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1. Introduction

Let A be the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1} with
the usual normalization f(0) = f ′(0) − 1 = 0. If f and g are analytic in U, we say that f is
subordinate to g, written f ≺ g or f(z) ≺ g(z), if there exists an analytic functionw in U with
w(0) = 0 and |w(z)| < 1 for z ∈ U such that f(z) = g(w(z)).

Let N be the class of all functions φ which are analytic and univalent in U and for
which φ(U) is convex with φ(0) = 1 and Re{φ(z)} > 0 for z ∈ U. We denote by S∗ and K the
subclasses ofA consisting of all analytic functionswhich are starlike and convex, respectively.

Let M denote the class of functions of the form

f(z) =
1
z
+

∞∑

k=0

akz
k, (1.1)

which are analytic in the punctured open unit disk D = U\{0}. For 0 ≤ η, β < 1, we denote by
MS(η), MK(η) and MC(η, β) the subclasses of M consisting of all meromorphic functions
which are, respectively, starlike of order η, convex of order η and colse-to-convex of order β
and type η in U (see, for details, [1, 2]).
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Making use of the principle of subordination between analytic functions, we introduce
the subclasses MS(η, φ), MK(η, φ) and MC(η, β;φ, ψ) of the class M for 0 ≤ η, β < 1 and
φ, ψ ∈ N, which are defined by

MS
(
η;φ
)
:=
{
f ∈ M :

1
1 − η

(
−zf

′(z)
f(z)

− η
)

≺ φ(z) in U

}
,

MK
(
η;φ
)
:=

{
f ∈ M :

1
1 − η

(
−
{
1 +

zf
′′
(z)

f ′(z)

}
− η
)

≺ φ(z) in U

}
,

MC
(
η, β;φ, ψ

)
:=
{
f ∈ M : ∃g ∈ MS

(
η; φ

)
s.t.

1
1 − β

(
−zf

′(z)
g(z)

− β
)

≺ ψ(z) in U

}
.

(1.2)

We note that the classes mentioned above are the familiar classes which have been used
widely on the space of analytic and univalent functions in U (see [3–5]) and for special
choices for the functions φ and ψ involved in these definitions, we can obtain the well-known
subclasses of M. For examples, we have

MS

(
η;

1 + z
1 − z

)
= MS

(
η
)
,

MK

(
η;

1 + z
1 − z

)
= MK

(
η
)
,

MC

(
η, β;

1 + z
1 − z ,

1 + z
1 − z

)
= MC

(
η, β
)
.

(1.3)

Now we define the function φ(a, c; z) by

φ(a, c; z) :=
1
z
+

∞∑

k=0

(a)k+1
(c)k+1

zk, (1.4)

(
z ∈ U; a ∈ R; c ∈ R \ Z

−
0 ; Z

−
0 := {−1,−2, . . .}), (1.5)

where (ν)k is the Pochhammer symbol (or the shifted factorial) defined (in terms of the
Gamma function) by

(ν)k :=
Γ(ν + k)
Γ(ν)

=

⎧
⎨

⎩
1, if k = 0, ν ∈ C \ {0},
ν(ν + 1) · · · (ν + k − 1), if k ∈ N := {1, 2, . . .}, ν ∈ C.

(1.6)

Let f ∈ M. Denote by L(a, c) : M → M the operator defined by

L(a, c)f(z) = φ(a, c; z) ∗ f(z) (z ∈ D), (1.7)

where the symbol (∗) stands for the Hadamard product (or convolution). The operator L(a, c)
was introduced and studied by Liu and Srivastava [6]. Further, we remark in passing that this
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operator L(a, c) is closely related to the Carlson-Shaffer operator [7] defined on the space of
analytic and univalent functions in U.

Corresponding to the function φ(a, c; z), let φ†(a, c; z) be defined such that

φ(a, c; z) ∗ φλ(a, c; z) = 1

z(1 − z)λ
(λ > 0). (1.8)

Analogous to L(a, c), we now introduce a linear operator Lλ(a, c) on M as follows:

Lλ(a, c)f(z)c = φλ(a, c; z) ∗ f(z), (1.9)

(
a, c ∈ R \ Z

−
0 ; λ > 0; z ∈ U; f ∈ M). (1.10)

We note that

L1(2, 1)f(z) = f(z), L1(1, 1)f(z) = zf ′(z) + 2f(z). (1.11)

We note that the operatorLλ(a, c) is motivated essentially to the integral operator for analytic
functions defined by Choi et al. [3], which extends the Noor integral operator studied by K.
I. Noor and M. A. Noor [8] (also, see [9–13]).

Next, by using the operator Lλ(a, c), we introduce the following classes of
meromprphic functions for φ, ψ ∈ N, a, c ∈ R \ Z

−
0 , λ > 0 and 0 ≤ η, β < 1:

MSλa,c
(
η;φ
)
:=
{
f ∈ M : Lλ(a, c)f ∈ MS

(
η;φ
)}
,

MKλ
a,c

(
η;φ
)
:=
{
f ∈ M : Lλ(a, c)f ∈ MK

(
η;φ
)}
,

MCλ
a,c

(
η, β;φ, ψ

)
:=
{
f ∈ M : Lλ(a, c)f ∈ MC

(
η, β;φ, ψ

)}
.

(1.12)

We also note that

f(z) ∈ MKλ
a,c

(
η;φ
)⇐⇒ −zf ′(z) ∈ MSλa,c

(
η;φ
)
. (1.13)

In particular, we set

MSλa,c

(
η;

1 +Az
1 + Bz

)
= MSλa,c

(
η;A,B

)
(−1 < B < A ≤ 1),

MKλ
a,c

(
η;

1 +Az
1 + Bz

)
= MKλ

a,c

(
η;A,B

)
(−1 < B < A ≤ 1).

(1.14)

In this paper, we investigate several inclusion properties of the classes MSλa,c(η;φ),
MKλ

a,c(η;φ), and MCλ
a,c(η;φ) associated with the operator Lλ(a, c) defined by (1.9).Some
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invariant properties under convolution are also considered for the classes mentioned above.
Furthermore, relevant connections of the results presented here with those obtained in earlier
works are pointed out.

2. Inclusion Properties Involving the Operator Lλ(a, c)

The following lemmas will be required in our investigation.

Lemma 2.1. Let φλi(a, c; z), φλ(ai, c; z), and φλ(a, ci; z) (i = 1, 2) be defined by (1.9). Then for
λi > 0, ai, ci ∈ R \ Z

−
0 (i = 1, 2),

φλ1(a, c; z) = φλ2(a, c; z)∗fλ1,λ2(z), (2.1)

φλ(a2, c; z) = φλ(a1, c; z)∗fa1,a2(z), (2.2)

φλ(a, c1; z) = φλ(a, c2; z)∗fc1,c2(z), (2.3)

where

fs,t(z) =
1
z
+

∞∑

k=0

(s)k+1
(t)k+1

zk (z ∈ D). (2.4)

Proof. From (1.8), we know that

φλ(a, c; z) =
1
z
+

∞∑

k=0

(c)k+1(λ)k+1
(a)k+1(1)k+1

zk (z ∈ D). (2.5)

Therefore (2.1), (2.2) and (2.3) follow from (2.5) immediately.

Lemma 2.2 (see [14, pages 60–61]). Let t ≥ s > 0. If t ≥ 2 or s + t ≥ 3, then the function z2fs,t(z)
belongs to the classK, where fs,t is defined by (2.4).

Lemma 2.3 (see[15]). Let f ∈ K and g ∈ S∗. Then for every analytic function h in U,

(
f∗hg)(U)
(
f∗g)(U)

⊂ coh(U), (2.6)

where coh(U) denote the closed convex hull of h(U).
At first, the inclusion relationship involving the classMSλ

a,c(η;φ) is contained in Theorem 2.4.

Theorem 2.4. Let λ2 ≥ λ1 > 0, a, c ∈ R \Z
−
0 and φ ∈ N with Re{φ(z)} < (2− η)/(1− η) (0 ≤ η <

1). If λ2 ≥ 2 or λ1 + λ2 ≥ 3, then

MSλ2
a,c

(
η;φ
) ⊂ MSλ1

a,c

(
η;φ
)
. (2.7)
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Proof. Let f ∈ MSλ2
a,c(η;φ). From the definition of MSλ2

a,c(η;φ), we have

1
1 − η

(
−z
(Lλ2(a, c)f(z)

)′

Lλ2(a, c)f(z)
− η
)

= φ(w(z)) (z ∈ U), (2.8)

z
(
z2Lλ2(a, c)f(z)

)′

z2Lλ2(a, c)f(z)
= 2 − (1 − η)φ(w(z)) − η ≺ 1 + z

1 − z (z ∈ U), (2.9)

wherew is analytic in U with |w(z)| < 1 (z ∈ U) andw(0) = 0 = φ(0) − 1. By using (1.9), (2.1)
and (2.8), we get

−z
(Lλ1(a, c)f(z)

)′

Lλ1(a, c)f(z)
= −z

(
φλ1(a, c; z) ∗ f(z)

)′

φλ1(a, c; z) ∗ f(z)

= −z
(
φλ2(a, c; z) ∗ fλ1,λ2(z) ∗ f(z)

)′

φλ2(a, c; z) ∗ fλ1,λ2(z) ∗ f(z)

=
fλ1,λ2(z) ∗

[
−z(Lλ2(a, c)f(z)

)′]

fλ1,λ2(z) ∗ Lλ2(a, c)f(z)

=
fλ1,λ2(z) ∗

[(
1 − η)φ(w(z)) + η

]Lλ2(a, c)f(z)
fλ1,λ2(z) ∗ Lλ2(a, c)f(z)

.

(2.10)

Therefore by using (2.8), we obtain

1
1 − η

(
−z(Lλ1(a, c)f(z))

′

Lλ1(a, c)f(z)
− η
)

=
1

1 − η

(
fλ1,λ2(z) ∗

[(
1 − η)φ(w(z)) + η

]Lλ2(a, c)f(z)
fλ1,λ2(z) ∗ Lλ2(a, c)f(z)

− η
)

=
1

1 − η

(
z2fλ1,λ2(z) ∗

[(
1 − η)φ(w(z)) + η

]
z2Lλ2(a, c)f(z)

z2fλ1,λ2(z) ∗ z2Lλ2(a, c)f(z)
− η
)
.

(2.11)

It follows from (2.9) and Lemma 2.2 that z2Lλ2(a, c)f(z) ∈ S∗ and z2fλ1,λ2 ∈ K, respectively.
Let us put s(w(z)) := (1 − η)φ(w(z)) + η. Then by applying Lemma 2.3 to (2.10), we obtain

{
z2fλ1,λ2 ∗ s(w(z))z2Lλ2(a, c)f

}
{
z2fλ1,λ2 ∗ z2Lλ2(a, c)f

} (U) ⊂ cos(w(U)) ⊂ s(U), (2.12)
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since s is convex univalent. Therefore from the definition of subordination and (2.12), we
have

1
1 − η

(
−z
(Lλ1(a, c)f(z)

)′

Lλ1(a, c)f(z)
− η
)

≺ φ(z) (z ∈ U), (2.13)

or, equivalently, f ∈ MSλ1
a,c(φ), which completes the proof of Theorem 2.4.

By using (1.13), (2.2) and (2.3), we have the following Theorem 2.5 and Theorem 2.6.

Theorem 2.5. Let λ > 0, a2 ≥ a1 > 0, c ∈ R \Z
−
0 and φ ∈ N with Re{φ(z)} < (2− η)/(1− η) (0 ≤

η < 1). If a2 ≥ 2 or a1 + a2 ≥ 3, then

MSλ
a1,c

(
η;φ
) ⊂ MSλ

a2,c

(
η;φ
)
. (2.14)

Theorem 2.6. Let λ > 0, a ∈ R \Z
−
0 , c2 ≥ c1 > 0 and φ ∈ N with Re{φ(z)} < (2 − η)/(1 − η) (0 ≤

η < 1). If c2 ≥ 2 or c1 + c2 ≥ 3, then

MSλ
a,c2

(
η;φ
) ⊂ MSλ

a,c1

(
η;φ
)
. (2.15)

Next, we prove the inclusion theorem involving the class MKλ
a,c(η;φ).

Theorem 2.7. Let λ2 ≥ λ1 > 0, a, c ∈ R \Z
−
0 and φ ∈ N with Re{φ(z)} < (2− η)/(1− η) (0 ≤ η <

1). If λ2 ≥ 2 or λ1 + λ2 ≥ 3, then

MKλ2
a,c

(
η;φ
) ⊂ MKλ1

a,c

(
η;φ
)
. (2.16)

Proof. Applying (1.13) and Theorem 2.4, we observe that

f(z) ∈ MKλ2
a,c

(
η;φ
)⇐⇒ Lλ2(a, c)f(z) ∈ MK(η;φ)

⇐⇒ −z(Lλ2(a, c)f(z)
)′ ∈ MS(η;φ)

⇐⇒ Lλ2(a, c)
(−zf ′(z)

) ∈ MS(η;φ)

⇐⇒ −zf ′(z) ∈ MSλ2
a,c

(
η;φ
)

=⇒ −zf ′(z) ∈ MSλ1
a,c

(
η;φ
)

⇐⇒ Lλ1(a, c)
(−zf ′(z)

) ∈ MS(η;φ)

⇐⇒ −z(Lλ1(a, c)f(z)
)′ ∈ MS(η;φ)

⇐⇒ Lλ1(a, c)f(z) ∈ MK(η;φ)

⇐⇒ f(z) ∈ MKλ1
a,c

(
η;φ
)
,

(2.17)

which evidently proves Theorem 2.7.
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By using a similar method as in the proof of Theorem 2.7, we obtain the following two
theorems.

Theorem 2.8. Let λ > 0, a2 ≥ a1 > 0, c ∈ R \Z
−
0 and φ ∈ N with Re{φ(z)} < (2− η)/(1− η) (0 ≤

η < 1). If a2 ≥ 2 or a1 + a2 ≥ 3, then

MKλ
a1,c

(
η;φ
) ⊂ MKλ

a2,c

(
η;φ
)
. (2.18)

Theorem 2.9. Let λ > 0, a ∈ R \Z
−
0 , c2 ≥ c1 > 0 and φ ∈ N with Re{φ(z)} < (2 − η)/(1 − η) (0 ≤

η < 1). If c2 ≥ 2 or c1 + c2 ≥ 3, then

MKλ
a,c2

(
η;φ
) ⊂ MKλ

a,c1

(
η;φ
)
. (2.19)

Taking φ(z) = (1 + Az)/(1 + Bz) (−1 < B < A ≤ 1; z ∈ U) in Theorems 2.4–2.9, we have
the following corollaries below.

Corollary 2.10. Let (1 +A)(1 − η) < (2 − η)(1 + B) (−1 < B < A ≤ 1; 0 ≤ η < 1) and c ∈ R \ Z
−
0 .

If λ2 ≥ λ1 > 0 and λ2 ≥ min{2, 3 − λ1}, and a2 ≥ a1 > 0 and a2 ≥ min{2, 3 − a1}, then

MSλ2
a1,c

[
η;A,B

] ⊂ MSλ1
a1,c

[
η;A,B

] ⊂ MSλ1
a2,c

[
η;A,B

]
,

MKλ2
a1,c

[
η;A,B

] ⊂ MKλ1
a1,c

[
η;A,B

] ⊂ MKλ1
a2,c

[
η;A,B

]
.

(2.20)

Corollary 2.11. Let (1 + A)(1 − η) < (2 − η)(1 + B) (−1 < B < A ≤ 1; 0 ≤ η < 1) and λ > 0. If
a2 ≥ a1 > 0 and a2 ≥ min{2, 3 − a1}, and c2 ≥ c1 > 0 and c2 ≥ min{2, 3 − c1}, then

MSλ
a1,c2

[
η;A,B

] ⊂ MSλ
a1,c1

[
η;A,B

] ⊂ MSλ
a2,c1

[
η;A,B

]
,

MKλ
a1,c2

[
η;A,B

] ⊂ MKλ
a1,c1

[
η;A,B

] ⊂ MKλ
a2,c1

[
η;A,B

]
.

(2.21)

Corollary 2.12. Let (1 +A)(1 − η) < (2 − η)(1 + B) (−1 < B < A ≤ 1; 0 ≤ η < 1) and a ∈ R \ Z
−
0 .

If λ2 ≥ λ1 > 0 and λ2 ≥ min{2, 3 − λ1}, and c2 ≥ c1 > 0 and c2 ≥ min{2, 3 − c1}, then

MSλ2
a,c2

[
η;A,B

] ⊂ MSλ2
a,c1

[
η;A,B

] ⊂ MSλ1
a,c1

[
η;A,B

]
,

MKλ2
a,c2

[
η;A,B

] ⊂ MKλ2
a,c1

[
η;A,B

] ⊂ MKλ1
a,c1

[
η;A,B

]
.

(2.22)

To prove theorems below, we need the following lemma.

Lemma 2.13. Let φ ∈ N with Re{φ(z)} < (2 − η)/(1 − η) (0 ≤ η < 1). If f ∈ M with z2f(z) ∈ K
and q ∈ MS(η;φ), then f ∗ q ∈ MS(η;φ).
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Proof. Let q ∈ MS(η;φ). Then

−zq′(z) = [(1 − η)φ(w(z)) + η
]
q(z) (z ∈ U), (2.23)

where w is an analytic function in U with |w(z)| < 1 (z ∈ U) and w(0) = 0. Thus we have

1
1 − η

(
−z
(
f(z) ∗ q(z))′
f(z) ∗ q(z) − η

)

=
1

1 − η

(
f(z) ∗ [−zq′(z)]

f(z) ∗ q(z) − η
)

=
1

1 − η

(
f(z) ∗ [(1 − η)φ(ω(z)) + η]q(z)

f(z) ∗ q(z) − η
)

(z ∈ D).

(2.24)

By using the similar arguments to those used in the proof of Theorem 2.4, we conclude that
(2.24) is subordinated to φ in U and so f ∗ q ∈ MS(η;φ).

Finally, we give the inclusion properties involving the class MCλa,c(η, β;φ, ψ).

Theorem 2.14. Let c ∈ R \ Z
−
0 and φ, ψ ∈ N with Re{φ(z)} < (2 − η)/(1 − η) (0 ≤ η < 1). If

λ2 ≥ λ1 > 0 and λ2 ≥ min{2, 3 − λ1}, and a2 ≥ a1 > 0 and a2 ≥ min{2, 3 − a1}, then

MCλ2a1,c
(
η, β;φ, ψ

) ⊂ MCλ1a1,c
(
η, β;φ, ψ

) ⊂ MCλ1a2,c
(
η, β;φ, ψ

)
. (2.25)

Proof. We begin by proving that

MCλ2a1,c
(
η, β;φ, ψ

) ⊂ MCλ1a1,c
(
η, β;φ, ψ

)
. (2.26)

Let f ∈ MCλ2a1,c(η, β;φ, ψ). Then there exists a function q2 ∈ MS(η;φ) such that

1
1 − β

(
−z
(Lλ2(a1, c)f(z)

)′

q2(z)
− β
)

≺ ψ(z) (
0 ≤ β < 1; z ∈ U

)
. (2.27)

From (2.27), we obtain

−z(Lλ2(a1, c)f(z)
)′ =

((
1 − β)ψ(w(z)) + β

)
q2(z), (2.28)
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wherew is an analytic function in U with |w(z)| < 1 (z ∈ U) andw(0) = 0. By virtue of (2.3),
Lemmas 2.2 and 2.13, we see that fλ1,λ2(z) ∗ q2(z) ≡ q1(z) belongs toMS(η;φ). Then, making
use of (2.1), we have

1
1 − β

(
−z
(Lλ1(a1, c)f(z)

)′

q1(z)
− β
)

=
1

1 − β

⎛
⎜⎝
fλ1,λ2(z) ∗

[
−z(Lλ2(a1, c)f(z)

)′]

fλ1,λ2(z) ∗ q2(z)
− β

⎞
⎟⎠

=
1

1 − β

(
fλ1,λ2(z) ∗

[(
1 − β)ψ(w(z)) + β

]
q2(z)

fλ1,λ2(z) ∗ q2(z)
− β
)

=
1

1 − β

(
z2fλ1,λ2(z) ∗

[(
1 − β)ψ(w(z)) + β

]
z2q2(z)

z2fλ1,λ2(z) ∗ z2q2(z)
− β
)

≺ ψ(z) (z ∈ U).

(2.29)

Therefore we prove that f ∈ MCλ1a1,c(η, β;φ, ψ).
For the second part, by using arguments similar to those detailed above with (2.2), we

obtain

MCλ1a1,c
(
η, β;φ, ψ

) ⊂ MCλ1a2,c
(
η, β;φ, ψ

)
(2.30)

Thus the proof of Theorem 2.14 is completed.
The following results can be obtained by using the same techniques as in the proof of

Theorem 2.14 and so we omit the detailed proofs involved.

Theorem 2.15. Let λ > 0 and φ, ψ ∈ NwithRe{φ(z)} < (2−η)/(1−η) (0 ≤ η < 1). If a2 ≥ a1 > 0
and a2 ≥ min{2, 3 − a1}, and c2 ≥ c1 > 0 and c2 ≥ min{2, 3 − c1}, then

MCλa1,c2
(
η, β;φ, ψ

) ⊂ MCλa1,c1
(
η, β;φ, ψ

) ⊂ MCλa2,c1
(
η, β;φ, ψ

)
. (2.31)

Theorem 2.16. Let a ∈ R \ Z
−
0 and φ, ψ ∈ N with Re{φ(z)} < (2 − η)/(1 − η) (0 ≤ η < 1). If

λ2 ≥ λ1 > 0 and λ2 ≥ min{2, 3 − λ1}, and c2 ≥ c1 > 0 and c2 ≥ min{2, 3 − c1}, then

MCλ2a,c2
(
η, β;φ, ψ

) ⊂ MCλ2a,c1
(
η, β;φ, ψ

) ⊂ MCλ1a,c1
(
η, β;φ, ψ

)
. (2.32)

Remark 2.17. For a = λ + 1 (λ > −1) and c = 1, Theorems 2.4, 2.5, 2.7, 2.8, and 2.14 reduce to
the corresponding results obtained by Cho and Noor [16].

3. Inclusion Properties Involving Various Operators

The next theorem shows that the classes MSλ
a,c(η;φ), MKλ

a,c(η;φ) and MCλa,c(η, β;φ, ψ) are
invariant under convolution with convex functions.
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Theorem 3.1. Let λ > 0, a > 0, c ∈ R\Z
−
0 , φ, ψ ∈ N with Re{φ(z)} < (2−η)/(1−η) (0 ≤ η < 1)

and let g ∈ M with z2g(z) ∈ K. Then

(i) f ∈ MSλ
a,c(η;φ) ⇒ g∗f ∈ MSλ

a,c(η;φ),

(ii) f ∈ MKλ
a,c(η;φ) ⇒ g∗f ∈ MKλ

a,c(η;φ),

(iii) f ∈ MCλa,c(η, β;φ, ψ) ⇒ g∗f ∈ MCλa,c(η, β;φ, ψ).

Proof. (i) Let f ∈ MSλ
a,c(η;φ). Then we have

1
1 − η

(
−z
(Lλ(a, c)

(
g ∗ f)(z))′

Lλ(a, c)
(
g ∗ f)(z) − η

)
=

1
1 − η

⎛
⎜⎝
g(z) ∗

[
−z(Lλ(a, c)f(z)

)′]

g(z) ∗ Lλ(a, c)f(z)
− η

⎞
⎟⎠. (3.1)

By using the same techniques as in the proof of Theorem 2.4, we obtain (i).
(ii) Let f ∈ MKλ

a,c(φ). Then, by (1.13), −zf ′(z) ∈ MSa,c(η;φ) and hence from (i),
g(z) ∗ [−zf ′(z)] ∈ MSλ

a,c(η;φ). Since

g(z) ∗ [−zf ′(z)
]
= −z(g ∗ f)′(z), (3.2)

we have (ii) applying (1.13) once again.
(iii) Let f ∈ MCλa,c(η, β;φ, ψ). Then there exists a function q ∈ MS(η;φ) such that

−z(Lλ(a, c)f(z)
)′ =

[(
1 − β)ψ(w(z)) + β

]
q(z)

(
0 ≤ β < 1; z ∈ U

)
, (3.3)

wherew is an analytic function in U with |w(z)| < 1 (z ∈ U) andw(0) = 0. From Lemma 2.13,
we have that g ∗ q ∈ MS(η;φ). Since

1
1 − β

(
−z
(Lλ(a, c)

(
g ∗ f)(z))′

(
g ∗ q)(z) − β

)

=
1

1 − β

⎛
⎜⎝
g(z) ∗

[
−z(Lλ(a, c)f(z)

)′]

g(z) ∗ q(z) − β

⎞
⎟⎠

=
1

1 − β

(
z2g(z) ∗ [(1 − β)ψ(w(z)) + β

]
z2q(z)

z2g(z) ∗ z2q(z) − β
)

≺ ψ(z) (z ∈ U),

(3.4)

we obtain (iii).
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Now we consider the following operators defined by

Ψ1(z) =
1
z

∞∑

k=1

1 + c
k + c

zk−1 (Re{c} ≥ 0; z ∈ D),

Ψ2(z) =
1

z2(1 − x) log
[
1 − xz
1 − z

] (
log 1 = 0; |x| ≤ 1, x /= 1; z ∈ D

)
.

(3.5)

It is well known [17] that the operators z2Ψ1 and z2Ψ2 are convex univalent in U. Therefore
we have the following result, which can be obtained from Theorem 3.1 immediately.

Corollary 3.2. Let a > 0, λ > 0, c ∈ R\Z
−
0 , φ, ψ ∈ N with Re{φ(z)} < (2−η)/(1−η) (0 ≤ η < 1)

and let Ψi (i = 1, 2) be defined by (3.5), respectively. Then

(i) f ∈ MSλ
a,c(η;φ) ⇒ Ψi∗f ∈ MSλ

a,c(η;φ),

(ii) f ∈ MKλ
a,c(η;φ) ⇒ Ψi∗f ∈ MKλ

a,c(η;φ),

(iii) f ∈ MCλa,c(η, β;φ, ψ) ⇒ Ψi∗f ∈ MCλa,c(η, β;φ, ψ).
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