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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, symbols Z, Zp, Qp, and Cp will
denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational
numbers, and the completion of algebraic closure of Qp, respectively. Let N be the set of
natural numbers and Z+ = N ∪ {0}. Let νp be the normalized exponential valuation of Cp

with |p|p = p−νp(p) = 1/p. When one talks of q-extension, q is variously considered as an
indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally
assumes |q| < 1. If q ∈ Cp, then one normally assumes |1 − q|p < 1. We use the following
notations:

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

, (1.1)

for all x ∈ Zp (see [1–6]).
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Let d a fixed positive odd integer with (p, d) = 1. For N ∈ N, we set

X = Xd =
lim−→

N
Z

dpNZ
, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dp Zp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
moddpN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . The fermionic p-adic q-measures on Zp are defined as

μ−q
(
a + dpNZp

)
=

(−q)a
[
dpN

]
−q
, (1.3)

(see [5]).
We say that f is a uniformly differentiable function at a point a ∈ Zp and write f ∈

UD(Zp), if the difference quotients Ff(x, y) = (f(x) − f(y))/(x − y) have a limit f ′(a) as
(x, y) → (a, a). For f ∈ UD(Zp), let us begin with expression

1
[
pN
]
−q

∑

0≤j<pN
(−q)jf(j) =

∑

0≤j<pN
f
(
j
)
μ−q
(
j + pNZp

)
, (1.4)

which represents a q-analogue of Riemann sums for f in the fermionic sense (see [4, 5]). The
integral of f on Zp is defined by the limit of these sums (as n → ∞) if this limit exists. The
fermionic invariant p-adic q-integral of function f ∈ UD(Zp) is defined as

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

[2]q
1 + qp

N

pN−1∑

x=0

f(x)(−q)x. (1.5)

Note that if fn → f inUD(Zp), then

∫

Zp

fn(x)dμ−q(x) −→
∫

Zp

f(x)dμ−q(x),
∫

X

f(x)dμ−q(x) =
∫

Zp

f(x)dμ−q(x). (1.6)

The Barnes’ type Euler polynomials are considered as follows:

2k
k∏

j=1

(
1

ewjt + 1

)
ext =

∞∑

n=0

E
(k)
n (x | w1, . . . , wk)

tn

n!
, (1.7)

where w1, w2, . . . , wk ∈ Z (cf. [7]).
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From (1.5), we can derive the fermionic invariant integral on Zp as follows:

lim
q→ 1

I−q
(
f
)
= I−1

(
f
)
=
∫

Zp

f(x)dμ−1(x). (1.8)

For n ∈ N, let fn(x) = f(x + n), one has

I−1
(
fn
)
= (−1)nI−1

(
f
)
+ 2

n−1∑

l=0

(−1)n−1−lf(l). (1.9)

By (1.9), we see that

ext
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

e(w1x1+···+wkxk)tdμ−1(x1) · · ·dμ−1(xk) = 2k
k∏

j=1

(
1

ewjt + 1

)
. (1.10)

From (1.10), we note that

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

(x +w1x1 + · · · +wkxk)ndμ−1(x1) · · ·dμ−1(xk) = E
(k)
n (x | w1, . . . , wk). (1.11)

In the view point of (1.11), we try to study the q-extension of Barnes’ type Euler polynomials
by using the q-extension of fermionic p-adic invariant integral on Zp.

The purpose of this paper is to construct the q-Euler numbers and polynomials of
higher order, which are related to Barnes’ type multiple Euler numbers and polynomials.
Also, we give many properties and formulae for our q-Euler polynomials of higher order.
Finally, we give the generating function for these q-Euler polynomials of higher order.

2. Barnes’ Type Multiple q-Euler Polynomials

Let a1, a2, . . . , ak, b1, b2, . . . , bk ∈ Z. For w ∈ Zp and q ∈ Cp with |1 − q|p < 1, we define the
Barnes’ type multiple q-Euler polynomials as follows:

E
(k)
n,q(w | a1, . . . , ak; b1, . . . , bk) =

∫

Z
k
p

q
∑k

j=1(bj−1)xj

⎡

⎣w +
k∑

j=1

ajxj

⎤

⎦
n

q

dμ−q(x), (2.1)
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where

∫

Z
k
p

f(x1, . . . , xk)dμ−q(x) =
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
k-times

f(x1, . . . , xk)dμ−q(x1) · · ·dμ−q(xk) (2.2)

(see [1, 5]).
In the special casew = 0, E(k)

n (a1, . . . , ak; b1, . . . , bk) are called the Barnes’ type multiple
q-Euler numbers. From (2.1), one has

∫

Z
k
p

q
∑k

j=1(bj−1)xj

⎡

⎣w +
k∑

j=1

ajxj

⎤

⎦
n

q

dμ−q(x)

=
1

(1 − q)n
n∑

r=0

(
n

r

)
(−qw)r lim

N→∞

(
1 + q

1 + qp
N

)
pN−1∑

x1,...,xk=0

q
∑k

j=1(ajr+bj )xj (−1)x1+···+xk

=
1

(1 − q)n
n∑

r=0

(
n

r

)
(−qw)r[2]kq

k∏

j=1

(
1

1 + qajr+bj

)
.

(2.3)

Therefore, we obtain the following theorem.

Theorem 2.1. Let w ∈ Zp and k ∈ N. For a1, a2, . . . , ak, b1, b2, . . . , bk ∈ Z, one has

E
(k)
n,q(w | a1, . . . , ak; b1, . . . , bk) =

[2]kq
(
1 − q

)n
n∑

r=0

(
n

r

)
(−qw)r

k∏

j=1

(
1

1 + qajr+bj

)
. (2.4)

By (1.7), we easily see that

lim
q→ 1

E
(k)
n,q(w | a1, . . . , ak; b1, . . . , bk) = E

(k)
n (w | a1, . . . , ak). (2.5)

From (1.7), we can derive

∫

Z
k
p

q
∑k

j=1(bj−1)xj

⎡

⎣
k∑

j=1

ajxj

⎤

⎦
n

q

dμ−q(x)

=
(
q − 1

)∫

Z
k
p

q
∑k

j=1(bj−aj−1)xj

⎡

⎣
k∑

j=1

ajxj

⎤

⎦
n+1

q

dμ−q(x) +
∫

Z
k
p

q
∑k

j=1(bj−aj−1)xj

⎡

⎣
k∑

j=1

ajxj

⎤

⎦
n

q

dμ−q(x).

(2.6)
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By (2.6), one has

E
(k)
n,q(a1, . . . , ak; b1, . . . , bk) =

(
q − 1

)
E
(k)
n+1,q(a1, . . . , ak; b1 − a1, . . . , bk − ak)

+ E
(k)
n,q(a1, . . . , ak; b1 − a1, . . . , bk − ak).

(2.7)

Hence we obtain the following theorem.

Theorem 2.2. For k ∈ N and n ∈ Z+, one has

E
(k)
n,q(a1, . . . , ak; b1, . . . , bk) =

(
q − 1

)
E
(k)
n+1,q(a1, . . . , ak; b1 − a1, . . . , bk − ak)

+ E
(k)
n,q(a1, . . . , ak; b1 − a1, . . . , bk − ak).

(2.8)

It is not difficult to show that the following integral equation is satisfied:

i∑

j=0

(
i

j

)
(q − 1)j

∫

Z
k
p

[a1x1 + · · · + akxk]
n−i+j
q q

∑k
l=1(bl−1)xldμ−q(x)

=
i∑

j=0

(
i −m

j

)
(q − 1)j

∫

Z
k
p

[a1x1 + · · · + akxk]
n−i+j
q q

∑k
l=1(bl+mal−1)xldμ−q(x),

(2.9)

where m ∈ N with i ≥ m. By (2.9), we obtain the following theorem.

Theorem 2.3. Let n ∈ N and m ∈ N. For i ∈ N with i ≥ m, one has

i∑

j=0

(
i

j

)
(q − 1)jE(k)

n−i+j,q(a1, . . . , ak; b1, . . . , bk)

=
i∑

j=0

(
i −m

j

)
(q − 1)jE(k)

n−i+j,q(a1, . . . , ak; b1 +ma1, . . . , bk +mak).

(2.10)

For the special case k = 1 in Theorem 2.3, one has

n∑

j=0

(
n

j

)
(q − 1)jE(1)

j,q (a1; b1) =
n∑

j=0

(
n −m

j

)
(q − 1)jE(1)

j,q (a1; b1 +ma1)

=
∫

Zp

q(na1+b1−1)xdμ−q(x) =
[2]q

1 + qna1+b1
.

(2.11)

By (2.1), (2.3), and (2.9), we obtain the following a corollary.
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Corollary 2.4. For n, k ∈ N and w ∈ Zp, one has

E
(k)
n,q(w | a1, . . . , ak; b1, . . . , bk) =

[2]kq
(
1 − q

)n
n∑

r=0

(
n

r

)
(−qw)r

k∏

j=1

(
1

1 + qajr+bj

)

=
n∑

i=0

(
n

i

)
[w]n−iq qwiE

(k)
i,q (w | a1, . . . , ak; b1, . . . , bk).

(2.12)

From (2.3), we note that

qw
∫

Z
k
p

⎡

⎣w +
k∑

j=1

ajxj

⎤

⎦
m

q

q
∑k

j=1(bj−1)xj dμ−q(x)

=
(
q − 1

)∫

Z
k
p

⎡

⎣w +
k∑

j=1

ajxj

⎤

⎦
m+1

q

q
∑k

j=1(bj−aj−1)xj dμ−q(x)

+
∫

Z
k
p

⎡

⎣w +
k∑

j=1

ajxj

⎤

⎦
m

q

q
∑k

j=1(bj−aj−1)xj dμ−q(x),

∫

Xk

⎡

⎣w +
k∑

j=1

ajxj

⎤

⎦
m

q

q
∑k

j=1(bj−1)xj dμ−q(x)

= [d]mq [2]
k
q

d−1∑

i1,...,ik=0

q
∑k

j=1 bj ij

× (−1)i1+···+ik
∫

Z
k
p

⎡

⎣
w +

∑k
j=1 ajij

d
+

k∑

j=1

ajxj

⎤

⎦
m

qd

qd
∑k

j=1(bj−1)xj dμ−qd(x),

(2.13)

where d is an odd positive integer. By (2.13), we obtain the following theorem.

Theorem 2.5. For d ∈ N with d ≡ 1 (mod2), one has

E
(k)
m,q(w | a1, . . . , ak; b1, . . . , bk)

= [d]mq [2]
k
q

d−1∑

i1,...,ik=0

q
∑k

j=1 bj ij (−1)i1+···+ikE(k)
m,qd

⎛

⎝
w +

∑k
j=1 ajij

d
| a1, . . . , ak; b1, . . . , bk

⎞

⎠,

qwE
(k)
m,q(w | a1, . . . , ak; b1, . . . , bk)

=
(
q − 1

)
E
(k)
m+1,q(w | a1, . . . , ak; b1 − a1, . . . , bk − ak)

+ E
(k)
m,q(w | a1, . . . , ak; b1 − a1, . . . , bk − ak).

(2.14)
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Remark 2.6. Let

Fq(w, t) =
∞∑

n=0

E
(k)
n,q(w | a1, . . . , ak; b1, . . . , bk)

tn

n!
. (2.15)

From (2.4), we can easily derive the following equation:

Fq

(
w,
(
q − 1

)
t
)
=

∞∑

m=0

(q − 1)mE(k)
m,q(w | a1, . . . , ak; b1, . . . , bk)

tm

m!

= [2]kq e−t
∞∑

i=0

⎛

⎝
k∏

j=1

1
1 + qaj i+bj

⎞

⎠qwi t
i

i!
.

(2.16)

By differentiating both sides of (2.16) with respect to t and comparing coefficients on both
sides, one has

qwE
(k)
m,q(w | a1, . . . , ak; b1, . . . , bk) − E

(k)
m,q(w | a1, . . . , ak; b1 − a1, . . . , bk − ak)

=
(
q − 1

)
E
(k)
m+1,q(w | a1, . . . , ak; b1 − a1, . . . , bk − ak).

(2.17)

The inversion formula of Equation (2.4) at w = 0 is given by

m∑

i=0

(
m

i

)
(q − 1)i

∫

Z
k
p

[a1x1 + · · · + akxk]iqq
∑k

j=1(bj−1)xj dμ−q(x) =
∫

Z
k
p

q
∑k

j=1(maj+bj−1)xj dμ−q(x).

(2.18)

Thus, one has

m∑

i=0

(
m

i

)
(q − 1)iE(k)

i,q (a1, . . . , ak; b1, . . . , bk) = [2]kq
k∏

j=1

(
1

1 + qmaj+bj

)
. (2.19)
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