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We develop an iterative algorithm for computing the approximate solutions of mixed
quasi-variational-like inequality problems with skew-symmetric terms in the setting of
reflexive Banach spaces. We use Fan-KKM lemma and concept of η-cocoercivity of a com-
position mapping to prove the existence and convergence of approximate solutions to the
exact solution of mixed quasi-variational-like inequalities with skew-symmetric terms.
Furthermore, we derive the posteriori error estimates for approximate solutions under
quite mild conditions.
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1. Introduction

It is well known that variational inequality theory, as a very effective and powerful tool,
not only has stimulated new results dealing with partial differential equations, but also
has been applied to a large variety of problems arising in mechanics, contact problems in
elasticity, optimization and control problems, management science, operations research,
general equilibrium problems in economics and transportation, unilateral problems, ob-
stacle problems, and so forth. Because of its wide applications, the classical variational
inequality has been studied and generalized in various directions previously by many
authors. Among these generalizations, mixed variational-like inequality problem is of in-
terest and importance. One of the most important and interesting problems in the theory
of variational inequality is the development of an efficient and implementable algorithm
for solving variational inequality and its generalizations. These methods include projec-
tion method and its variant forms, linear approximation, descent and Newton’s methods,
and method based on the auxiliary principle technique. The method based on auxil-
iary principle technique was first suggested by Glowinski et al. [6] for solving variational
inequalities in 1981. Subsequently, it has been used to solve a number of generalizations
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of classical variational inequalities; see, for example, [1, 4, 8, 14–16] and the references
therein.

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·,·〉,
and ‖ · ‖, respectively. Let D be a nonempty convex subset of H . Let T , A : D→H , and
η : D×D→H be mappings, and let f : D→R be a real-valued function. Recently, Ansari
and Yao [1] (see also [10]) considered and studied the mixed variational-like inequality
problem (MVLIP), which is to find u∗ ∈D such that

〈
Tu∗ −Au∗,η

(
v,u∗

)〉
+ f (v)− f

(
u∗
)≥ 0, ∀v ∈D. (1.1)

When A≡ 0, this problem reduces to the following problem considered by Dien [3], Noor
[11] and Siddiqi et al. [12]: find u∗ ∈D such that

〈
Tu∗,η

(
v,u∗

)〉
+ f (v)− f

(
u∗
)≥ 0, ∀v ∈D. (1.2)

In [1], Ansari and Yao introduced the concepts of η-cocoercivity, η-strong monotonic-
ity, and η-strong convexity of a mapping, which generalize the definitions of cocoercivity
[13, 17], strong monotonicity [9], and strong convexity [9], respectively. It is easy to see
that η-cocoercivity is an intermediate concept that lies between η-strong monotonicity
and η-monotonicity. They applied the auxiliary variational inequality technique to sug-
gest an iterative algorithm for finding the approximate solutions of MVLIP and proved
that these approximate solutions converge to the exact solution of MVLIP.

Motivated and inspired by the work in [1], we consider and study a class of mixed
quasi-variational-like inequality problems in the setting of Banach spaces.

Let D be a nonempty convex subset of a real Banach space B, let B∗ be the topological
dual space of B, and let 〈u,v〉 be the duality pairing between u ∈ B∗ and v ∈ B. Let T ,
A : D→ B∗, N : B∗ ×B∗ → B∗, and η : D×D→ B be mappings and w∗ ∈ B∗. Let ϕ : B×
B→ R⋃{+∞} be a real bifunction. The mixed quasi-variational-like inequality problem
(MQVLIP) is to find u∈D such that

〈
N(Tu,Au)−w∗,η(v,u)

〉
+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈D. (1.3)

This problem was first introduced and studied by Ding and Yao [4]. They applied the
auxiliary variational inequality technique to suggest an iterative algorithm for computing
the approximate solutions of MQVLIP (1.3), and provided the convergence criteria of
approximate solutions to the exact solution of MQVLIP (1.3).

In this paper, we propose a new iterative algorithm for computing the approximate
solutions of MQVLIP (1.3) with skew-symmetric term ϕ(·,·) in the setting of a reflex-
ive Banach space B. Our proposed iterative algorithm can be seen as an extension and
generalization of Ansari and Yao’s [1] iterative algorithm. We employ Fan-KKM lemma
and concept of η-cocoercivity of a composition mapping to prove the existence and con-
vergence of approximate solutions to the exact solution of MQVLIP (1.3) with skew-
symmetric term ϕ(·,·). Compared with Ansari and Yao [1, Theorem 3.2], our results
improve and generalize their Theorem 3.2 in the following aspects: (i) the MQVLIP (1.3)
is more general than MVLIP considered by them; (ii) we remove boundedness assump-
tion on D; (iii) our convergence criteria for approximate solutions are very different from
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their ones because of the appearance of skew-symmetric term ϕ(·,·) in MQVLIP (1.3);
(iv) the technique of our proof is very different from the one of their proof since reflexive
Banach space is more general than Hilbert space; (v) we provide the posteriori error es-
timates for approximate solutions under quite mild conditions. Hence the results of this
paper also extend and generalize the results of Zhu and Marcotte [17].

2. Preliminaries

In this section we will recall the following definitions and some known results.

Definition 2.1. Let D be a nonempty subset of a Banach space B with the dual space B∗.
Let T : D→ B∗ and η : D×D→ B be two mappings. Then,

(i) T is called η-monotone, if

〈
Tu−Tv,η(u,v)

〉≥ 0, ∀u,v ∈D; (2.1)

(ii) T is called η-strongly monotone, if there exists a constant β > 0, such that

〈
Tu−Tv,η(u,v)

〉≥ β‖u− v‖2, ∀u,v ∈D; (2.2)

(iii) T is called η-cocoercive, if there exists a constant ξ > 0, such that

〈
Tu−Tv,η(u,v)

〉≥ ξ‖Tu−Tv‖2, ∀u,v ∈D; (2.3)

(iv) T is called η-relaxed monotone, if there exists a constant ξ > 0, such that

〈
Tu−Tv,η(u,v)

〉≥ β‖u− v‖2, ∀u,v ∈D; (2.4)

(v) T is called Lipschitz continuous, if there exists a constant L > 0, such that

‖Tu−Tv‖ ≤ L‖u− v‖, ∀u,v ∈D; (2.5)

(vi) η is called Lipschitz continuous, if there exists a constant δ > 0, such that

∥
∥η(u,v)

∥
∥≤ δ‖u− v‖, ∀u,v ∈D. (2.6)

We illustrate hereafter the relationships among η-monotonicity, η-strong monotonic-
ity, η-cocoercivity, and Lipschitz continuity as follows:

(i) η-strong monotonicity =⇒ η-monotonicity⇐= η-cocoercivity;
(ii)

T is η-strong monotone

T is Lipschitz continuous
=⇒ T is η-cocoercive; (2.7)

(iii)

T is η-cocoercive

η is Lipschitz continuous
=⇒ T is Lipschitz continuous. (2.8)
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Definition 2.2. The bifunction ϕ : B×B→R⋃{+∞} is said to be skew-symmetric if

ϕ(u,u)−ϕ(u,v)−ϕ(v,u) +ϕ(v,v)≥ 0, ∀u,v ∈ B. (2.9)

The skew-symmetric bifunctions have properties which can be considered analogs of
monotonicity of gradient and nonnegativity of a second derivative for convex functions.
For properties and applications of skew-symmetric bifunction, reader may consult [2].

Definition 2.3. Let D be a convex subset of a Banach space B and let K : D → R be a
Fréchet differentiable function. K is said to be

(i) η-convex [7], if

K(v)−K(u)≥ 〈K ′(u),η(v,u)
〉

, ∀u,v ∈D; (2.10)

(ii) η-strongly convex [11], if there exists a constant μ > 0, such that

K(v)−K(u)− 〈K ′(u),η(v,u)
〉≥ μ

2
‖u− v‖2, ∀u,v ∈D. (2.11)

In particular, if η(v,u)= v−u for all v,u∈D, then K is said to be strongly convex.

Proposition 2.4. Let K be a differentiable η-strongly convex functional with constant μ > 0
on a convex subsetD of B, and let η : D×D→ B be a mapping such that η(u,v) +η(v,u)= 0,
for all u,v ∈D. Then K ′ is η-strongly monotone with constant μ > 0.

Proof. Since K is η-strongly convex, we deduce that for each u,v ∈D

K(v)−K(u)− 〈K ′(u),η(v,u)
〉≥ μ

2
‖u− v‖2,

K(u)−K(v)− 〈K ′(v),η(u,v)
〉≥ μ

2
‖v−u‖2.

(2.12)

Adding these two inequalities and using the condition that η(u,v) +η(v,u)= 0, we obtain

〈
K ′(v)−K ′(u),η(v,u)

〉≥ μ‖v−u‖2. (2.13)
�

A function F : D → R is called weakly sequentially continuous at x0 ∈ D, if F(xk)→
F(x0) (n→∞) for each sequence {xk} ⊂ D converging weakly to x0. F is called weakly
sequentially continuous on D, if it is weakly sequentially continuous at each point of D.

Lemma 2.5. Let η(v,·) : D→ B and K ′ be sequentially continuous from the weak topology
to the weak topology and from the weak topology to the strong topology, respectively, where v
is any fixed point in D. Then the function g : D→ R, defined as g(u)= 〈K ′(u),η(v,u)〉 for
each fixed v ∈D, is weakly sequentially continuous on D.



Lu-Chuan Ceng et al. 5

Proof. Let u be any given point in D, and let {un} ⊂D be any sequence converging weakly
to u. Then, ‖K ′(un)−K ′(u)‖→ 0 (n→∞), and {η(v,un)} converges weakly to η(v,u) for
each fixed v ∈D. Observe that

∣
∣g
(
un
)− g(u)

∣
∣= ∣∣〈K ′(un

)−K ′(u),η
(
v,un

)〉
+
〈
K ′(u),η

(
v,un

)−η(v,u)
〉∣∣

≤ ∥∥K ′(un
)−K ′(u)

∥
∥
∥
∥η
(
v,un

)∥∥+
∣
∣〈K ′(u),η

(
v,un

)−η(v,u)
〉∣∣

−→ 0 as n−→∞.
(2.14)

Therefore, the conclusion immediately follows. �

For each D ⊂ B, we denote by co(D) the convex hull of D. A point-to-set mapping
G : D→ 2B is called a KKM mapping if, for every finite subset {u1,u2, . . . ,uk} of D,

co
({
u1,u2, . . . ,uk

})⊂
k⋃

i=1

G
(
xi
)
. (2.15)

In the next section, we will use the following result.

Lemma 2.6 (Fan-KKM [5]). Let D be an arbitrary nonempty subset in a topological vector
space E, and let G : D→ 2E be a KKM mapping. If G(u) is closed for all u∈D and is compact
for at least one u∈D, then

⋂
u∈DG(u) �= ∅.

3. Iterative algorithm and its convergence

In this section, following the approach of Ansari and Yao [1], we will apply the auxiliary
variational inequality technique to suggest a general algorithm for finding approximate
solutions of MQVLIP (1.3) with skew-symmetric term ϕ(·,·). Moreover, we will also
study convergence analysis of proposed algorithm.

Algorithm 3.1. Let K : D→R be a given Fréchet differentiable functional, let {ρn}∞n=0 be a
sequence of positive parameters, and let u0 be any initial guess in D. For each given iterate
un ∈ D, consider the following auxiliary variational inequality problem: find un+1 ∈ D,
such that

〈
ρnN

(
Tun,Aun

)− ρnw
∗ +K ′

(
un+1

)−K ′
(
un
)
,η
(
v,un+1

)〉

+ ρnϕ
(
v,un+1

)− ρnϕ
(
un+1,un+1

)≥ 0, ∀v ∈D,
(3.1)

where K ′(u) is the Fréchet derivative of a function K : D→R at u∈D.

Theorem 3.2. Let D be a nonempty closed convex subset of a reflexive Banach space B with
the dual space B∗. Let T , A : D→ B∗, N : B∗ ×B∗ → B∗, and η : D×D→ B be mappings.
Let w∗ ∈ B∗ and ϕ : B× B → R⋃{+∞} be skew-symmetric and weakly continuous, such
that for each v ∈ B, int(domϕ(·,v))∩D �= ∅ and ϕ(·,v) is proper convex. Suppose that
K : D→R is η-strongly convex with constant μ > 0, and K ′ is sequentially continuous from
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the weak topology to the strong topology. Suppose also that
(i) the mapping u→N (Tu,Au) is η-cocoercive with constant υ > 0;

(ii) η is Lipschitz continuous with constant δ > 0, such that
(a) η(u,v)= η(u,z) +η(z,v) for each u,v,z ∈D,
(b) η(·,·) is affine in the first variable,
(c) for each fixed v ∈D, u→ η(v,u) is sequentially continuous from the weak topol-

ogy to the weak topology;
(iii) for each fixed n≥ 0 and z ∈D,

{
u∈D :

〈
ρnN(Tz,Az)− ρnw

∗ +K ′(u)−K ′(z),η(v,u)
〉

+ ρnϕ(v,u)− ρnϕ(u,u)≥ 0
}

(3.2)

is bounded for at least one v ∈D.
Then, there is a unique solution un+1 ∈D to problem (3.1) for each given iterate un. If

ρn+1 ≤ ρn, c1 < ρn <
2μ
δ

(
1
υ

+ c2

)
, n≥ 0, for some c1,c2 > 0, (3.3)

then
(I) {un} is bounded;

(II) limn→∞‖un+1−un‖ = 0;
(III) {un} converges weakly to a solution of MQVLIP (1.3) provided that the mapping u→

N(Tu,Au) is sequentially continuous from the weak topology to the strong topology.

Proof. Existence of solutions of problem (3.1). For the sake of simplicity, we rewrite (3.1)
as follows. Find u∈D such that

〈
ρnN

(
Tun,Aun

)− ρnw
∗ +K ′(u)−K ′(un

)
,η(v,u)

〉
+ ρnϕ(v,u)−ρnϕ(u,u)≥ 0, ∀v ∈D.

(3.4)

For each fixed n≥ 0 and each v ∈D, we define

G(v)= {u∈D :
〈
ρnN

(
Tun,Aun

)− ρnw
∗ +K ′(u)−K ′

(
un
)
,η(v,u)

〉

+ ρnϕ(v,u)− ρnϕ(u,u)≥ 0
}
.

(3.5)

Note that, since v ∈ G(v), G(v) is nonempty for each v ∈ D. Now, we claim that G is a
KKM mapping. Indeed, suppose that there exists a finite subset {v1,v2, . . . ,vk} of D and
that αi ≥ 0, for all i = 1,2, . . . ,k with

∑k
i=1αi = 1 such that û =∑k

i=1αivi �∈ G(vi), for all
i= 1,2, . . . ,k, that is,

〈
ρnN

(
Tun,Aun

)− ρnw
∗ +K ′(û)−K ′

(
un
)
,η
(
vi, û

)〉

+ ρnϕ
(
vi, û

)− ρnϕ
(
û, û
)
< 0, ∀i= 1,2, . . . ,k.

(3.6)
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Since ϕ(·,v) is proper convex for each v ∈ B, by virtue of assumptions (a) and (b) in (ii),
we have

0= 〈ρnN
(
Tun,Aun

)− ρnw
∗ +K ′(û)−K ′

(
un
)
,η(û, û)

〉
+ ρnϕ(û, û)− ρnϕ(û, û)

=
〈

ρnN
(
Tun,Aun

)− ρnw
∗ +K ′(û)−K ′

(
un
)
,η

( k∑

i=1

αivi, û

)〉

+ ρnϕ

( k∑

i=1

αivi, û

)

− ρnϕ(û, û)

≤
〈

ρnN
(
Tun,Aun

)− ρnw
∗ +K ′(û)−K ′

(
un
)
,
k∑

i=1

αiη
(
vi, û

)
〉

+ ρn

k∑

i=1

αiϕ
(
vi, û

)− ρnϕ(û, û)

=
k∑

i=1

αi
[〈
ρnN

(
Tun,Aun

)−ρnw∗+K ′(û)−K ′(un
)
,η
(
vi, û

)〉
+ρnϕ

(
vi, û

)−ρnϕ(û, û)
]
< 0,

(3.7)

which yields a contradiction. Therefore, G is a KKM mapping.
SinceK ′ is sequentially continuous from the weak topology to the strong topology, and

ϕ(·,·) is weakly continuous on B×B, so it follows from condition (ii)(c) and Lemma 2.5
that G(v) is a weakly closed subset of D for each v ∈ D. Moreover, from condition (iii)
we know that G(v) is weakly compact for at least one point v ∈ D. Hence, by using
Lemma 2.6 we have

⋂
v∈DG(v) �= ∅, which clearly implies that there exists at least one

solution to problem (3.1).

Uniqueness of solutions of problem (3.1). Let u and ũ be two solutions of problem (3.1).
Then,

〈
ρnN

(
Tun,Aun

)− ρnw
∗ +K ′(u)−K ′

(
un
)
,η(v,u)

〉
+ ρnϕ(v,u)− ρnϕ(u,u)≥ 0, (3.8)

〈
ρnN

(
Tun,Aun

)− ρnw
∗ +K ′(ũ)−K ′

(
un
)
,η(v, ũ)

〉
+ ρnϕ(v, ũ)− ρnϕ(ũ, ũ)≥ 0, (3.9)

for all v ∈D.
Note that η(u,v) = η(u,z) + η(z,v) for all u,v,z ∈ D implies η(u,v) = −η(v,u) for all

u,v ∈D and that ϕ(·,·) is skew-symmetric. Taking v = ũ in (3.8) and v = u in (3.9), and
adding these inequalities, we get

−〈K ′(u)−K ′(ũ),η(u, ũ)
〉= 〈K ′(u),η(ũ,u)

〉
+
〈
K ′(ũ),η(u, ũ)

〉

= 〈ρnN
(
Tun,Aun

)− ρnw
∗ +K ′(u)−K ′

(
un
)
,η(ũ,u)

〉

+
〈
ρnN

(
Tun,Aun

)− ρnw
∗ +K ′(ũ)−K ′

(
un
)
,η(u, ũ)

〉

≥ ρn
[
ϕ(u,u)−ϕ(ũ,u)−ϕ(u, ũ) +ϕ(ũ, ũ)

]≥ 0,
(3.10)
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which hence implies that

〈
K ′(u)−K ′(ũ),η(u, ũ)

〉≤ 0. (3.11)

Since K ′ is η-strongly monotone with constant μ > 0 by Proposition 2.4, from (3.11) we
obtain

μ‖u− ũ‖2 ≤ 〈K ′(u)−K ′(ũ),η(u, ũ)
〉≤ 0, (3.12)

and so u= ũ. This shows that the solution of problem (3.1) is unique.
Let u∗ ∈ D be any fixed solution of MQVLIP (1.3). Since un+1 is the unique solution

to problem (3.1), we get

〈
K ′
(
un+1

)−K ′
(
un
)
,η
(
v,un+1

)〉
+ ρn

〈
N
(
Tun,Aun

)−w∗,η
(
v,un+1

)〉

+ ρnϕ
(
v,un+1

)− ρnϕ
(
un+1,un+1

)≥ 0, ∀v ∈D.
(3.13)

We consider a function Λ defined by

Λ(u,ρ)=Φ(u) +Ω(u,ρ), (3.14)

where Ω(u,ρ)= ρ[〈N(Tu∗,Au∗)−w∗,η(u,u∗)〉+ϕ(u,u∗)−ϕ(u∗,u∗)] and

Φ(u)= K
(
u∗
)−K(u)− 〈K ′(u),η

(
u∗,u

)〉
. (3.15)

From η-strong convexity of K , we obtain

Φ
(
un
)≥

(
μ

2

)∥
∥un−u∗

∥
∥2 ≥ 0. (3.16)

Since Ω(un,ρn) is nonnegative, we have

Λ
(
un,ρn

)≥
(
μ

2

)∥
∥un−u∗

∥
∥2 ≥ 0. (3.17)

Let us study the variation of Λ for one stage of Algorithm 3.1:

Γn+1
n =Λ

(
un+1,ρn+1

)−Λ
(
un,ρn

)
. (3.18)

Then we have Γn+1
n = s1 + s2 + s3, where

s1 = K
(
un
)−K

(
un+1

)− 〈K ′(un
)
,η
(
un,un+1

)〉
,

s2 =
〈
K ′
(
un
)−K ′

(
un+1

)
,η
(
u∗,un+1

)〉
,

s3 = ρn+1
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
un+1,u∗

)〉
+ϕ
(
un+1,u∗

)−ϕ
(
u∗,u∗

)]

− ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
un,u∗

)〉
+ϕ
(
un,u∗

)−ϕ
(
u∗,u∗

)]
.

(3.19)
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By using η-strong convexity of K , we have s1 ≤−(μ/2)‖un+1−un‖2. Also, since ρn+1 ≤ ρn
and u∗ is a solution of MQVLIP (1.3), we immediately derive

s3 ≤ ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
un+1,u∗

)〉
+ϕ
(
un+1,u∗

)−ϕ
(
u∗,u∗

)]
. (3.20)

Now, putting u= u∗ in (3.13), we get

s2 ≤ ρn
[〈
N
(
Tun,Aun

)−w∗,η
(
u∗,un+1

)〉
+ϕ
(
u∗,un+1

)−ϕ
(
un+1,un+1

)]
. (3.21)

Thus, in terms of skew-symmetry of ϕ we deduce from (3.20) and (3.21) that

s2 + s3 ≤ ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
un+1,u∗

)〉
+ϕ
(
un+1,u∗

)−ϕ
(
u∗,u∗

)]

+ ρn
[〈
N
(
Tun,Aun

)−w∗,η
(
u∗,un+1

)〉
+ϕ
(
u∗,un+1

)−ϕ
(
un+1,un+1

)]

= ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
un+1,u∗

)〉
+
〈
N
(
Tun,Aun

)−w∗,η
(
u∗,un+1

)〉]

− ρn
[
ϕ
(
u∗,u∗

)−ϕ
(
un+1,u∗

)−ϕ
(
u∗,un+1

)
+ϕ
(
un+1,un+1

)]

≤−ρn
〈
N
(
Tu∗,Au∗

)−N
(
Tun,Aun

)
,η
(
u∗,un+1

)〉

=−ρn
〈
N
(
Tu∗,Au∗

)−N
(
Tun,Aun

)
,η
(
u∗,un

)〉

− ρn
〈
N
(
Tu∗,Au∗

)−N
(
Tun,Aun

)
,η
(
un,un+1

)〉

≤−ρnυ
∥
∥N
(
Tu∗,Au∗

)−N
(
Tun,Aun

)∥∥2
(using η-cocoercivity)

+ρnδ
∥
∥N
(
Tu∗,Au∗

)−N
(
Tun,Aun

)∥∥
∥
∥un+1−un

∥
∥ (using Lipschitz continuity),

(3.22)

which hence implies that

Γn+1
n = s1 + s2 + s3

≤−μ

2

∥
∥un+1−un

∥
∥2− υρn

∥
∥N
(
Tun,Aun

)−N
(
Tu∗,Au∗

)∥∥2

+ δρn
∥
∥N
(
Tun,Aun

)−N
(
Tu∗,Au∗

)∥∥
∥
∥un+1−un

∥
∥.

(3.23)

Then, by using the inequality

ρn
∥
∥N
(
Tun,Aun

)−N
(
Tu∗,Au∗

)∥∥
∥
∥un+1−un

∥
∥

≤
(
ρ2
n

2
ω
)∥
∥N
(
Tun,Aun

)−N
(
Tu∗,Au∗

)∥∥2
+
(
ω

2

)∥
∥un+1−un

∥
∥2

,
(3.24)
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where ω is a positive number chosen so that ω < μ/δ, we get

Γn+1
n ≤−

(
μ

2
− δω

2

)∥
∥un+1−un

∥
∥2− ρn

(
υ− δρn

2ω

)∥
∥N
(
Tun,Aun

)−N
(
Tu∗,Au∗

)∥∥2
.

(3.25)

For c1 < ρn < 2ω/δ(1/υ+ c2), where c1 > 0 and c2 > 0, we have

ρn

(
υ− δρn

2ω

)
> c1

(
υ− δ

2ω
· 2ω
δ
(
1/υ+ c2

)
)
= c1c2υ

1/υ+ c2
, (3.26)

and hence

Γn+1
n ≤−

(
μ

2
− δω

2

)∥
∥un+1−un

∥
∥2−

(
c1c2υ

(1/υ+ c2)

)∥
∥N
(
Tun,Aun

)−N
(
Tu∗,Au∗

)∥∥2
.

(3.27)

Thus, for ω < μ/δ, Γn+1
n is negative unless un+1 = un and N(Tun,Aun) = N(Tu∗,Au∗).

Then, according to (3.13), un is a solution of MQVLIP (1.3).
Note that the sequence {Λ(un,ρn)} is strictly decreasing. But since it is positive, it must

converge and the difference between two consecutive terms tends to zero, that is, Γn+1
n → 0

as n→∞. Therefore, ‖un+1 − un‖ and ‖N(Tun,Aun)−N(Tu∗,Au∗)‖ converge to zero.
Moreover, since the sequence {Λ(un,ρn)} converges, it is bounded, and so is {un} also
according to (3.17).

Let u be a weak cluster point of the sequence {un}, and let {uni} be a subsequence
converging weakly to u. By using (3.13), since K ′ is Lipschitz continuous with constant
κ > 0 and ρn > c1, it is known that for each v ∈D,

〈
N
(
Tun,Aun

)−w∗,η
(
v,un+1

)〉
+ϕ
(
v,un+1

)−ϕ
(
un+1,un+1

)

≥−
(

1
ρn

)
〈
K ′
(
un+1

)−K ′
(
un
)
,η
(
v,un+1

)〉

≥−
(
δ

c1

)∥
∥K ′

(
un+1

)−K ′
(
un
)∥∥
∥
∥v−un+1

∥
∥.

(3.28)

which hence implies that

〈
N
(
Tuni ,Auni

)−w∗,η
(
v,uni+1

)〉
+ϕ
(
v,uni+1

)−ϕ
(
uni+1,uni+1

)

≥−
(
δ

c1

)∥
∥K ′

(
uni+1

)−K ′
(
uni
)∥∥
∥
∥v−uni+1

∥
∥.

(3.29)

Since ‖un+1−un‖→ 0, and {uni} converges weakly to u, hence {uni+1} converges weakly to
u. Note that K ′ is sequentially continuous from the weak topology to the strong topology.
Thus, it is easy to see that limn→∞‖K ′(uni+1)−K ′(uni)‖ = 0. Since for each fixed v ∈ D,
u→ η(v,u) is sequentially continuous from the weak topology to the weak topology, and
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since the mapping u→N(Tu,Au) is sequentially continuous from the weak topology to
the strong topology, we infer that for each v ∈D,

∣
∣〈N

(
Tuni ,Auni

)−w∗,η
(
v,uni+1

)〉− 〈N(Tu,Au)−w∗,η(v,u)
〉∣∣

≤ ∣∣〈N(Tuni ,Auni
)−N(Tu,Au),η

(
v,uni+1

)〉∣∣

+
∣
∣〈N(Tu,Au)−w∗,η

(
v,uni+1

)−η(v,u)
〉∣∣

≤ ∥∥N(Tuni ,Auni
)−N(Tu,Au)

∥
∥
∥
∥η
(
v,uni+1

)∥∥

+
∣
∣〈N(Tu,Au)−w∗,η

(
v,uni+1

)−η(v,u)
〉∣∣−→ 0 as n−→∞.

(3.30)

Consequently, letting i→∞ and using the weak continuity of ϕ(·,·), we conclude from
(3.29) that

〈
N(Tu,Au)−w∗,η(v,u)

〉
+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈D. (3.31)

This shows that u is a solution of MQVLIP (1.3). Furthermore, N(Tu,Au)=N(Tu∗,Au∗)
since limn→∞‖N(Tuni ,Auni) − N(Tu,Au)‖ = 0 and limn→∞‖N(Tun,Aun) − N(Tu∗,
Au∗)‖ = 0.

Finally, we claim that {un} converges weakly to a solution of MQVLIP (1.3). Indeed,
it suffices to show that {un} has the unique weak cluster point. Let u and û be two weak
cluster points of {un}. Then, both weak cluster points can be used as the above u∗ to
define the Lyapunov function Λ. This yields two possible Lyapunov functions, denoted
by Λ and Λ̂, respectively. It was proven that Λ(un,ρn) has a limit that may depend on the

solution u∗ used to define Λ; then, the corresponding limits will be denoted by l and l̂, re-
spectively. Consider the subsequences {ni} and {mj} such that {uni} and {umj} converge
weakly to u and û, respectively. Then it is easy to see that N(Tu,Au)=N(Tû,Aû). Hence
we get

Λ̂
(
uni ,ρni

)= K(û)−K
(
uni
)− 〈K ′(uni

)
,η
(
û,uni

)〉

+ ρni
[〈
N(Tû,Aû)−w∗,η

(
uni , û

)〉
+ϕ
(
uni , û

)−ϕ(û, û)
]

= K(u)−K
(
uni
)− 〈K ′(uni

)
,η
(
u,uni

)〉

+ ρni
[〈
N(Tu,Au)−w∗,η

(
uni ,u

)〉
+ϕ
(
uni ,u

)−ϕ(u,u)
]

+K(û)−K(u)− 〈K ′(uni
)
,η(û,u)

〉

+ ρni
[〈
N(Tû,Aû)−w∗,η(u, û)

〉
+ϕ
(
uni , û

)−ϕ(û, û)−ϕ
(
uni ,u

)
+ϕ(u,u)

]

=Λ
(
uni ,ρni

)
+K(û)−K(u)− 〈K ′(uni

)
,η(û,u)

〉

+ ρni
[〈
N(Tû,Aû)−w∗,η(u, û)

〉
+ϕ
(
uni , û

)−ϕ(û, û)−ϕ
(
uni ,u

)
+ϕ(u,u)

]
.

(3.32)
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Now let ρ∗ = limn→∞ ρn. Since Λ̂(uni ,ρni)→ l̂ and Λ(uni ,ρni)→ l, since K ′ is sequentially
continuous from the weak topology to the strong topology, and since ϕ(·,·) is weakly
continuous, so, letting n→∞ and using the η-strong convexity of K , we conclude from
(3.32) that

l̂ = l+K(û)−K(u)− 〈K ′(u),η(û,u)
〉

+ ρ∗
[〈
N(Tû,Aû)−w∗,η(u, û)

〉
+ϕ(u, û)−ϕ(û, û)

]

≥ l+
(
μ

2

)
‖u− û‖2.

(3.33)

By interchanging the role of u and û and of the subsequences {ni} and {mj}, the same
calculations yield

l ≥ l̂+
(
μ

2

)
‖û−u‖2. (3.34)

Then, 0≤ (μ/2)‖u− û‖2 ≤ l̂− l and 0≤ (μ/2)‖û−‖2 ≤ l− l̂. This implies that u= û. �

Corollary 3.3. LetD be a nonempty closed convex subset of a reflexive Banach spaceB with
the dual space B∗. Let T , A : D→ B∗, N : B∗ ×B∗ → B∗, and η : D×D→ B be mappings.
Let w∗ ∈ B∗ and ϕ : B× B → R⋃{+∞} be skew-symmetric and weakly continuous, such
that for each v ∈ B, int(domϕ(·,v))∩D �= ∅ and ϕ(·,v) is proper convex. Suppose that
K : D→R is η-strongly convex with constant μ > 0, and K ′ is sequentially continuous from
the weak topology to the strong topology. Suppose also that

(i) the mapping u→ N(Tu,Au) is η-strongly monotone with constant β > 0 and Lips-
chitz continuous with constant L > 0;

(ii) η is Lipschitz continuous with constant δ > 0, such that
(a) η(u,v)= η(u,z) +η(z,v) for each u,v,z ∈D,
(b) η(·,·) is affine in the first variable,
(c) for each fixed v ∈D, u→ η(v,u) is sequentially continuous from the weak topol-

ogy to the weak topology;
(iii) for each fixed n≥ 0 and z ∈D,

{
u∈D :

〈
ρnN(Tz,Az)− ρnw

∗ +K ′(u)−K ′(z),η(v,u)
〉

+ ρnϕ(v,u)− ρnϕ(u,u)≥ 0
}

(3.35)

is bounded for at least one v ∈D.

Then, there is a unique solution un+1 ∈D to problem (3.1) for each given iterate un. If

c1 < ρn <
2βμ

(
L2δ2 + c2

) , n≥ 0, for some c1,c2 > 0, (3.36)
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then {un} converges strongly to a solution u∗ ∈ D of MQVLIP (1.3). Moreover, if K ′ is
Lipschitz continuous with constant κ > 0, then we have the posteriori error estimates:

∥
∥un+1−u∗

∥
∥≤

(
κδ

βρn
+
Lδ

β

)∥
∥un+1−un

∥
∥. (3.37)

Proof. We consider the variation of the function Φ in (3.15) for one stage of Algorithm
3.1,

Δn+1
n =Φ

(
un+1

)−Φ
(
un
)
, (3.38)

where s1 = K(un)−K(un+1)−〈K ′(un),η(un,un+1)〉, and

s2 =
〈
K ′
(
un
)−K ′

(
un+1

)
,η
(
u∗,un+1

)〉
. (3.39)

By using η-strong convexity of K and the fact that η(u,v)=−η(v,u), for all u,v ∈D, we
have

s1 ≤−
(
μ

2

)∥
∥un−un+1

∥
∥2
. (3.40)

Also, from (3.21) it follows that

s2 ≤ ρn
[〈
N
(
Tun,Aun

)−w∗,η
(
u∗,un+1

)〉
+ϕ
(
u∗,un+1

)−ϕ
(
un+1,un+1

)]

= ρn
〈
N
(
Tun+1,Aun+1

)−N
(
Tu∗,Au∗

)
,η
(
u∗,un+1

)〉

+ ρn
〈
N
(
Tun,Aun

)−N
(
Tun+1,Aun+1

)
,η
(
u∗,un+1

)〉

+ ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
u∗,un+1

)〉
+ϕ
(
u∗,un+1

)−ϕ
(
un+1,un+1

)]
.

(3.41)

By using η-strong monotonicity of mapping u �→N(Tu,Au), we have

ρn
〈
N
(
Tun+1,Aun+1

)−N
(
Tu∗,Au∗

)
,η
(
u∗,un+1

)〉≤−βρn
∥
∥un+1−u∗

∥
∥2
. (3.42)

By using Lipschitz continuity of mappings u �→N(Tu,Au) and η, we get

ρn
〈
N
(
Tun,Aun

)−N
(
Tun+1,Aun+1

)
,η
(
u∗,un+1

)〉

≤ ρnLδ
∥
∥un−un+1

∥
∥
∥
∥u∗ −un+1

∥
∥

≤
(
μ

2

)∥
∥un+1−un

∥
∥2

+
(
ρ2
nL

2δ2

2μ

)∥
∥un+1−u∗

∥
∥2
.

(3.43)
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By using skew-symmetry of ϕ and the fact that u∗ is a solution of MQVLIP (1.3), we
obtain

ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
u∗,un+1

)〉
+ϕ
(
u∗,un+1

)−ϕ
(
un+1,un+1

)]

=−ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
un+1,u∗

)〉
+ϕ
(
un+1,u∗

)−ϕ
(
u∗,u∗

)]

− ρn
[
ϕ
(
un+1,un+1

)−ϕ
(
u∗,un+1

)−ϕ
(
un+1,u∗

)
+ϕ
(
u∗,u∗

)]

≤ ρn · 0 + ρn · 0= 0.

(3.44)

Utilizing the estimates given in (3.42)–(3.44), we conclude from (3.41) that

s2 ≤−βρn
∥
∥un+1−u∗

∥
∥2

+
(
μ

2

)∥
∥un+1−un

∥
∥2

+

(
ρ2
nL

2δ2

2μ

)
∥
∥un+1−u∗

∥
∥2
. (3.45)

This, together with (3.40), yields that

Δn+1
n = s1 + s2 ≤ ρ2

n

(
− β

ρn
+
L2δ2

2μ

)∥
∥un+1−u∗

∥
∥2
. (3.46)

Observe that (3.36) implies that

ρ2
n

(
− β

ρn
+
L2δ2

2μ

)
≤ ρ2

n

(
−β

L2δ2 + c2

2βμ
+
L2δ2

2μ

)
=−ρ2

nc2

2μ
≤− c2

1c2

2μ
. (3.47)

Now substituting the estimate (3.47) in (3.46), we derive

Δn+1
n ≤

(
− c2

1c2

2μ

)∥
∥un+1−u∗

∥
∥2
. (3.48)

This shows that Δn+1
n is negative unless un+1 = u∗. The sequence {Φ(un)} is strictly de-

creasing. But since it is positive, it must converge and the difference between two con-
secutive terms tends to zero, that is, Δn+1

n → 0 as n→∞. Therefore, it follows from (3.48)
that {un} converges strongly to u∗.

Now, by using (3.13) with v = u∗, we infer that

〈
K ′
(
un+1

)−K ′
(
un
)
,η
(
u∗,un+1

)〉
+ ρn

〈
N
(
Tun,Aun

)−w∗,η
(
u∗,un+1

)〉

+ ρnϕ
(
u∗,un+1

)− ρnϕ
(
un+1,un+1

)≥ 0.
(3.49)

By using Lipschitz continuity of mappings K ′, η, and u �→N(Tu,Au), skew-symmetry of
ϕ, η-strong monotonicity of u→N(Tu,Au), and the fact that u∗ is a solution of MQVLIP
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(1.3), we have that

κδ
∥
∥un+1−un

∥
∥
∥
∥un+1−u∗

∥
∥+ ρnLδ

∥
∥un+1−un

∥
∥
∥
∥un+1−u∗

∥
∥

≥ 〈K ′(un+1
)−K ′

(
un
)
,η
(
u∗,un+1

)〉

+ ρn
〈
N
(
Tun,Aun

)−N
(
Tun+1,Aun+1

)
,η
(
u∗,un+1

)〉

≥ ρn
〈
N
(
Tun+1,Aun+1

)−N
(
Tu∗,Au∗

)
,η
(
un+1,u∗

)〉

+ ρn
[〈
N
(
Tu∗,Au∗

)−w∗,η
(
un+1,u∗

)〉
+ϕ
(
un+1,u∗

)−ϕ
(
u∗,u∗

)]

+ ρn
[
ϕ
(
un+1,un+1

)−ϕ
(
u∗,un+1

)−ϕ
(
un+1,u∗

)
+ϕ
(
u∗,u∗

)]

≥ ρn
〈
N
(
Tun+1,Aun+1

)−N
(
Tu∗,Au∗

)
,η
(
un+1,u∗

)〉

≥ βρn
∥
∥un+1−u∗

∥
∥2

,

(3.50)

which hence implies that

κδ
∥
∥un+1−un

∥
∥
∥
∥un+1−u∗

∥
∥+ ρnLδ

∥
∥un+1−un

∥
∥
∥
∥un+1−u∗

∥
∥≥ βρn

∥
∥un+1−u∗

∥
∥2
.
(3.51)

We obtain inequality (3.37) after division by ‖un+1 − u∗‖, which we assume nonzero;
otherwise, the result is trivial. �
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