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Discrete version of Wirtinger’s type inequality for higher differences,
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2 2 2
Anm E X = E (A"x)" < Bym X
k=1

k=lm k=1

where I,, =1 — [m/2], u,, = n — [m/2] and

m
A m
A"x = Z(—l)' (i )xk+m——i»
i=0

is considered. Under some conditions, the best constants A, ,, and B, , are determined.
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1 INTRODUCTION AND PRELIMINARIES

In[1] (see also [2]) we presented a general method for finding the best possible
constants A, and B, in inequalities of the form

n n n
A pexg <) roe — xk41)® < By Y Pt (1.1)
k=1 k=0 k=1
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where p = (pr) and r = (r¢) are given weight sequences and = (x¢) is an
arbitrary sequence of the real numbers. The basic discrete inequalities of the
form (1.1) for p; = ry = 1 were given by K. Fan, O. Taussky, and J. Todd
[3]. Here, we mention some references in this direction [4-8].

The first results for the second difference were proved by Fan, Taussky
and Todd [3]:

Taeorem 1.1 If xo(= 0), x1,x2,...,%Xn, Xpt1(= 0) are given real
numbers, then
n—1 pu n
2 . 4 2
k§=0(xk — 2Xg41 + Xg42)° > 165sin G ED k2=1 X (1.2)

k
with equality in (1.2) if and only if x;, = A sin ——%, k=1,2,...,n, where
n
A is an arbitrary constant.

THeorREM 1.2 If X0, X1,... , Xn, Xny1 are given real numbers such that
X0 = X1, Xp41 = Xp and
n
Zxk =0, (1.3)
k=1
then
n—1 - n
D Cok — 2xk41 + xk42)* = 16sin’ = " x7. (1.4)
2n
k=0 k=1
The equality in (1.4) is attained if and only if
2k — 1
wo=Acos KD oo,
2n

where A is an arbitrary constant.

A converse inequality of (1.2) was proved by Lunter [9], Yin [10] and
Chen [11] (see also Agarwal [8]).

TueoREM 1.3 If xo (= 0), x1,x2,...,%Xn, Xnt1 (= 0) are given real
numbers, then

n—1 n
—2 2 < 16cost ——— 352, 15
;(Xk Xkt+1 + Xp42)” < 16.cos 2D ;xk (1.5)
km

with equality in (1.5) if and only if x;, = A(—1)¥ sin p—

1,k= 1,2,...,n,
where A is an arbitrary constant.

Chen [11] also proved the following result:
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ToeEOREM 1.4 If X0, X1,... , Xy, Xy41 are given real numbers such that
X0 = X1 and Xp4+1 = Xy, then

n—1 n
b4
> Gtk — 2xk41 + xk42)” < 16cos’ > >
with equality holding if and only if

2k — 1
x = A(= 1) sin DT
n

where A is an arbitrary constant.

In this case, the n x n symmetric matrix corresponding to the quadratic
form

n—1
Fy =) (xk — 2%k11 + Xiy2)” = (Hy 2, @)
k=0
is
- 2 -3 1 7]
-3 6 4 1
1 -4 6 —4 1
Hyp = ) T
1 -4 6 —4 1
1 -4 6 -3
L 1 -3 2.
This matrix is the square of the #n x n matrix
-1 -1 7]
-1 2 -1
-1 2 -1
H, =Hn,1 = .. .. .. . (1.6)
-1 2 -1
L —1 1_4
The eigenvalues of H,, are
- 1
D = Ay (H,) = dcos2 BV DT =1,....n,

2n ’

and therefore, the largest eigenvalue of H,, is

b
An(H,) = 4 cos® 5> An—1(Hy).
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The corresponding eigenvector is " = [x1, X2n ... Xan ], where

2v—1
xun=(—1)"sin(—v———)£, v=1,2,...,n.
2n

Thus, the largest eigenvalue of H, 7 is
4 T
An(H, 2) = 16cos n > An—1(Hp,2),

and the associated eigenvector is ”.

Notice that the minimal eigenvalue of the matrix H, (and also H, ) is
M1 = 0. Therefore, the condition (1.3) must be included in Theorem 1.2 (see
Agarwal [8, Ch. 11]) and the best constant is the square of the relevant
eigenvalue

n—-rn Lo T
A2 = 4cos? ——— =4sin® —
2 cos 2n s 2n
For any n-dimensional vector x = [x; x2 ... xn ¥, Pfeffer [12]
introduced a periodically extended n-vector by setting x;4,, = x; for
i =1,2,...,nand r € N, and used the mth difference of x given by
™ =[A"x; A™x, ... A™x,]7, where
" m
A"x; = Z(“l)m_r< )xi—[m/2]+r, 1<i<n,
r
r=0

in order to prove the following result:
TueoreM 1.5  If x is a periodically extended n-vector and (1.3) holds, then
@™, ™) > (4 sin? it—)m(w, x),
n

with equality case if and only if x is the periodic extension of a vector of the
form Ciu + Chv, where

w=1[u; ur ... upl’* and v=[vy v2 ... vu1¥

have the following components

2km . 2km
Urp = COs —, v = sin —, k=1,...,n,
n n

and C1 and Cy are arbitrary real constants.
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2 MAIN RESULTS

In this paper we consider inequalities of the form

,,,,,Zxk Z (A" x:)? <B,,,,,Zxk, 2.1
k=l k=1

k=1

where I, =1 — [m/2], up, = n — [m/2] and

A" x; Z( 1)( )xk+m ~i-

i=0

Um
The quadratic form F, = ) (A"‘xk)2 for m = 1 reduces to

k=l,,
n—1 n—1
Fy = x% + ZZx,% + x,% — ZZxkxk+1,
k=2 k=1

with corresponding tridiagonal symmetric matrix H, = H,; given by (1.6).

We consider inequalities (2.1) under conditions

Xs = X1—s, Xn+1—s = Xn+s (lm <s<0) 2.2)
and define .
Alxy_pj/2
. Alxaj/2)
zV) = ) . (23)
A xXn g2

The quadratic form F,, can be expressed then in the following form

Um
Fp=Fp@ =Y (A"x)" = @™, z™), 2.4)
where
X1
X2
z=20 =
Xn

At the begining we prove three auxiliary results:



306 G.V. MILOVANOVIC and 1.Z. MILOVANOVIC
Lemma 2.1 If j is an even integer, under conditions (2.2), we have that

Aj+1x_[j/2] =0 and Aj“x,,_[j/z] =0. (2.5)

Proof Letq =0orgq = n.Putting j = 2p we have
2p+1

. (2p+ 1
A xg = AP g, = Z(“l)'( pi )xq+p+1—i
=0

14 2p+1
(2p+1 (2p+1
= E (—1)’( pi )xq+p+1—i + E (—1)'< P )xq+p+1—i

1

i=0 i=p+1
p p
(2p+1 (2p+1
=Z(—1)'( P )xq+p+1_i —Z(—l)’( P )xq_,,+i
4 i 4 i
i=0 i=0
P
(2p+1
= Z(—l) ( P , )(xq+p+1—i —Xg—p+i) =0
i=0 !
because of the conditions (2.2). O

LemmaA 2.2 If j is an even integer, under conditions (2.2), we have that

Hyal) = —gi+D),

where the matrix H,, is given by (1.6).

Proof We have

Al xigjm — A xagj
— AT X
Hyx) = : . (2.6)

e )

L —AJxp_i-gjj2) + Al xu_gjy

Since
s - .
A x i = N g — A x gy

and
A xy i = A ;= AT g,



DISCRETE INEQUALITIES OF WIRTINGER’S TYPE 307

because of Lemma 2.1, we conclude that
A Px i = A xiy and A Pxiggm = — AT g,
respectively. Therefore,

A xy_gjm = Mxa_jm = —AHx1 (i = —ATPx g

and
Ay 1+ N = A iy = = AP

Then (2.6) becomes

r Aj+2x_[j/2] 7 B Aj-‘-le—[(j+2)/2] ]

A x i A x40y
Hya) = — : =- : =~
A2 o i A2, 112/
L A2y L A (4272 -

LemMmA 2.3 If j is an even integer, under conditions (2.2), we have that

@D, 20Dy = —(zU*D gU+Dy,
Proof Let j is an even integer. Using (2.3) we have

n
@D, 20+?) = 3" Ay A 1
k=1

n
=Y Al i (A xoi-gim — 287 ey + A xesa-gj2)
k=1

n
=Y Axejp(A xi-gm — A xigj2)

k=1
n .
=D N (A xigj — A xi1-gj2)
k=1
n n .
=Y Al A g = 0 N xegm AT i
k=1 k=1

n—1

n
=Y N iAo = Y A A g
k=1 k=0
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Because of (2.5) we can write

n n
@, 2U*D) =3 " A& xie g = ) A w2 A g
k=1 k=1

r 2
j+1
= — E (AJ+ xk__[j/z]) .

k=1
Since j is an even integer we have that

n

. . . 2 . .
@, gU+Dy = — Z (A1+1xk_[(j+1)/2]) = —(aU*D, gU+Dy,

k=1
O
Now, we give the main result:
THEOREM 2.4 If X1, X2, ..., Xy are given real numbers and conditions (2.2)
are satisfied, then
U . n
3 (Amx)? < 47 cos™ =~ 3" s, 2.7)
k=1, 2n k=1

where l,, = 1 —[m/2] and uy, = n —[m/2]. The equality in (2.7) is attained
if and only if

2% — 1
o= A—)fsin =Dy o,
n

where A is an arbitrary constant.

Proof We will prove that the corresponding matrix of the quadratic form
(2.4) is exactly the mth power of the matrix H, = H, 1 so that the best
constant in the right inequality (2.1), i.e., (2.7), is given by

am I

B, . = 4" cos
m 2n

Evidently, A, ,, = 0.

Let m be an even integer. Then, using Lemma 2.2, we find

F, = (:l:("’), w(m)) — (Hnw(m—Z)’ Hnw(m—Z))’
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ie.,
m = (H"*2© g2 ©) = (H' 2, 2).

Similarly, for an odd m, using Lemmas 2.3 and 2.4, we obtain
Fp = (2™, &™) = — (2D, g0m+D) = (gD f, D).
Now, using Lemma 2.2 again, we find

Fy = (Hm D250 gmtD250) = (B, ).

By restriction (1.3), we can obtain the following result:

THEOREM 2.5 If x1, X2, ..., X, are given real numbers and conditions (2.2)
and (1.3) are satisfied, then

™ Sin2m Zxk Z A"x)’, 2.8)

k=1,

where l,, = 1 —[m/2] and uy, = n —[m/2]. The equality in (2.8) is attained
if and only if
2k — 1
xk=Acos(—~——)—z, k=1,2,...,n,
2n

where A is an arbitrary constant.

For other generalizations of discrete Wirtinger’s inequalities see [13-15].
There are also generalizations for multidimensional sequences and partial
differences (see [16] and [17]).
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