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1. Introduction and Some Lemmas

q-series, which are also called basic hypergeometric series, plays a very important role in
many fields, such as affine root systems, Lie algebras and groups, number theory, orthogonal
polynomials, and physics. Inequality technique is one of the useful tools in the study of
special functions. There are many papers about it (see [1–6]). First, we recall some definitions,
notations, and known results which will be used in this paper. Throughout this paper, it is
supposed that 0 < q < 1. The q-shifted factorials are defined as

(a; q)0 = 1,

(a; q)n =
n−1∏

k=0

(
1 − aqk

)
, n = 1, 2, . . . ,

(a; q)∞ =
∞∏

k=0

(
1 − aqk

)
.

(1.1)

We also adopt the following compact notation for multiple q-shifted factorial:

(
a1, a2, . . . , am; q

)
n =

(
a1; q

)
n

(
a2; q

)
n · · ·

(
am; q

)
n, (1.2)

where n is an integer or ∞.
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The q-binomial theorem [2] tells us that

∞∑

k=0

(a; q)kz
k

(q; q)k
=

(az; q)∞
(z; q)∞

, |z| < 1. (1.3)

Replace a with 1/a, and z with az and then set a = 0, we get

∞∑

k=0

(−1)kqk(k−1)/2zk
(q; q)k

= (z; q)∞. (1.4)

Heine [2] introduced the basic hypergeometric series 2φ1, which is defined by

2φ1

(
a1, a2; b1; q, z

)
=

∞∑

k=0

(
a1, a2; q

)
k(

q, b1; q
)
k

zk. (1.5)

Thomae [7] defined the q-integral on interval [0, 1] by

∫1

0
f(t)dqt = (1 − q)

∞∑

n=0

f
(
qn
)
qn, (1.6)

provided that the series converges.
Fubini’s theorem. Suppose that fij is absolutely summary, that is

∞∑

i=1

∞∑

j=1

∣∣fij
∣∣ < ∞, (1.7)

then

∞∑

i=1

∞∑

j=1

fij =
∞∑

j=1

∞∑

i=1

fij . (1.8)

In order to prove the main result, we need to introduce two lemmas.

Lemma 1.1. Let b be a given real number, satisfying b < 1. Then, for 0 ≤ x ≤ 1, one has

1
1 − bx

≤ e(|b|/(1−b))x. (1.9)

Proof. Let

f(x) = (1 − bx)e(b/(1−b))x, (1.10)
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since

f ′(x) =
b2(1 − x)
1 − b

e(b/(1−b))x ≥ 0, 0 ≤ x ≤ 1. (1.11)

f(x) is monotonous increasing function with respect to 0 ≤ x ≤ 1. Hence,

1
1 − bx

≤ e(b/(1−b))x, (1.12)

(1.9) is proved.

Lemma 1.2. Let ai, bi be some real numbers, satisfying bi < 1 with i = 1, 2, . . . , r. Then, for all
nonnegative integer n, one has

∣∣∣∣∣

(
a1, a2, . . . , ar ; q

)
n(

b1, b2, . . . , br ; q
)
n

∣∣∣∣∣ ≤ e(1/(1−q))
∑r

i=1(|ai|+|bi|/(1−bi)). (1.13)

Proof. When n = 0, it is obvious that (1.13) holds; when n ≥ 1, for 0 ≤ x ≤ 1 and 1 ≤ i ≤ r, we
have

∣∣1 − aix
∣∣ ≤ 1 +

∣∣ai

∣∣x ≤ e|ai|x, (1.14)

and by Lemma 1.1, we have

∣∣∣∣∣
1 − aiq

k

1 − biqk

∣∣∣∣∣ ≤ e(|ai|+|bi|/(1−bi))q
k

, (k = 0, 1, 2, . . .). (1.15)

Consequently,

∣∣∣∣∣

(
ai; q

)
n(

bi; q
)
n

∣∣∣∣∣ ≤ e(|ai|+|bi|/(1−bi))(1+q+···+q
n−1) ≤ e(1/(1−q))(|ai|+|bi|/(1−bi)) (i = 1, 2, . . . , r). (1.16)

Thus, (1.13) follows. We complete the proof.

2. Main Result and Its Proof

We know that, whether the order of sum and q-integral is interchangeable is an important
problem in the study of q-series. We obtain following result on the interchangeability.



4 Journal of Inequalities and Applications

Theorem 2.1. Let ai, bi be some real numbers, satisfying bi < 1 with i = 1, 2, . . . , r. Suppose real
function fn(t) is q-integrable absolutely with n = 0, 1, . . . and series

∑∞
n=0

∫1
0|fn(t)|dqt is convergent.

Then

∫1

0

∞∑

n=0

(
a1, a2, . . . , ar ; q

)
n(

b1, b2, . . . , br ; q
)
n

fn(t)dqt =
∞∑

n=0

∫1

0

(
a1, a2, . . . , ar ; q

)
n(

b1, b2, . . . , br ; q
)
n

fn(t)dqt. (2.1)

Proof. Using (1.13) and (1.6), we have

(1 − q)
∞∑

n=0

∞∑

m=0

∣∣∣∣∣

(
a1, a2, . . . , ar ; q

)
n(

b1, b2, . . . , br ; q
)
n

fn
(
qm

)
∣∣∣∣∣q

m

≤ e(1/(1−q))
∑r

i=1(|ai|+|bi|/(1−bi))
∞∑

n=0

(1 − q)
∞∑

m=0

∣∣fn
(
qm

)∣∣qm

= e(1/(1−q))
∑r

i=1(|ai|+|bi|/(1−bi))
∞∑

n=0

∫1

0

∣∣fn(t)
∣∣dqt.

(2.2)

Since, the series
∑∞

n=0

∫1
0|fn(t)|dqt is convergent, the series

∞∑

n=0

∞∑

m=0

(
a1, a2, . . . , ar ; q

)
n(

b1, b2, . . . , br ; q
)
n

fn
(
qm

)
qm (2.3)

is absolutely convergent. Hence, by the Fubini’s theorem, we have

∞∑

n=0

∞∑

m=0

(
a1, a2, . . . , ar ; q

)
n(

b1, b2, . . . , br ; q
)
n

fn
(
qm

)
qm =

∞∑

m=0

∞∑

n=0

(
a1, a2, . . . , ar ; q

)
n(

b1, b2, . . . , br ; q
)
n

fn
(
qm

)
qm. (2.4)

From (2.4) and (1.6), (2.1) holds. The proof is completed.

3. Applications

As the application of Theorem 2.1, in this section, we obtain some results. First, we give
following lemma.

Lemma 3.1. Let a be a real number, satisfying a < 1. Then, for all nonnegative integer n, one has

∫1

0

(qt; q)∞
(at; q)∞

tn dqt =
1 − q

1 − a

(q; q)n
(aq; q)n

. (3.1)
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Proof. By (1.3) and (1.6), we have

(
aqn+1; q

)
∞(

qn+1; q
)
∞

=
∞∑

k=0

(a; q)k
(q; q)k

q(n+1)k

=
(a; q)∞

(1 − q)(q; q)∞
(1 − q)

∞∑

k=0

(
qk+1; q

)
∞(

aqk; q
)
∞
qnkqk

=
(a; q)∞

(1 − q)(q; q)∞

∫1

0

(qt; q)∞
(at; q)∞

tn dqt

=
(a; q)n+1

(1 − q)(q; q)n

(
aqn+1; q

)
∞(

qn+1; q
)
∞

∫1

0

(qt; q)∞
(at; q)∞

tn dqt.

(3.2)

From (3.2), (3.1) holds.

Theorem 3.2. Let a, b be two real numbers, satisfying a < 1, |b| < 1. Then

∞∑

n=0

(
qn+1, abqn+1; q

)
∞(

aqn, bqn; q
)
∞

qn =
1

(1 − a)(1 − b)
. (3.3)

Proof. By (1.6), we have

∞∑

n=0

(
qn+1, abqn+1; q

)
∞(

aqn, bqn; q
)
∞

qn =
1

1 − q

∫1

0

(qt, abqt; q)∞
(at, bt; q)∞

dqt. (3.4)

By (1.3), we have

∫1

0

(qt, abqt; q)∞
(at, bt; q)∞

dqt =
∫1

0

(qt; q)∞
(at; q)∞

∞∑

m=0

(aq; q)m
(q; q)m

(bt)m dqt. (3.5)

Using Theorem 2.1, we have

∫1

0

(qt; q)∞
(at; q)∞

∞∑

m=0

(aq; q)m
(q; q)m

(bt)m dqt =
∞∑

m=0

(aq; q)m
(q; q)m

bm
∫1

0

(qt; q)∞
(at; q)∞

tm dqt. (3.6)
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By Lemma 3.1, we have

∞∑

m=0

(aq; q)m
(q; q)m

bm
∫1

0

(qt; q)∞
(at; q)∞

tm dqt =
∞∑

m=0

(aq; q)m
(q; q)m

bm
(1 − q)(q; q)m
(1 − a)(aq; q)m

=
∞∑

m=0

bm
1 − q

1 − a

=
1 − q

(1 − a)(1 − b)
.

(3.7)

Combining (3.4)–(3.7), (3.3) holds.

In (3.5), replacing abq by c, we obtain the following result.

Corollary 3.3. Let a, b, c be some real numbers, satisfying a < 1, |b| < 1. Then

∫1

0

(qt, ct; q)∞
(at, bt; q)∞

dqt =
1 − q

1 − a

∞∑

m=0

(c/b; q)m
(aq; q)m

bm. (3.8)

Corollary 3.4. Let c be a real number. Then

∞∑

n=0

(c/q; q)nq
n =

∞∑

n=0

(−1)nqn(n−1)/2
(q; q)n+1

cn. (3.9)

Proof. Taking a = 0, b = q in (3.8), we have

∫1

0
(ct; q)∞dqt = (1 − q)

∞∑

n=0

(c/q; q)nq
n. (3.10)

On the other hand, by (1.4) and Theorem 2.1, we have

∫1

0
(ct; q)∞dqt =

∫1

0

∞∑

n=0

(−1)nqn(n−1)/2(ct)n
(q; q)n

dqt

=
∞∑

n=0

(−1)nqn(n−1)/2cn
(q; q)n

∫1

0
tn dqt

= (1 − q)
∞∑

n=0

(−1)nqn(n−1)/2
(q; q)n+1

cn,

(3.11)

which by combining with (3.10), implies (3.9).

Take c = 1, (3.9) implies the following result.
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Corollary 3.5. The following equation holds:

∞∑

n=0

(−1)nqn(n−1)/2
(q; q)n+1

= q. (3.12)

Take c = 1/q, (3.9) implies the following result.

Corollary 3.6. The following equation holds:

∞∑

n=0

(−1)nqn(n−3)/2
(q; q)n+1

= q2. (3.13)

Remark 3.7. Taking c = q−k, where k is positive integer, (3.9) readily yields many equations.

Corollary 3.8. Let a be a real number, satisfying |a| < 1. Then

∞∑

n=0

qn

(a; q)n+1
=

∞∑

n=0

an

(q; q)n+1
. (3.14)

Proof. Taking b = q, c = 0 in (3.8), we have

∫1

0

1
(at; q)∞

dqt =
1 − q

1 − a

∞∑

n=0

qn

(aq; q)n
. (3.15)

On the other hand, by Theorem 2.1 and set a = 0 then replace zwith at in (1.3), we have

∫1

0

1
(at; q)∞

dqt =
∫1

0

∞∑

n=0

(at)n

(q; q)n
dqt =

∞∑

n=0

an

(q; q)n

1 − q

1 − qn+1
. (3.16)

Combining (3.15) and (3.16), (3.14) follows.

Theorem 3.9. Let a, b be two real numbers, satisfying |ab| < 1. Then

2φ1

(
q/a, q/b; q2; q, ab

)
=

1 − q

1 − ab
2φ1(a, b;abq; q, q). (3.17)

Proof. We recall the Heines transformation formula [7]

2φ1(a, b; c; q, z) =
(abz/c; q)∞

(z; q)∞
2φ1(c/a, c/b; c; q, abz/c). (3.18)

In (3.18), replacing c, z by q, qt, respectively, (3.18) yields

(qt; q)∞
(abt; q)∞

2φ1(a, b; q; q, qt) = 2φ1(q/a, q/b; q; q, abt). (3.19)
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Taking the q-integral on both sides of (3.19)with respect to variable t, we have

∫1

0

(qt; q)∞
(abt; q)∞

2φ1(a, b; q; q, qt)dqt =
∫1

0
2φ1(q/a, q/b; q; q, abt)dqt. (3.20)

Applying (1.5) to (3.20) yields

∫1

0

(qt; q)∞
(abt; q)∞

∞∑

n=0

(a, b; q)n
(q, q; q)n

(qt)ndqt =
∫1

0

∞∑

n=0

(q/a, q/b; q)n
(q, q; q)n

(abt)ndqt. (3.21)

Applying Theorem 2.1 and Lemma 3.1 to (3.21), we have

∞∑

n=0

(a, b; q)n
(q, q; q)n

qn
1 − q

1 − ab

(q; q)n
(abq; q)n

=
∞∑

n=0

(q/a, q/b; q)n
(q, q; q)n

(ab)n
1 − q

1 − qn+1
, (3.22)

hence,

1 − q

1 − ab

∞∑

n=0

(a, b; q)n
(q, abq; q)n

qn =
∞∑

n=0

(q/a, q/b; q)n(
q, q2; q

)
n

(ab)n. (3.23)

From (3.23) and (1.5), (3.17) follows.
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