations concerning the Matuzewska indices.

COROLLARY 2.4 Let , 1, 2 e dp; then

c =-(), =-c(),

andfor the product ofO-RVfunctions we have 12 e P, satisfying- < (01) + (2) _< (2) <_ (2) _< () + (2) < .
Matuzewska indices and their modifications such as Boyd indices are

frequently used in interpolation theory, cf. e.g.D.W. Boyd [8], F. Feh6r [14].

3. ALGEBRAIC PROPERTIES OF

Wenow establish some algebraic properties ofthe class P ofO-RV functions.
In particular we define a new growth relation -< in q, which allows a

comparison of the growth of O-RV functions at the origin.

DEFINITION 3.1 Let bl, b2: (0, 1 - ]be positive. Then the growth relation

1 "< 2 holds iff there exists a constant C (0, 1) such that

1 (Ct) 2(t)
lim sup < 1.
t-->0+ 1 (t) 2(Ct)

For example, let O’i, tOi E ], 1, 2, and

i(t) "= taillogtlp, e (0, 1/2], i(t) := 1, e (1/2, 1].
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Then it is obvious that 1 -< 2, iff al > a2. In particular, for 6 we have
-< 1 iff* (C) < 1. Heuristically 1 -< 2 means that the growth of1 and

2 differ by a power e at the origin. Changes of growth in terms by powers
of the logarithm are not effected by the growth relation -<. It turns out to be
useful to write 1 2 and 2 1, if tql (t) -< 2(t) for all e > 0.
As mentioned above, the Matuzewska indices are measures of the

behaviour ofO-RV functions; thus it seems natural to suppose that the relation
-< can be characterized by the indices ot and ft. In this respect we have the
following new connections between the Matuzewska indices and our growth
relation.

THEOREM 3.1 Let dt)l, dl)2 ; then the following four assertions are

equivalent:
(i) tl -< t2;
(ii) There exist constants oto > 0 and Co 6 (0, 1] such that

1 (Ct) 2(t)
tl (t) 2(Ct)

< c’o, e (o, to(C)],

for all C 6 (0, Co] and some to(C) e (0, 1];

(iii) o(2-2)>0;
(iv) fl(l) < O.

Furthermore, thefunctions 1, 2 satisfy at most one ofthe relations 1 ’< 2
or dpl >- 2. The relation 1 2 is characterized in the same way, provided
that < and > in (ii)-(iv) are replaced by <_ and >_, respectively.

Proof The implication from (ii) to (i) follows from the definition of the
growth relation. Assuming (i), then (1/2)* (C) < 1 for some C 6 (0, 1),
and on using (2.7) we obtain

which in fact implies Ot(l/q2) > 0. The equivalence of (iii) and (iv) is

given by Corollary 2.4. Finally, if (iii) is satisfied, we choose e or0 :=
ot(1/2)/2 in (2.6), to establish (ii). Concerning the relation 1 @ 2,
the equivalences can be proved in the same way by using the fact that
ot(t(t)) e + or(C), which readily follows from Lemma 2.3. []
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THEOREM 3.2 The class P equipped with pointwise multiplicationforms a

multiplicative abelian group with identity element 1 (t) :-- 1.
The relation -< in is transitive, and dp forms with -< a (partial) ordered

group. In particular, for 491,4)2, 4)3 dp satisfying dpl -< 4)2 and 492 -< 3, we

have dpl -< 4)3, and 1 "< 2 implies blq3 < b2q3.

Proof Obviously, P is an abelian group, the inverse element of b 6 q is

given by 1/4. By Corollary 2.4 we have

thus the remaining assertions hold true by using Theorem 3.1.

Remark 3.2 The class PR of regularly varying functions forms a subgroup
of , and it is related to the power functions e := {b 6 ,; q(t) ,
y 6 N} by the isomorphism

dpR / dp0 ’ dpp (]1,-{-),

where 0 := { 6 ; or(C) =/3() 0}. Additionally, the Matuzewska
indices are homomorphisms

mapping the partial ordered group (R, ",-<) onto the ordered group
(R, /, >), preserving the relations in the sense that 41 -< 42 implies
ot(bl) > ot(42)and fl(1) > fl(2).
The identity element 1 separates the convergent and divergent elements of

1,. To see this, consider (cf. 1])

LEMMA 3.3 Let . If -< 1, then

lim (t) 0,
t-+O+

and if >- 1, we have

lim (t) cx.
t--O+
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Proof Assuming -< 1, by Theorem 3.1 we can choose to, C, p 6 (0, 1)
such that

(c)
<p, 0<t<t0.

(t)

Now for a given (0, to] there exists an integer m m(t) N0, satisfying
cm+lto < < Cmto, and we obtain by iterating the estimate above

(t) < pdp(c-lt) <... < pmdp(C-mt) <_ pmM,

noting that C-rot [Cto, 1] and 1 on [Cto, 1]. This implies

lim (t) < lim prnM 0,
t-+0+ m--+c

as well as
1

lim
-0+ (t)

By applying Theorem 3.2 the assertion is shown.

4 CHARACTERIZATION OF O-RV FUNCTIONS

Now we want to give some characterizations for O-RV functions, combined
with our growth relation. Owing to the group property it is sufficient to

compare only one member of with the identity element. Results related to

the following lemmas can be found in [1], [6, Chapter 2], and [23, Appendix].
A function on (0, 1] is said to be almost increasing or almost decreasing,
if there is some constant M > 0 such that

qb(t) < Me(h) or (h) < Me(t)

for all 0 < < h < 1.

LEMMA 4.1 Let
(a) If 49 is almost increasing, then dp 1.

(b) If dp -< 1, then dp is almost increasing.

(c) If 4) is almost decreasing, then 1.

(d) If >- 1, then is almost decreasing.
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Proof Let 4 be almost increasing, i.e., (Ct)/(t) < M, t, C E (0, 1],
for some M > 0. Thus we have 4* (C) < M, which implies

log 4* (C) log M
c (4)) lim > lim 0.

c0+ logC c0+ logC

This gives q 1 by Theorem 3.1. Conversely, suppose that 4) -< 1; then on
using Theorem 3.1 again, we find some Co, to E (0, 1) such that

ok(Cot)
(t)

< 1, 6 (0, t0]. (4.1)

Additionally, by Theorem 2.1 we have

4(ct)
sup < M, 6 (0, 1]. (4.2)

C6[Co, 1] 4(t)

Now let 0 < tl _< t2 _< 1 be chosen arbitrarily. Noting that b 1 on [to, 1],
without loss of generality we can further assume that t2 _< to. We pick n 6 10
satisfying C+1 < tl/t2 _< C; then on using (4.1) and (4.2) we obtain

b(tl) q(tl) b (Ct2) b (Cot2) b(tl) b(Ct2)
b(t2) b(Ct2) b(c-lt2) b(t2) q(C)t2) b(Ct2)

<M,

which proves (b). The remaining assertions can be shown along the same
lines. []

The most important characterization for O-RV functions is the fact that
the growth of integrals over 4 can be estimated by 4 itself. First we need
some elementary estimates between sums and integrals of O-RV functions.

LEMMA 4.2 Let P and C (0, 1). Then there exists a constant

M M(C) > 0 such that

-;-z, dp(t) < dp(u) < M(t), 6 (0, 11, (4.3)
bt

andfor a suitable to to(C) (0, 1) we have

1 1
-dp(t) < -qb(k-) <_ Mqb(t), (0, to]. (4.4)

Ct<l/k<_t
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Proof
implies

Noting that ft d...Uu --log C > 0, Corollary 2.2 immediately

du f/ du
cp(t) < M dp(t) < M (u) < Me(t).

u u

Now we consider the integer Kt := #{k N; Ct < 1/k < t}, #A denoting
the cardinality of a set A; then

1 1 1 1
l <_Kt <_ -1.

Ct Ct

Setting to "= min{1, (1 C)/(2C)}, then for 6 (0, to] we obtain

Kt > -1 -1=1-1-c 
i.e., Kt > 1, which ensures that the sum in (4.4) is not empty. This gives also

1 1 1E -<tKt< l+t<-c
Ct<l/k<t

1 1 -C 1 -C
>CtKt > 1-C-Ct > 1-C-.

k- 2 2
Ct<l/k<_t

Thus there follows the inequality

1 1
--< E -<M,
M- k-

Ct<l/k<t

yielding (4.4) by using Corollary 2.2 again.

With the help of the above lemma we can prove

LEMMA 4.3 Let and C 6 (0, 1); thenfor 6 (0, 1) we have

(4.5)

(4.6)

provided that the integral exists or one ofthe series converges. The constants

induced by depend on C.
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Proof The proof follows by repeated application of Lemma 4.2 and
Corollary 2.2; for instance there holds

du
(u) (cJt).

n+l U
j--0

Taking the limit n cx, we obtain one of the equivalences in (4.5). The
remaining assertions follow by the same way. []

Remark 4.1 A careful examination of the lemma above shows that the
constants involved only depend on M > 0 and C > 0 of (2.4). In particular,
if a family {x }xeX C , X an arbitrary index set, satisfies

1
-:-=x(t) < Cx(h) < MCx(t)

for all x e X and h, e (0, 1], C <_ t/h _< 1, then the estimates (4.5) and
(4.6) hold uniformly in x X.

If only x:(O, 1] -- IR is a non negative almost increasing function, and, then by similar arguments one can show that for C (0, 1) there
exists a M M(C) > 0 such that

x(cJt) 1 x(k-1)(--,) <M (k_ 6(0,1] (4.7)
j=0 k>[1/t]

_lx(k-1)
(--d7)-x(c2)< M

<</t" k (k-1)
e (0, ]. (4.8)

j’t<CJ<l

The middle or harmonic part ofthe two equivalences (4.5) and (4.6), common
in approximation theory, seems to be new in the frame of O-RV functions.
However, for regularly varying sequences see R. Bojanic and E. Seneta [7].

LEMMA 4.4 Let e rp.

(a) If

du
(t) O(u)-- --+ 0+, (4.9)

then there holds dp 1.
(b) Conversely, for each -< 1 we have (4.9).
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(c) If satisfies
du O+4(t) (u),

then 1.
(d) qb >- 1 implies (4.10).

(4.10)

Proof (a) The positivity of implies that the integral in (4.9) is increasing.
Hence, by assumption, is almost increasing, and on using Lemma 4.1 we
obtain 4) 4 1. (c) can be shown in the same way. (b) Lemma 4.3 yields for
t,C (0, 1),

o

fot du
(t) < Z(cJt) < M (u).

j=0
U

Now let -< 1; then by Theorem 3.1 there exist constants to, C 6 (0, 1) and
an oto > 0 such that (Ct) < C(t), 0 < t < to. Iteration gives for j 6 N

qb(cJt) < cJadp(t), 0<t<_to.

Thus, on using Lemma 4.3 we obtain for 0 < < to

c(u) < M (cJt) < Me(t) Cja M(t)
u

j=0 j=o
1 Ca0’

which proves (b).
(d) We choose t, C e (0, 1), and n e No such that Cn+l < < cn; then

on applying Corollary 2.2 and Lemma 4.3 again we have

du
dp(t) <_ M(Cn) <_ M (Cj) < M (u).

j’t<_CJ<_l
U

To verify the converse estimate, for >- 1 on using Theorem 3.1, there exist

constants to, C 6 (0, 1) and some/30 > 0 such that (t) < C(Ct),
0 < < to. This gives for j e N

(t) < cJ#dp(cJt), 0<t<to.

For arbitrary 6 (0, 1) and n No satisfying Cn+l < <_ Cn, we obtain on

using q 1 on [Cto, 11 and Corollary 2.2,

(Cj) < MC(n-J)o(cn) < MC(n-J)(t), O<_j<n.
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Applying Lemma 4.3, we conclude

dp(u) < M dp(Cj) <_ Mdp(t) C(n-j)
u

1
-< Me(t)1- C < M(t).

Thus the Lemma is shown.
It should be remarked that the estimates

(fot du) (I du)(t) 0 (u) (t) 0 dp(u)--u

hold for all O-RV functions . By virtue of Lemma 4.3 we immediately
obtain the following Corollary dealing with two chains of inequalities (in
both directions) between and its integral, harmonic, and geometric means.

COROLLARY 4.5 Let and C (0, 1) be chosen arbitrarily.
(a) If -< 1, then is bounded, almost increasing, and we have

du 1
(t) (u)-- (k-U

1/t<k

1) (cJt),
j=O

t-+0+.

(b) If c]) >- 1, then is almost decreasing, and

du 1
(t) (u)-- (k-) Z (CJ)’ t--O+.

u
l<_k<_l/t j" t<CJ<l

In the last equivalence of (a) and (b), the constants, induced by , depend
on C.

For (almost) monotonic functions the requirements being a O-RV function
can be weakened (cf. W. Feller [16], or [6, Corollary 2.0.6] for monotonic
functions).

LEMMA 4.6 If a positive measurable function : (0, 1] -+ is almost
increasing, such that .(Co) > Ofor one Co (0, 1), then 49 satisfying
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Proof By assumption we have (Ct)/(t) < M for all C, 6 (0, 1], i.e.,

* < o on (0, 1]. Thus we have only to show that . > 0 on (0, 1 ]. Since
is almost increasing, it follows 0 < .(Co) < M.(C) for all C 6 [Co, 1].

n+l nIf C 6 (0, CO) we choose n 6 No such that Co < C < Co to obtain

b(e)+lt)
(t)

Hence . is positive and 4 1, by Lemma 4.1. []

The following theorem originates from a proof of an inverse theorem for
Bernstein polynomials due to Berens and Lorentz [5]. Some extensions are
in use in approximation theory, see e.g.M. Becker and R.J. Nessel [4], E. van
Wickeren [25] or X.L. Zhou [26].

THEOREM 4.7 Let , such that -< dp, and let X" (0, 1] -- be
a positive measurable function which is almost increasing. If there exists a

constant K > 0 such that

(t) < K{x(h)-+- 1/r(t)
p(h)(h)+!#(t) 0<t <h < 1, (4.11)

and if
)(t) < Me(t), 0 < < 1,

then X , and

x(t) (t), 0+.

Proof We have to show that can be estimated by ;. First, by Theorem 3.1
we find some > 0 and Co 6 (0, 1] such that

(Ch) (h)
(h) (Ch)

< C, 0 < h < to(C). (4.12)

for all C e (0, Co] and a suitable to (C) (0, 1 ]. We now fix one C (0, Co]
such that

C < 1/(3K). (4.13)
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By virtue of Lemma 3.3 applied to 4/P >- 1, there is some 0 < tl < to(C)
such that

b(h)
3K < 0 < h < tl. (4.14)

p(h)

Inserting the inequalities (4.12), (4.13), and (4.14) into the assumption (4.11)
we obtain by setting Ch

2
dp(Ch) < Kx(h) q- -(Ch), 0 < h < tl.

A final application of Corollary 2.2 gives the desired estimate 4(t) < MX (t)
forO< _<tl. []

5 APPLICATION TO APPROXIMATION THEORY

In this section we give some brief applications of the theory of O-RV
functions to approximation theory. Let Lzr, 1 < p < o, be the Banach
space ofthe Lebesgue measurable 2zr-periodic functions f" C endowed
with the norm

lip.Ilfllp :=
t

If(x)[ p dx

For simplicity we identify L with the space of all continuous 2zr-periodic
functions on equipped with the usual supremum norm Ilfll :=

SUPx If(x)[. In the following let 1 < p < oe and f 6 Lr. In these
spaces one can ask for a characterization of the behaviour of the (error of)
best approximation by trigonometric polynomials. If we denote by Fin the
set of trigonometric polynomials tn(X) -=-n aleilcx, a 6 C, of degree
not exceeding n 6 10, then the best approximation of f L is given by

En [f] inf f tn lip,
tn Gl-ln

Since the subspaces Fin C Lz are finite dimensional, the infimum above
is achieved by a polynomial of best approximation t t (f). The growth
of En [f] depends on the smoothness of the given function f, which can be
measured by moduli of smoothness. Defining for r 6 1 the r-th difference of

f with increment h > 0 by Af(x) := f(x + h) f (x), A+ .= AA,
then the r-th modulus ofsmoothness is given by

Cor(f, t) sup IIAfllp, > 0.
0<h<t
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Moduli of smoothness are strongly related to K-functionals. We denote by

w2P the Sobolev space of all functions f 6 L which coincide almost
everywhere with an (r 1)-times continuously differentiable function g,
g(r-1) being absolutely continuous with derivative in Lzr, i.e., f w2P
iff f(r) exists almost everywhere and belongs to Lr. Of course, if p x,

W2’r is the space of all r-times continuously differentiable 2zr-periodic
functions on N. The K-functional is then defined by

Kr(f, t) sup {llf gllp -t- tllg(r)llp}, > O.
g W;

For each fixed > 0 the K-functional Kr(f, t) is a sublinear functional,
bounded by f lip. The modulus of smoothness can be replaced by the K-
functional, using the following well known equivalence (see e.g.R.A. DeVore
and G.G. Lorentz 12, Chapter 7., 2]).

PROPOSITION 5.1 For r N there holds

O)r(f, t) Kr(f, tr), t6(0,1],

where the constants induced are independent of f and t.

Our main connection with 69-RV functions is given by

TrEOREM 5.2 Let such that p -< 1. Then either Kr(f, (’)) =-- 0 on

(0, 1] or Kr(f, r(.)) . In the latter case we have

Kr(f, r(.)) 1.

Proof Applying (2.4) of Corollary (2.2) we find for each C 6 (0, 1] some
p,rconstant M M(C) > 1 such that for arbitrary g 6 W2

1
IIf gllp + --(t)llg(rllp IIf gllp -t- (h)llg(rllp

_< IIf gllp 4- Mg’(t)llg(rllp,
and hence

1
--Kr(f, p(t)) < Kr(f, (h)) < MKr(f, (t))
M

for all t, h (0, 1] satisfying C < t/h < 1. This proves the first statement.

Since is almost increasing, it follows for 0 < < h < 1 and arbitrary
g 6 w2Pfr
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(t) (h)lif gllp + V(t)llgrllp

< M(h) {llf gllp / 7(t)llg<r)llp}.

Taking the infimum over all g E w2Pr we deduce that Kr(f, (t))/Tt(t) is
almost decreasing, i.e., by Lemma 4.1 Kr (f, (’)). On the other hand,
recalling again that is almost increasing, we find Kr(f, (’)) 1, after
using the estimate

Kr(f, (t)) < M{llf- gllp + (h)llg(r)llp}, 0<t<h<l,

and taking the infimum afterwards.

The corresponding result for the modulus of smoothness now reads

(Dr(f, t) 1.

The relations between the best approximation and the r-th modulus of
smoothness are based on two fundamental inequalities, the so called Jackson
and Bernstein inequalities (cf. P.L. Butzer and R.J. Nessel [10, p. 99] or [12,
p. 97, 202]).

PROPOSITION 5.3 For r N the following inequalities hold

En If] _< Mn-r f(r)lip,
]]tn(r) lip Mnr IIt lip,

f w2Prr, n 1o, (5.1)

tn I-In, n N0. (5.2)

On using these two inequalities and Theorem 5.2 we now can give a

sufficient condition for the equivalence of best approximation and moduli
of smoothness in terms of our growth relation.

THEOREM 5.4 If -< or(f, t)for an r N, then we have

En[f] COr(f, l/n), n

The constants involved by may depend on the givenfunction f
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Proof On using the Jackson inequality (5.1), we get for n 6 N and arbitrary
p,rg W2n
En[f] < En[f g] -k- En[g] < IIf gllp + Mtr IIgrllp,

to obtain by Proposition 5.1

En[f] < MKr(f, n-r) < Moor(f, i/n).

Now, let n l’In, n 6 N, be a polynomial of best approximation to f;
then for t, h 6 (0, 1] and N 6 N such that 2-N < h < 2-N+I,

oor(f, t) <_ Mgr(f, r) <_ M{llf t2*N IIp -t- trl[(t2*N)(r)llp.

Expanding (t2*N)(r into a telescoping sum, we find

N-1

II(t2*N)(r)llp <_ II(t)(r)llp -t- II(t2*)(r)- (t2*+l)(r)llp.
k=0

Applying the Bernstein inequality (5.2) we obtain

[[(t)(r)llp < M{llt flip q-[l flip} < Ml[f[lp,

and

(t2.) (r) (r) M2(k+l)r(t2+,) lip < IIt2 t2+1 lip
<_ M2kr II/- t2* lip -t- M2(k+l)r II/- t2*+ lip.

Inserting these estimates into the sum above, we deduce

N

oor(f, t) m{E2u[f At-trllfllp At-,r 2krE2[f]]. (5.4)
k=0

By (5.3) and on applying Corollaries 4.5, 2.2 for h-r oor(f, h) >- 1 we have

N

_
2kr E2 [f] _< Mh-r

(Dr (f, h).
k=0

We now define e(h) := E[1/h][f], the index [I/h] max{n 6 N0; n _<
1 / h denoting the integer part of 1 / h; then recalling the monotonicity of the
best approximation, these estimates imply

oor(f t) < M{e(h) + trh-r oor(f h) +
for some constant M M(f, r) > 0. An application of Theorem 4.7 finally
yields e(t) oor(f, t), which proves the theorem. []
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Remark 5.1 The inequality

En[f] < Moor(f, l/n), (5.5)

established above, is called the direct or Jackson theorem, while the estimate

oor(f, t) <_ Mt (k d- 1)r-lE[f] (5.6)
O<k<l/t

is called the inverse or Bernstein theorem on best trigonometric approxi-
mation. The latter estimate can be deduced by applying f t in (5.4) for
h t, and by using (4.8), taking into account that oor(f, t) oor(f t, t)
and E[f] E[f t]. Note that the inequalities (5.5) and (5.6) hold
without the assumption of the preceding theorem, and the constants only
depend on r 6 N.
The condition that the function e(t) := E[1/tl[f] belongs to , is necessary

but not sufficient for the equivalence between the best approximation and
modulus of smoothness. With theaid of Lemma 4.6 we obtain that e(t)
belongs to if, for instance, the term En[f]/E2n[f] is bounded for n --+

By Corollary 4.5, applied to the inverse theorem (5.6), we have

COROLLARY 5.5 If e(t) E[1/t][f] 4p such that -< e(t) for an r 1,
then

En[f] oor(f, 1/n), n -+

Essentially Theorem 5.4 and Corollary 5.5 have already been proven
for continuous functions in the fundamental work of S.B. Stekin [24]
(see also [13] for approximation in Banach spaces). In both papers there
are comparison functions in use. This is now avoided by using the O-RV
functions combined with the relation -<. The problem to find characterizations
for En[f] oor(f, i/n) in terms of moduli of smoothness is referred
to as the Timan problem. We finally prove the following theorem, due to
R.K.S. Rathore [22], in the setting of O-RV functions.

TrOREM 5.6 For r 1 we have

ifand only if

En[f] oor(f, l/n), n --+ x, (5.7)

oor (f, t) oor+I (f, t), --+ 0+. (5.8)
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Proof First, from the definition of the modulus of smoothness, we note that

COr+m (f, t) _< 2COr (f, t). If (5.7) holds, then (5.8) follows on using the Jackson
theorem (5.5) for r + 1. Conversely, by Theorem 5.2 and Proposition 5.1 we
obtain r+l -< COr(f, t). Hence we can apply Theorem 5.4 for r + 1 to
deduce En[f] (-Or+l (f, l/n) C.Or(f, l/n), n --+ cx. []

The foregoing approach of using the growth relation can be applied to
other problems of quantitative approximation provided one has at hand
suitable inequalities of Jackson and Bernstein type and a corresponding
K-functional, cf. [13], [18]. In particular, it is not required that the orders
of the Jackson and Bernstein inequalities are power functions, which is
in fact not necessarily the case; see e.g. the problem of best polynomial
approximation in Freud-weighted spaces, cf. 13] or [19].
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