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We introduce new and interesting model of system of generalized set-valued equilibrium
problems which generalizes and unifies the system of set-valued equilibrium problems,
the system of generalized implicit vector variational inequalities, the system of generalized
vector and vector-like variational inequalities introduced by Ansari et al. (2002), the sys-
tem of generalized vector variational inequalities presented by Allevi et al. (2001), the sys-
tem of vector equilibrium problems and the system of vector variational inequalities given
by Ansari et al. (2000), the system of scalar variational inequalities presented by Ansari
Yao (1999, 2000), Bianchi (1993), Cohen and Caplis (1988), Konnov (2001), and Pang
(1985), the system of Ky-Fan variational inequalities proposed bt Deguire et al. (1999) as
well as a variety of equilibrium problems in the literature. Several existence results of a
solution for the system of generalized set-valued equilibrium problems will be shown.

Copyright © 2006 Jian-Wen Peng. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Throughout this paper, let I be an index set. For each i∈ I , let Zi be a topological vector
space. Ci : X → 2Zi be a set-valued mapping such that Ci(x) is a closed pointed and convex
cone with intCi(x) �= ∅ for each x ∈ X , where intA denotes the interior of the set A.
For each i ∈ I , let Ei and Fi be two locally convex Hausdorff topological vector spaces.
Consider two family of nonempty compact convex subsets {Xi}i∈I and {Yi}i∈I with Xi ⊂
Ei and Yi ⊂ Fi. Let E =∏i∈I Ei, X =

∏
i∈I Xi, F =

∏
i∈I Fi and Y =∏i∈I Yi. An element

of the set Xi =∏ j∈I\i Xi will be denoted by xi, therefore, x ∈ X will be written as x =
(xi,xi) ∈ Xi ×Xi. An element of the set Y will be denoted by y =∏i∈I yi, where yi is an
element of the set Yi. Let Ti : X → 2Yi and Ψi : X ×Yi×Xi→ 2Zi be set-valued mappings.

The system of generalized set-valued equilibrium problems (in short, SGSEP) which
is a family of generalized set-valued equilibrium problems defined on a product set will
be introduced as follows: The (SGSEP) is to find (x, yi) in X ×Yi such that for each i∈ I ,
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2 The system of generalized set-valued equilibrium problems

xi ∈ Xi, yi ∈ Ti(x) and

Ψi
(
x, yi,zi

) �⊂ − intCi(x), ∀zi ∈ Xi. (1.1)

The (SGSEP) is a new, interesting, meaningful and general mathematical model, which
contains many mathematical models as special cases, for some examples.

(i) For each i∈ I , if Yi = {yi} and Ti(x)= {yi} for all x ∈ X , define a function Φi : X ×
Xi → Zi as Φi(x,zi) = Fi(x, yi,zi), then the (SGSEP) reduces to the system of set-valued
equilibrium problems (in short, SSEP), which is to find x in X such that for each i∈ I ,

Φi
(
x,zi

) �⊂ − intCi(x), ∀zi ∈ Xi. (1.2)

(ii) For each i ∈ I , let L(Ei,Fi) denote the continuous linear operators from Ei to Fi,
and Vi : X → 2L(Ei,Fi) be a set-valued mapping, let ψi : L(Ei,Fi)×Xi×Xi → Zi be a vector-
valued mapping. Then a special case of the (SSEP) is the system of generalized implicit
vector variational inequalities (in short, SGIVVI), which is to find x ∈ X such that for
each i∈ I ,

∀yi ∈ Xi, ∃ui ∈Vi(x) : ψi
(
ui,xi, yi

)
/∈− intCi(x). (1.3)

(iii) For each i ∈ I , let ηi : Xi × Xi → Ei be a bifunction, then a special case of the
(SGIVVI) is the system of generalized vector variational-like inequalities (in short,
SGVVLI), which is to find x ∈ X such that for each i ∈ I ,∀yi ∈ Xi, ∃ui ∈ Vi(x) :
〈ui,ηi(yi,xi)〉 /∈− intCi(x).

(iv) A special case of the (SGVVLI) is the system of generalized vector variational in-
equalities (in short, SGVVI), which is to find x ∈ X such that for each i∈ I ,

∀yi ∈ Xi, ∃ui ∈Vi(x) :
〈
ui, yi− xi

〉
/∈− intCi(x), (1.4)

and if Ci(x) = C for all x ∈ X , then the (SGVVI) becomes the problem considered by
Allevi et al. in [1] with relative pseudomonotonicity. If Vi is a single-valued function and
Ci(x) = C for all x ∈ X , then the (SGVVI) reduces to the system of vector variational
inequalities (in short, SVVI), which is to find x ∈ X such that for each i∈ I ,

〈
Vi(x), yi− xi

〉
/∈− intC, ∀yi ∈ Xi. (1.5)

Moreover, if Zi = R and C = R+ = {r ∈ R : r ≥ 0}, then the (SVVI) reduces to the sys-
tem of (scalar) variational inequalities (in short, SVI), which is to find x ∈ X such that
for each i∈ I ,

〈
Vi(x), yi− xi

〉≥ 0, ∀yi ∈ Xi. (1.6)

The (SVI) was studied by Pang [27], Cohen and Chaplais [15], Ansari and Yao [5, 7],
Bianchi [9] and Konnov [21].
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(v) For each i ∈ I , if Φi is replaced by a single-valued mapping ϕi : X ×Xi → Zi, then
the (SSEP) reduces to a system of vector equilibrium problems (in short, SVEP), which is
to find x in X such that for each i∈ I ,

ϕi
(
x,zi

)
/∈− intCi(x), ∀zi ∈ Xi. (1.7)

For each i∈ I , let fi : X → Zi be a vector-valued function. If for each i∈ I ,

ϕi
(
x,zi

)= fi
(
xi,zi

)− fi(x), (1.8)

then the (SVEP) is equivalent to the generalized Nash equilibrium problem (in short,
GNEP), which is to find x ∈ X such that for each i∈ I , fi(xi,zi)− fi(x) /∈− intC(x),∀zi ∈
Xi.

The (SSEP), the (SGIVVI), the (SGVVLI), the (SGVVI), the (SVEP) and the (GNEP)
were introduced and studied by Ansari et al. in [4].

If Zi = Z, Ci(x) = C for each i ∈ I and for all x ∈ X , then the (SVEP) becomes the
problem studied by Ansari et al. in [3] and contains the system of vector optimization
problems, the Nash equilibrium problem for vector-valued functions and the (SVVI) as
special cases.

If Zi = R, Ci(x) = {r ∈ R : r ≤ λ} for each i ∈ I and for all x ∈ X , then the (SVEP)
reduces the system of (scalar) Ky-Fan variational inequalities which is to find x ∈ X such
that for each i∈ I ,

ϕi
(
x,zi

)≤ λ, ∀zi ∈ Xi. (1.9)

This problem was studied by Deguire et al. [16].
(vi) If I = 1, then the (SGSEP) reduces to the generalized set-valued equilibrium prob-

lem (in short, GSEP), which is to find x ∈ X and y ∈ T(x) such that

Ψ(x, y,z) �⊂ − intC(x), ∀z ∈ X. (1.10)

This problem was introduced and studied by Fu and Wan [18].
If I = 1, then the (SSEP) reduces to the set-valued equilibrium problem (in short,

SEP), which is to find x ∈ X such that

Φ(x,z) �⊂ − intC(x), ∀z ∈ X. (1.11)

The (SEP) was studied by Ansari et al. [2], Ansari and Yao [6], Konnov and Yao [22],
Lin et al. [23], Oettli and Schlager [26], and the (SEP) contains the vector equilibrium
problem in [10, 13, 19, 23, 25, 28] and the equilibrium problem in [11, 12] as special
cases.

In this paper, some existence results of a solution for the (SGSEP) will be shown. These
results improve and generalize the main results in [3, 4].
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2. Basic definitions

In order to prove the main results, it is need to introduce the following new definitions.

Definition 2.1. LetCi : X → 2Zi be a set-valued mapping such thatCi(x) is a closed pointed
and convex cone with intCi(x) �= ∅ for each x ∈ X . Then the set-valued mapping Φ :
X ×Xi → 2Zi is called to be Ci(x)-0-partially diagonally quasiconvex if, for any finite set
{zi1 ,zi2 , . . . ,zin} ∈ Xi, and for all x = (xi,xi) ∈ X with xi ∈ Co{zi1 ,zi2 , . . . ,zin}, there exists
some j in {1,2, . . . ,n} such that Φ(x,zij ) �⊂ − intCi(x).

It is clear that if Zi = R and Ci(x) = {r ∈ R : r ≥ 0} for all x ∈ X , and Φi is a single-
valued function, then Ci(x)-0-partially diagonally quasiconvexity of Φi reduces to the
0-partially diagonally quasiconvex (i.e., [14, Definition 3]), furthermore, let I = {1}, [14,
Definition 3] reduces to the γ-diagonal quasiconvexity in [31, 32], here γ = 0.

It is need to recall the following definitions for set-valued mappings in [6, 8].

Definition 2.2. Let E and Z be topological spaces, X ⊂ E a nonempty convex set. Let
C : X → 2Z be a set-valued mapping with IntC(x) �= ∅ for all x ∈ X and Φ : X ×X → 2Z

be a set-valued mapping. Then Φ(x,z) is said to be C(x)-quasiconvex-like if, for all x ∈ X ,
y1, y2 ∈ X , and α∈ [0,1], we have either

Φ
(
x,αy1 + (1−α)y2

)⊂Φ
(
x, y1

)−C(x) (2.1)

or

Φ
(
x,αy1 + (1−α)y2

)⊂Φ
(
x, y2

)−C(x). (2.2)

Definition 2.3. Let X and Y be two topological spaces and T : X → 2Y be a set-valued
mapping.

(1) T is said to be upper semicontinuous if the set {x ∈ X : T(x)⊂V} is open in X for
every open subset V of Y .

(2) T is said to have open lower sections if the set T−1(y)= {x ∈ X : y ∈ T(x)} is open
in X for each y ∈ Y .

3. Existence results

Some existence results of a solution for the (SGSEP) are first be shown as follows.

Theorem 3.1. Let I be an index set and I be countable. For each i ∈ I , let Zi be a real
topological vector space, Ei and Fi be two locally convex Hausdorff topological vector spaces,
Xi ⊂ Ei be a nonempty, convex and metrizable set and Yi ⊂ Fi be a nonempty, compact,
convex and metrizable set, let Ci : X → 2Zi be a set-valued mapping such that Ci(x) is a
closed pointed and convex cone with intCi(x) �= ∅ for each x ∈ X , Ti : X → 2Yi and Ψi :
X ×Yi×Xi→ 2Zi be set-valued mappings. For each i∈ I , assume that the following.

(i) Mi = Zi\(− intCi) : X → 2Zi is upper semicontinuous.
(ii) For each yi ∈ Xi, Ψi(x, yi,zi) is Ci(x)-0-partially diagonally quasiconvex.

(iii) For all zi ∈ Xi, (x, yi) →Ψi(x, yi,zi) is upper semicontinuous onX ×Yi with compact
values.
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(iv) Ti : X → 2Yi is an upper semicontinous set-valued mapping with nonempty compact
values.

(v) For each i∈ I , there exists a nonempty compact subset Ki ⊂ Xi and a compact convex
set Bi ⊂ Xi; let K =∏i∈I Ki ⊂ X and B =∏i∈I Bi ⊂ X such that, for each x ∈ X \K ,
there exists zi∗ ∈ Bi such that Ψi(x, yi,z∗i )⊂− intCi(x),∀yi ∈ Ti(x).

Then, there exists (x, yi)= (xi,xi, yi) in K ×Yi such that for each i∈ I ,

xi ∈ Ki, yi ∈ Ti(x) : Ψi
(
x, yi,zi

) �⊂ − intCi(x), ∀zi ∈ Xi. (3.1)

Proof
Case 1. For each i∈ I , the set Xi is a compact set.

For each i∈ I , define a set-valued mapping Pi : X ×Yi→ 2Xi by

Pi
(
x, yi

)= {zi ∈ Xi : Ψi
(
x, yi,zi

)⊂− intCi(x)
}

, ∀(x, yi
)∈ X ×Yi. (3.2)

It is need to prove that xi /∈ Co(Pi(x, yi)) for all (x, yi) = (xi,xi, yi) ∈ X ×Yi, where CoA
denotes the convex hull of the set A. To see this, suppose, by way of contradiction, that
there exist some i∈ I and some point (x, yi)∈ X ×Yi such that xi ∈ Co(Pi(x, yi)). Then
there exist finite points zi1 ,zi2 , . . . ,zin in Xi, and αj ≥ 0 with

∑n
j=1αj = 1 such that x =

∑n
j=1αjzij and zij ∈ Pi(x, yi) for all j = 1,2, . . . ,n. That is, Ψi(x,xi,zij ) ∈ − intCi(x), j =

1,2, . . . ,n, which contradicts the fact that Ψi(x, yi,zi) is Ci(x)-0-partially diagonally quasi-
convex.

Now, it is need to prove that the set Pi
−1(zi) = {(x, yi) ∈ X × Yi : Ψi(x, yi,zi) ⊂

− intCi(x)} is open for each i ∈ I and for each zi ∈ Xi. That is, Pi has open lower sec-
tions on X × Yi. It is only need to prove that Qi(zi) = {(x, yi) ∈ X ×Yi : Ψi(x, yi,zi) �⊂
− intCi(x)} is closed for all zi ∈ Xi. In fact, consider a net (xt, yit ) ∈ Qi(zi) such that
(xt, yit )→ (x, yi)∈ X ×Yi. Since (xt, yit )∈Qi(zi), there exists ut ∈Ψi(xt, yit ,zi) such that
ut /∈ − intCi(xt). From the upper semicontinuity and compact values of Ψi on X × Yi
and [29, Proposition 1], it suffices to find a subset {utj} which converges to some u ∈
Ψi(x, yi,zi), where utj ∈Ψi(xtj , yit j ,zi). Since (xtj , yit j )→ (x, yi), by [8, Proposition 7, page
110] and the upper semicontinuity of Mi, it follows that u /∈− intCi(x), and hence (x, yi)
∈Qi(zi), Qi(zi) is closed.

For each i∈ I , also define another set-valued mapping Gi : X ×Yi→ 2Xi by

Gi
(
x, yi

)= Co
(
Pi
(
x, yi

))
, ∀(x, yi

)∈ X ×Yi. (3.3)

Let Wi = {(x, yi)∈ X ×Yi :Gi(x, yi) �= ∅}. Since Pi has open lower sections in X , and by
[30, Lemma 5], we know that Co(Pi) has open lower sections in X ×Yi. Then, for each
zi ∈ Xi, G−1

i (zi)= (CoPi)−1(zi) is open, that is, Gi also has open lower sections in X ×Yi.
Hence,Wi =∪zi∈XiGi

−1(zi) is an open set in X ×Yi. Then, the set-valued mappingGi |Wi :
Wi→ 2Xi has open lower sections inWi, and for all (x, yi)∈Wi,Gi(x, yi) is nonempty and
convex. Also, since X ×Yi is metrizable space [20, page 50], Wi is paracompact [24, page
831]. Hence, by [30, Lemma 6], there is a continuous function si : Wi → Xi such that
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si(x, yi)∈Gi(x, yi) for all (x, yi)∈Wi. Define Hi : X ×Yi→ 2Xi by

Hi
(
x, yi

)=
⎧
⎨

⎩

{
si
(
x, yi

)}
if
(
x, yi

)∈Wi,

Xi if
(
x, yi

)
/∈Wi.

(3.4)

It is easy to prove that Hi is upper semicontinuous.
Now define a set-valued mapping Γ : X × Y → 2X×Y by Γ(x, y) = (

∏
i∈I Hi(x, yi),

∏
i∈I Ti(x)), for each (x, y)∈ X ×Y . By [17, Lemma 3], Γ is upper semicontinuous. Since

for each (x, y) ∈ X ×Y , H(x, y) is convex, closed, and nonempty, by [17, Theorem 1],
there is (x, y) ∈ X ×Y such that (x, y) ∈ H(x, y). Note that for each i ∈ I , (x, yi) /∈Wi.
Otherwise, there is some i ∈ I such that (x, yi) ∈Wi, then xi = si(x, yi) ∈ Co(Pi(x, yi)),
which contradicts xi /∈ Co(Pi(x, yi)) for all (x, yi)= (xi,xi, yi)∈ X ×Yi. Thus xi ∈ Xi, yi ∈
Ti(x) and Gi(x, yi) =∅ for each i ∈ I . That is, x ∈ X , yi ∈ Ti(x) and Co(Pi(x, yi)) =∅
for each i ∈ I , which implies x ∈ X , yi ∈ Ti(x) and Pi(x, yi) = ∅ for each i ∈ I . Con-
sequently, there exists (x, yi) in X × Yi such that for each i ∈ I , x ∈ X and yi ∈ Ti(x):
Ψi(x, yi,zi) �⊂ − intCi(x),∀zi ∈ Xi.
Case 2. Xi is not a compact set.

For each i ∈ I , let {zi1 , . . . ,zik} be a finite subset of Xi. Let Λi = Co(Bi ∪{zi1 , . . . ,zik}).
Then, for each i ∈ I , Λi is compact and convex. By Case 1, there exists x ∈ Λ=∏i∈IΛi

and yi ∈ Ti(x) for each i ∈ I such that, for each i ∈ I , Ψi(x, yi,zi) �⊂ − intCi(x), for all
zi ∈ Λi. From B ⊂ Λ and assumption (v) it follows that x ∈ K . In particular, we have,
(x, y)∈ K ×Y such that, for each i∈ I , Ψi(x, yi,zij ) �⊂ − intCi(x), for all j = 1,2, . . . ,k. By
(vi) and [8, Proposition 7, page 110], the set {(x, yi)∈ K ×Yi : yi ∈ Ti(x)} is closed in
K ×Yi. Hence, for each i ∈ I and for all zi ∈ Xi, Δ(zi) = {(x, yi) ∈ K ×Yi : Fi(x, yi,zi) �⊂
− intCi(x), yi ∈ Ti(x)} =Qi(zi)∩{(x, yi)∈ K ×Yi : yi ∈ Ti(x)} is closed in K ×Yi. Since
every finite subfamily of closed sets Δ(zi) in compact set K ×Yi has a nonempty intersec-
tion, for each i∈ I , ∩zi∈XiΔ(zi) �= ∅. Thus, there exists (x, y)∈ K ×Y such that, for each
i∈ I , xi ∈ Ki, yi ∈ Ti(x), such that Ψi(x, yi,zi) �⊂ − intCi(x), for all zi ∈ Xi. This completes
the proof. �

Theorem 3.2. If we replace, in Theorem 3.1, condition (ii) by the following conditions.
(ii(a)) For all x = (xi,xi)∈ X , for all yi ∈ Yi, Ψi(x, yi,xi) �⊂ − intCi(x).
(ii(b)) For each (x, yi)∈ X ×Yi, the set Pi(x, yi)= {zi ∈ Xi : Ψi(x, yi,zi)⊂− intCi(x)} is

a convex set.
Then, the conclusion of Theorem 3.1 still holds.

Proof. By Theorem 3.1, it is only need to prove that Ψi(x, yi,zi) is Ci(x)-0-partially di-
agonally quasiconvex for each i ∈ I and for all yi ∈ Xi. If not, then there exist some
i ∈ I and yi ∈ Xi, some finite set {zi1 ,zi2 , . . . ,zin} in Xi, and some point x = (xi,xi) ∈
X with xi ∈ Co{zi1 ,zi2 , . . . ,zin}. Then, for each j = 1,2, . . . ,n, Ψi(x, yi,zij ) ⊂ − intCi(x).
Since Pi(x, yi) = {zi ∈ Xi : Ψi(x, yi,zi) ⊂ − intCi(x)} is a convex set, xi ∈ Pi(x, yi), that
is, Ψi(x, yi,xi) ⊂ − intCi(x), which contradicts to the condition (ii). This completes the
proof. �
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Theorem 3.3. If we replace, in Theorem 3.2, condition (ii(b)) by the following condition.
(ii(c)) For each yi ∈ Yi, Ψi(x, yi,zi) is Ci(x)-convex-like.
Then, the conclusion of Theorem 3.2 still holds.

Proof. For each i ∈ I , define a set-valued mapping Pi : X ×Yi → 2Xi by Pi(x, yi) = {zi ∈
Xi : Ψi(x, yi,zi)⊂− intCi(x)},∀(x, yi)∈ X ×Yi. It is easy to prove that for each i∈ I and
for each (x, yi)∈ X ×Yi, the set Pi(x, yi) is a convex set. By Theorem 3.2, the conclusion
of Theorem 3.3 holds. This completes the proof. �

Then, some existence results for the special cases of the (SGSEP) will be considered.

Corollary 3.4. Let I be an index set and I be countable. For each i ∈ I , let Zi be a real
topological vector space, Ei be a locally convex Hausdorff topological vector space, Xi ⊂ Ei
be a nonempty, convex and metrizable set, let Ci : X → 2Zi be a set-valued mapping such
that Ci(x) is a closed pointed and convex cone with intCi(x) �= ∅ for each x ∈ X , let Φi :
X ×Xi→ 2Zi be a set-valued mapping. For each i∈ I , assume that the following.

(i) The set-valued mapping Mi = Zi\(− intCi) : X → 2Zi is upper semicontinuous.
(ii) Φi(x,zi) is Ci(x)-0-partially diagonally quasiconvex.

(iii) For all zi ∈ Xi, the map x → Φi(x,zi) is upper semicontinuous on X with compact
values.

(vi) There exists a nonempty compact subset Ki ⊂ Xi and a compact convex set Bi ⊂ Xi;
let K =∏i∈I Ki ⊂ X and B =∏i∈I Bi ⊂ X such that, for each x ∈ X \K , there exists
zi∗ ∈ Bi such that Φi(x,zi∗)⊂− intCi(x).

Then, there exists x in K such that for each i∈ I , Φi(x,zi) �⊂ − intCi(x),∀zi ∈ Xi.
Proof. For each i ∈ I , Let Yi = {yi} and define a set-valued mapping Ti : X → 2Yi as
Ti(x) = {yi} for all x ∈ X and define another set-valued mapping Ψi : X × Yi × Xi as
Ψi(x, yi,zi) = Φi(x,zi),∀(x, yi,zi) ∈ X ×Yi×Xi. It is easy to see that all conditions of
Theorem 3.1 are satisfied. Then the conclusion of Corollary 3.4 follows from Theorem
3.1. This completes the proof. �

Corollary 3.5. If we replace, in Corollary 3.4, condition (ii) by the following conditions.
(a) For each x ∈ X , {zi ∈ Xi : Φi(x,zi)⊂− intCi(x)} is a convex set (or Φ(x,zi) is Ci(x)-

convex-like).
(b) For all x = (xi,xi)∈ X , Φi(x,xi) �⊂ Ci(x).

Then, the conclusion of Corollary 3.4 still holds.

Remark 3.6. Theorems 3.1–3.3, Corollaries 3.4 and 3.5 improve and generalize [4, Theo-
rems 2 and 3], [3, Theorems 2.1 and 2.2] with additional conditions of the metrizability
of Xi.

Remark 3.7. By the results in this paper, it is easy to obtain the existence results for the
other special cases of the (SGSEP), and they are omitted here.
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