J. of Inequal. & Appl., 1997, Vol. 1, pp. 301–310 Reprints available directly from the publisher Photocopying permitted by license only © 1997 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers Printed in Malaysia

Discrete Inequalities of Wirtinger's Type for Higher Differences

GRADIMIR V. MILOVANOVIĆ and IGOR Ž. MILOVANOVIĆ

Faculty of Electronic Engineering, Department of Mathematics, P.O. Box 73, 18001 Niš, Yugoslavia e-mail: grade@gauss.elfak.ni.ac.yu

(Received 28 July 1996)

Discrete version of Wirtinger's type inequality for higher differences,

$$A_{n,m} \sum_{k=1}^{n} x_k^2 \leq \sum_{k=l_m}^{u_m} (\Delta^m x_k)^2 \leq B_{n,m} \sum_{k=1}^{n} x_k^2,$$

where $l_m = 1 - [m/2]$, $u_m = n - [m/2]$ and

$$\Delta^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} x_{k+m-i},$$

is considered. Under some conditions, the best constants $A_{n,m}$ and $B_{n,m}$ are determined.

Keywords: Discrete inequality; difference of higher order; eigenvalue; eigenvector.

AMS 1991 Subject classifications: Primary 26D15; Secondary 41A44.

1 INTRODUCTION AND PRELIMINARIES

In [1] (see also [2]) we presented a general method for finding the best possible constants A_n and B_n in inequalities of the form

$$A_n \sum_{k=1}^n p_k x_k^2 \le \sum_{k=0}^n r_k (x_k - x_{k+1})^2 \le B_n \sum_{k=1}^n p_k x_k^2, \qquad (1.1)$$

This work was supported in part by the Serbian Scientific Foundation, grant number 04M03.

where $p = (p_k)$ and $r = (r_k)$ are given weight sequences and $x = (x_k)$ is an arbitrary sequence of the real numbers. The basic discrete inequalities of the form (1.1) for $p_k = r_k = 1$ were given by K. Fan, O. Taussky, and J. Todd [3]. Here, we mention some references in this direction [4–8].

The first results for the second difference were proved by Fan, Taussky and Todd [3]:

THEOREM 1.1 If $x_0 (= 0)$, $x_1, x_2, ..., x_n$, $x_{n+1} (= 0)$ are given real numbers, then

$$\sum_{k=0}^{n-1} (x_k - 2x_{k+1} + x_{k+2})^2 \ge 16\sin^4 \frac{\pi}{2(n+1)} \sum_{k=1}^n x_k^2, \qquad (1.2)$$

with equality in (1.2) if and only if $x_k = A \sin \frac{k\pi}{n+1}$, k = 1, 2, ..., n, where A is an arbitrary constant.

THEOREM 1.2 If $x_0, x_1, \ldots, x_n, x_{n+1}$ are given real numbers such that $x_0 = x_1, x_{n+1} = x_n$ and

$$\sum_{k=1}^{n} x_k = 0, \tag{1.3}$$

then

$$\sum_{k=0}^{n-1} (x_k - 2x_{k+1} + x_{k+2})^2 \ge 16\sin^4\frac{\pi}{2n}\sum_{k=1}^n x_k^2.$$
(1.4)

The equality in (1.4) is attained if and only if

$$x_k = A\cos\frac{(2k-1)\pi}{2n}, \quad k = 1, 2, \dots, n$$

where A is an arbitrary constant.

A converse inequality of (1.2) was proved by Lunter [9], Yin [10] and Chen [11] (see also Agarwal [8]).

THEOREM 1.3 If $x_0 (= 0)$, $x_1, x_2, ..., x_n$, $x_{n+1} (= 0)$ are given real numbers, then

$$\sum_{k=0}^{n-1} (x_k - 2x_{k+1} + x_{k+2})^2 \le 16\cos^4\frac{\pi}{2(n+1)}\sum_{k=1}^n x_k^2, \qquad (1.5)$$

with equality in (1.5) if and only if $x_k = A(-1)^k \sin \frac{k\pi}{n+1}$, k = 1, 2, ..., n, where A is an arbitrary constant.

Chen [11] also proved the following result:

THEOREM 1.4 If $x_0, x_1, \ldots, x_n, x_{n+1}$ are given real numbers such that $x_0 = x_1$ and $x_{n+1} = x_n$, then

$$\sum_{k=0}^{n-1} (x_k - 2x_{k+1} + x_{k+2})^2 \le 16\cos^4\frac{\pi}{2n}\sum_{k=1}^n x_k^2,$$

with equality holding if and only if

$$x_k = A(-1)^k \sin \frac{(2k-1)\pi}{n}, \quad k = 1, 2, \dots, n,$$

where A is an arbitrary constant.

In this case, the $n \times n$ symmetric matrix corresponding to the quadratic form

$$F_2 = \sum_{k=0}^{n-1} (x_k - 2x_{k+1} + x_{k+2})^2 = (H_{n,2}\boldsymbol{x}, \boldsymbol{x})$$

is

$$H_{n,2} = \begin{bmatrix} 2 & -3 & 1 & & & \\ -3 & 6 & -4 & 1 & & \\ 1 & -4 & 6 & -4 & 1 & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \\ & & 1 & -4 & 6 & -4 & 1 \\ & & & 1 & -4 & 6 & -3 \\ & & & & 1 & -3 & 2 \end{bmatrix}.$$

This matrix is the square of the $n \times n$ matrix

$$H_n = H_{n,1} = \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ & & & & & -1 & 1 \end{bmatrix}.$$
 (1.6)

The eigenvalues of H_n are

$$\lambda_{\nu} = \lambda_{\nu}(H_n) = 4\cos^2\frac{(n-\nu+1)\pi}{2n}, \qquad \nu = 1, \ldots, n,$$

and therefore, the largest eigenvalue of H_n is

$$\lambda_n(H_n) = 4\cos^2\frac{\pi}{2n} > \lambda_{n-1}(H_n).$$

The corresponding eigenvector is $x^n = \begin{bmatrix} x_{1n} & x_{2n} & \dots & x_{nn} \end{bmatrix}^T$, where

$$x_{\nu n} = (-1)^{\nu} \sin \frac{(2\nu - 1)\pi}{2n}, \quad \nu = 1, 2, \dots, n.$$

Thus, the largest eigenvalue of $H_{n,2}$ is

$$\lambda_n(H_{n,2}) = 16\cos^4 \frac{\pi}{2n} > \lambda_{n-1}(H_{n,2}),$$

and the associated eigenvector is x^n .

Notice that the minimal eigenvalue of the matrix H_n (and also $H_{n,2}$) is $\lambda_1 = 0$. Therefore, the condition (1.3) must be included in Theorem 1.2 (see Agarwal [8, Ch. 11]) and the best constant is the square of the relevant eigenvalue

$$\lambda_2 = 4\cos^2\frac{(n-1)\pi}{2n} = 4\sin^2\frac{\pi}{2n}$$

For any *n*-dimensional vector $\boldsymbol{x} = [x_1 \ x_2 \ \dots \ x_n]^T$, Pfeffer [12] introduced a periodically extended *n*-vector by setting $x_{i+rn} = x_i$ for $i = 1, 2, \dots, n$ and $r \in \mathbb{N}$, and used the *m*th difference of \boldsymbol{x} given by $\boldsymbol{x}^{(m)} = [\Delta^m x_1 \ \Delta^m x_2 \ \dots \ \Delta^m x_n]^T$, where

$$\Delta^m x_i = \sum_{r=0}^m (-1)^{m-r} \binom{m}{r} x_{i-[m/2]+r}, \qquad 1 \le i \le n,$$

in order to prove the following result:

THEOREM 1.5 If x is a periodically extended n-vector and (1.3) holds, then

$$(\boldsymbol{x}^{(m)}, \boldsymbol{x}^{(m)}) \geq \left(4\sin^2\frac{\pi}{n}\right)^m (\boldsymbol{x}, \boldsymbol{x}),$$

with equality case if and only if x is the periodic extension of a vector of the form $C_1u + C_2v$, where

 $\boldsymbol{u} = [u_1 \ u_2 \ \dots \ u_n]^T$ and $\boldsymbol{v} = [v_1 \ v_2 \ \dots \ v_n]^T$

have the following components

$$u_k = \cos \frac{2k\pi}{n}, \quad v_k = \sin \frac{2k\pi}{n}, \quad k = 1, \dots, n,$$

and C_1 and C_2 are arbitrary real constants.

2 MAIN RESULTS

In this paper we consider inequalities of the form

$$A_{n,m} \sum_{k=1}^{n} x_k^2 \le \sum_{k=l_m}^{u_m} \left(\Delta^m x_k \right)^2 \le B_{n,m} \sum_{k=1}^{n} x_k^2,$$
(2.1)

where $l_m = 1 - [m/2]$, $u_m = n - [m/2]$ and

$$\Delta^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} x_{k+m-i}.$$

The quadratic form $F_m = \sum_{k=l_m}^{u_m} (\Delta^m x_k)^2$ for m = 1 reduces to

$$F_1 = x_1^2 + \sum_{k=2}^{n-1} 2x_k^2 + x_n^2 - 2\sum_{k=1}^{n-1} x_k x_{k+1},$$

with corresponding tridiagonal symmetric matrix $H_n = H_{n,1}$ given by (1.6).

We consider inequalities (2.1) under conditions

$$x_s = x_{1-s}, \quad x_{n+1-s} = x_{n+s} \quad (l_m \le s \le 0)$$
 (2.2)

and define

$$\boldsymbol{x}^{(j)} = \begin{bmatrix} \Delta^{j} x_{1-[j/2]} \\ \Delta^{j} x_{2-[j/2]} \\ \vdots \\ \Delta^{j} x_{n-[j/2]} \end{bmatrix}.$$
 (2.3)

The quadratic form F_m can be expressed then in the following form

$$F_m = F_m(\boldsymbol{x}) = \sum_{k=l_m}^{u_m} \left(\Delta^m x_k \right)^2 = (\boldsymbol{x}^{(m)}, \boldsymbol{x}^{(m)}), \qquad (2.4)$$

where

$$oldsymbol{x} = oldsymbol{x}^{(0)} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}.$$

At the begining we prove three auxiliary results:

305

LEMMA 2.1 If j is an even integer, under conditions (2.2), we have that

$$\Delta^{j+1} x_{-[j/2]} = 0 \quad and \quad \Delta^{j+1} x_{n-[j/2]} = 0.$$
 (2.5)

Proof Let q = 0 or q = n. Putting j = 2p we have

$$\Delta^{j+1} x_{q-[j/2]} = \Delta^{2p+1} x_{q-p} = \sum_{i=0}^{2p+1} (-1)^i \binom{2p+1}{i} x_{q+p+1-i}$$

= $\sum_{i=0}^p (-1)^i \binom{2p+1}{i} x_{q+p+1-i} + \sum_{i=p+1}^{2p+1} (-1)^i \binom{2p+1}{i} x_{q+p+1-i}$
= $\sum_{i=0}^p (-1)^i \binom{2p+1}{i} x_{q+p+1-i} - \sum_{i=0}^p (-1)^i \binom{2p+1}{i} x_{q-p+i}$
= $\sum_{i=0}^p (-1)^i \binom{2p+1}{i} (x_{q+p+1-i} - x_{q-p+i}) = 0$

because of the conditions (2.2).

LEMMA 2.2 If j is an even integer, under conditions (2.2), we have that

$$H_n \boldsymbol{x}^{(j)} = -\boldsymbol{x}^{(j+2)},$$

where the matrix H_n is given by (1.6).

Proof We have

$$H_{n}\boldsymbol{x}^{(j)} = \begin{bmatrix} \Delta^{j} x_{1-[j/2]} - \Delta^{j} x_{2-[j/2]} \\ -\Delta^{j+2} x_{1-[j/2]} \\ \vdots \\ -\Delta^{j+2} x_{n-2-[j/2]} \\ -\Delta^{j} x_{n-1-[j/2]} + \Delta^{j} x_{n-[j/2]} \end{bmatrix}.$$
 (2.6)

Since

$$\Delta^{j+2} x_{-[j/2]} = \Delta^{j+1} x_{1-[j/2]} - \Delta^{j+1} x_{-[j/2]}$$

and

$$\Delta^{j+2} x_{n-1-[j/2]} = \Delta^{j+1} x_{n-[j/2]} - \Delta^{j+1} x_{n-1-[j/2]},$$

because of Lemma 2.1, we conclude that

 $\Delta^{j+2} x_{-[j/2]} = \Delta^{j+1} x_{1-[j/2]}$ and $\Delta^{j+2} x_{n-1-[j/2]} = -\Delta^{j+1} x_{n-1-[j/2]}$, respectively. Therefore,

$$\Delta^{j} x_{1-[j/2]} - \Delta^{j} x_{2-[j/2]} = -\Delta^{j+1} x_{1-[j/2]} = -\Delta^{j+2} x_{-[j/2]}$$

and

$$-\Delta^{j} x_{n-1-[j/2]} + \Delta^{j} x_{n-[j/2]} = \Delta^{j+1} x_{n-1-[j/2]} = -\Delta^{j+2} x_{n-1-[j/2]}.$$

Then (2.6) becomes

$$H_{n}\boldsymbol{x}^{(j)} = -\begin{bmatrix} \Delta^{j+2}\boldsymbol{x}_{-[j/2]} \\ \Delta^{j+2}\boldsymbol{x}_{1-[j/2]} \\ \vdots \\ \Delta^{j+2}\boldsymbol{x}_{n-2-[j/2]} \\ \Delta^{j+2}\boldsymbol{x}_{n-1-[j/2]} \end{bmatrix} = -\begin{bmatrix} \Delta^{j+2}\boldsymbol{x}_{1-[(j+2)/2]} \\ \Delta^{j+2}\boldsymbol{x}_{2-[(j+2)/2]} \\ \vdots \\ \Delta^{j+2}\boldsymbol{x}_{n-1-[(j+2)/2]} \\ \Delta^{j+2}\boldsymbol{x}_{n-[(j+2)/2]} \end{bmatrix} = -\boldsymbol{x}^{(j+2)}.$$

LEMMA 2.3 If j is an even integer, under conditions (2.2), we have that $(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j+2)}) = -(\boldsymbol{x}^{(j+1)}, \boldsymbol{x}^{(j+1)}).$

Proof Let j is an even integer. Using (2.3) we have

$$(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j+2)}) = \sum_{k=1}^{n} \Delta^{j} x_{k-[j/2]} \Delta^{j+2} x_{k-1-[j/2]}$$

$$= \sum_{k=1}^{n} \Delta^{j} x_{k-[j/2]} (\Delta^{j} x_{k-1-[j/2]} - 2\Delta^{j} x_{k-[j/2]} + \Delta^{j} x_{k+1-[j/2]})$$

$$= \sum_{k=1}^{n} \Delta^{j} x_{k-[j/2]} (\Delta^{j} x_{k+1-[j/2]} - \Delta^{j} x_{k-[j/2]})$$

$$- \sum_{k=1}^{n} \Delta^{j} x_{k-[j/2]} (\Delta^{j} x_{k-[j/2]} - \Delta^{j} x_{k-1-[j/2]})$$

$$= \sum_{k=1}^{n} \Delta^{j} x_{k-[j/2]} \Delta^{j+1} x_{k-[j/2]} - \sum_{k=1}^{n} \Delta^{j} x_{k-1-[j/2]} \Delta^{j+1} x_{k-1-[j/2]}$$

$$= \sum_{k=1}^{n} \Delta^{j} x_{k-[j/2]} \Delta^{j+1} x_{k-[j/2]} - \sum_{k=0}^{n-1} \Delta^{j} x_{k+1-[j/2]} \Delta^{j+1} x_{k-1-[j/2]}.$$

Because of (2.5) we can write

$$(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j+2)}) = \sum_{k=1}^{n} \Delta^{j} x_{k-[j/2]} \Delta^{j+1} x_{k-[j/2]} - \sum_{k=1}^{n} \Delta^{j} x_{k+1-[j/2]} \Delta^{j+1} x_{k-[j/2]}$$
$$= -\sum_{k=1}^{n} \left(\Delta^{j+1} x_{k-[j/2]} \right)^{2}.$$

Since j is an even integer we have that

$$(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j+2)}) = -\sum_{k=1}^{n} \left(\Delta^{j+1} x_{k-[(j+1)/2]} \right)^2 = -(\boldsymbol{x}^{(j+1)}, \boldsymbol{x}^{(j+1)}).$$

Now, we give the main result:

THEOREM 2.4 If $x_1, x_2, ..., x_n$ are given real numbers and conditions (2.2) are satisfied, then

$$\sum_{k=l_m}^{u_m} \left(\Delta^m x_k \right)^2 \le 4^m \cos^{2m} \frac{\pi}{2n} \sum_{k=1}^n x_k^2, \tag{2.7}$$

where $l_m = 1 - [m/2]$ and $u_m = n - [m/2]$. The equality in (2.7) is attained if and only if

$$x_k = A(-1)^k \sin \frac{(2k-1)\pi}{n}, \quad k = 1, 2, \dots, n,$$

where A is an arbitrary constant.

Proof We will prove that the corresponding matrix of the quadratic form (2.4) is exactly the *m*th power of the matrix $H_n = H_{n,1}$ so that the best constant in the right inequality (2.1), i.e., (2.7), is given by

$$B_{n,m}=4^m\cos^{2m}\frac{\pi}{2n}.$$

Evidently, $A_{n,m} = 0$.

Let m be an even integer. Then, using Lemma 2.2, we find

$$F_m = (x^{(m)}, x^{(m)}) = (H_n x^{(m-2)}, H_n x^{(m-2)}),$$

308

i.e.,

$$F_m = (H_n^{m/2} x^{(0)}, H_n^{m/2} x^{(0)}) = (H_n^m x, x).$$

Similarly, for an odd m, using Lemmas 2.3 and 2.4, we obtain

$$F_m = (x^{(m)}, x^{(m)}) = -(x^{(m-1)}, x^{(m+1)}) = (x^{(m-1)}, H_n x^{(m-1)}).$$

Now, using Lemma 2.2 again, we find

$$F_m = \left(H_n^{(m-1)/2} x^{(0)}, H_n^{(m+1)/2} x^{(0)}\right) = \left(H_n^m x, x\right).$$

By restriction (1.3), we can obtain the following result:

THEOREM 2.5 If $x_1, x_2, ..., x_n$ are given real numbers and conditions (2.2) and (1.3) are satisfied, then

$$4^{m} \sin^{2m} \frac{\pi}{2n} \sum_{k=1}^{n} x_{k}^{2} \leq \sum_{k=l_{m}}^{u_{m}} \left(\Delta^{m} x_{k} \right)^{2}, \qquad (2.8)$$

where $l_m = 1 - [m/2]$ and $u_m = n - [m/2]$. The equality in (2.8) is attained if and only if

$$x_k = A \cos \frac{(2k-1)\pi}{2n}, \quad k = 1, 2, \dots, n,$$

where A is an arbitrary constant.

For other generalizations of discrete Wirtinger's inequalities see [13–15]. There are also generalizations for multidimensional sequences and partial differences (see [16] and [17]).

Acknowledgements

This work was supported in part by the Serbian Scientific Foundation, grant number 04M03.

References

 G.V. Milovanović and I. Ž. Milovanović, On discrete inequalities of Wirtinger's type. J. Math. Anal. Appl., 88 (1982), 378–387.

- [2] G.V. Milovanović and I. Ž. Milovanović, Discrete inequalities of Wirtinger's type. *Recent Progress in Inequalities*, A Volume Dedicated to Professor D.S. Mitrinović (1908–1995) (ed. G.V. Milovanović), Kluwer, Dordrecht, 1997 (to appear).
- [3] K. Fan, O. Taussky and J. Todd, Discrete analogs of inequalities of Wirtinger. Monatsh. Math., 59 (1955), 73–90.
- [4] O. Shisha, On the discrete version of Wirtinger's inequality. Amer. Math. Monthly, 80 (1973), 755–760.
- [5] L. Losonczi, On some discrete quadratic inequalities. *General Inequalities 5* (W. Walter ed.) ISNM Vol. 80, (1987), Birkhäuser Verlag, Basel, 73–85.
- [6] S.-S. Cheng, Discrete quadratic Wirtinger's inequalities. *Linear Algebra Appl.*, 85 (1987), 57–73.
- [7] H. Alzer, Converses of two inequalities by Ky Fan, O. Taussky, and J. Todd. J. Math. Anal. Appl., 161 (1991), 142–147.
- [8] R.P. Agarwal, Difference Equations and Inequalities Theory, Methods, and Applications, Marcel Dekker, New York – Basel – Hong Kong (1992).
- [9] G. Lunter, New proofs and a generalisation of inequalities of Fan, Taussky, and Todd. J. Math. Anal. Appl., 185 (1994), 464–476.
- [10] X.-R. Yin, A converse inequality of Fan, Taussky, and Todd. J. Math. Anal. Appl., 182 (1994), 654–657.
- [11] W. Chen, On a question of H. Alzer. Arch. Math., 62 (1994), 315-320.
- [12] A.M. Pfeffer, On certain discrete inequalities and their continuous analogs. J. Res. Nat. Bur. Standards Sect. B, 70B (1966), 221–231.
- [13] A.M. Fink, Discrete inequalities of generalized Wirtinger type. Aequationes Math., 11 (1974), 31–39.
- [14] J. Novotna, Variations of discrete analogues of Wirtinger's inequality. *Časopis Pěst. Mat.*, 105 (1980), 278–285.
- [15] J. Novotna, A sharpening of discrete analogues of Wirtinger's inequality. *Časopis Pěst. Mat.*, 108 (1983), 70–77.
- [16] H.D. Block, Discrete analogues of certain integral inequalities. Proc. Amer. Math. Soc., 8 (1957), 852–859.
- [17] J. Novotna, Discrete analogues of Wirtinger's inequality for a two-dimensional array. *Časopis Pěst. Mat.*, **105** (1980), 354–362.