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1. Introduction

Throughout this paper x = {xi} represents a finite sequence of real numbers belonging to a
fixed closed interval I = [a, b], a < b, and p = {pi},

∑
pi = 1 is a positive weight sequence

associated with x.
If f is a convex function on I, then the well-known Jensen’s inequality [1, 2] asserts

that

0 ≤
∑

pif(xi) − f
(∑

pixi

)
. (1.1)

There are many important inequalities which are particular cases of Jensen’s inequality
among which are the weighted A − G − H inequality, Cauchy’s inequality, the Ky Fan and
Hölder’s inequalities.

One can see that the lower bound zero is of global nature since it does not depend on
p, x but only on f and the interval I whereupon f is convex.

We give in [1] an upper global bound (i.e., depending on f and I only)which happens
to be better than already existing ones. Namely, we prove that

(0 ≤)
∑

pif(xi) − f
(∑

pixi

)
≤ Tf(a, b), (1.2)
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with

Tf(a, b) := max
p

[
pf(a) +

(
1 − p

)
f(b) − f

(
pa +

(
1 − p

)
b
)]
. (1.3)

Note that, for a (strictly) positive convex function f , Jensen’s inequality can also be
stated in the form

1 ≤
∑

pif(xi)
f
(∑

pixi

) . (1.4)

It is not difficult to prove that 1 is the best possible global lower bound for Jensen’s
inequality written in the above form. Our aim in this paper is to find the best possible global
upper bound for (1.4). We will show with examples that by following this approach one may
consequently obtain converses of some important inequalities.

2. Results

Our main result is contained in what follows.

Theorem 2.1. Let f be a (strictly) positive, twice continuously differentiable function on I := [a, b],
xi ∈ I and 0 ≤ p, q ≤ 1, p + q = 1. One has that

(i) if f is (strictly) convex function on I, then

1 ≤
∑

pif(xi)
f
(∑

pixi

) ≤ max
p

[
pf(a) + qf(b)
f
(
pa + qb

)

]

:= Sf(a, b), (2.1)

(ii) if f is (strictly) concave function on I, then

1 ≤ f
(∑

pixi

)

∑
pif(xi)

≤ max
p

[
f
(
pa + qb

)

pf(a) + qf(b)

]

:= S′
f(a, b). (2.2)

Both estimates are independent of p.

The next assertion shows that Sf(a, b) (resp., S′
f
(a, b)) exists and is unique.

Theorem 2.2. There is unique p0 ∈ (0, 1) such that

Sf(a, b) =
p0f(a) +

(
1 − p0

)
f(b)

f
(
p0a +

(
1 − p0

)
b
) . (2.3)

Of particular importance is the following theorem.

Theorem 2.3. The expression Sf(a, b) represents the best possible global upper bound for Jensen’s
inequality written in the form (1.4).
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3. Proofs

We will give proofs of the previous assertions related to the first part of Theorem 2.1. Proofs
concerning concave functions go along the same lines.

Proof of Theorem 2.1. We apply the method already shown in [1]. Namely, since a ≤ xi ≤ b,
there is a sequence ti ∈ [0, 1] such that xi = tia + (1 − ti)b.

Hence,

∑
pif(xi)

f
(∑

pixi

) =
∑

pif(tia + (1 − ti)b)
f
(∑

pi(tia + (1 − ti)b)
) ≤ f(a)

∑
piti + f(b)

(
1 −∑ piti

)

f
(
a
∑

piti + b
(
1 −∑ piti

)
)

. (3.1)

Denoting
∑

piti := p, 1 −∑ piti := q; p, q ∈ [0, 1], we get

∑
pif(xi)

f
(∑

pixi

) ≤ pf(a) + qf(b)
f
(
pa + qb

) ≤ max
p

[
pf(a) + qf(b)
f
(
pa + qb

)

]

:= Sf(a, b). (3.2)

Proof of Theorem 2.2. For fixed a, b ∈ I, denote

F
(
p
)
:=

pf(a) + qf(b)
f
(
pa + qb

) . (3.3)

We get F ′(p) = g(p)/f2(pa + qb)with

g
(
p
)
:=
(
f(a) − f(b)

)
f
(
pa + qb

) − (pf(a) + qf(b)
)
f ′(pa + qb

)
(a − b). (3.4)

Also,

g ′(p
)
= −(a − b)2

(
pf(a) + qf(b)

)
f ′′(pa + qb

)
,

g(0) = f(b)
(
f(a) − f(b) − f ′(b)(a − b)

)
, g(1) = −f(a)(f(b) − f(a) − f ′(a)(b − a)

)
.

(3.5)

Since f is strictly convex on I and pa + qb ∈ I, we conclude that g(p) is monotone
decreasing on [0, 1] with g(0) > 0, g(1) < 0. Since g is continuous, there exists unique p0 ∈
(0, 1) such that g(p0) = F ′(p0) = 0. Also F ′′(p0) = g ′(p0)/f2(p0a + q0b) < 0, showing that
maxpF(p) is attained at the point p0. The proof is completed.

Proof of Theorem 2.3. Let Rf(a, b) be an arbitrary global upper bound. By definition, the
inequality

∑
pif(xi)

f
(∑

pixi

) ≤ Rf(a, b) (3.6)

holds for arbitrary p and xi ∈ [a, b].
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In particular, for x = {x1, x2}, x1 = a, x2 = b, p1 = p0 we obtain that Sf(a, b) ≤ Rf(a, b)
as required.

4. Applications

In the sequel we will give some examples to demonstrate the fruitfulness of the assertions
from Theorem 2.1. Since all bounds will be given as a combination of means from the
Stolarsky class, here is its definition.

Stolarsky (or extended) two-parametric mean values are defined for positive values of
x, y as

Er,s

(
x, y
)
:=

(
r
(
xs − ys

)

s
(
xr − yr

)

)1/(s−r)
, rs(r − s)

(
x − y

)
/= 0. (4.1)

E means can be continuously extended on the domain

{(
r, s;x, y

) | r, s ∈ R;x, y ∈ R+
}

(4.2)

by the following:

Er,s

(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r
(
xs − ys

)

s
(
xr − yr

)

)1/(s−r)
, rs(r − s)/= 0,

exp
(

−1
s
+
xs logx − ys logy

xs − ys

)

, r = s /= 0,

(
xs − ys

s
(
logx − logy

)

)1/s

, s /= 0, r = 0,

√
xy, r = s = 0,

x, x = y > 0,

(4.3)

and this form is introduced by Stolarsky in [3].
Most of the classical two variable means are special cases of the class E. For example,

E1,2 = (x + y)/2 is the arithmetic mean A(x, y), E0,0 =
√
xy is the geometric mean

G(x, y), E0,1 = (x − y)/(logx − logy) is the logarithmic mean L(x, y), E1,1 = (xx/yy)1/(x−y)/e
is the identric mean I(x, y), and so forth. More generally, the rth power mean ((xr + yr)/2)1/r

is equal to Er,2r .

Example 4.1. Taking f(x) = 1/x, after an easy calculation it follows that S1/x(a, b) = (A(a, b)/
G(a, b))2. Therefore we consequently obtain the result.



Journal of Inequalities and Applications 5

Proposition 4.2. If 0 < a ≤ xi ≤ b, then the inequality

1 ≤
(∑

pixi

)(∑ pi
xi

)

≤ (a + b)2

4ab
(4.4)

holds for an arbitrary weight sequence p.

This is the extended form of Schweitzer inequality.

Example 4.3. For f(x) = x2 we get that the maximum of F(p) is attained at the point p0 =
b/(a + b).

Hence, we have the following.

Proposition 4.4. If 0 < a ≤ xi ≤ b, then the following means inequality

1 ≤

√∑
pix

2
i

∑
pixi

≤ A(a, b)
G(a, b)

(4.5)

holds for an arbitrary weight sequence p.

As a special case of the above inequality, that is, by putting pi = u2
i /
∑

i u
2
i , xi = vi/ui

and noting that 0 < u ≤ ui ≤ U, 0 < v ≤ vi ≤ V imply a = v/U ≤ xi ≤ V/u = b, we obtain a
converse of the well-known Cauchy’s inequality.

Proposition 4.5. If 0 < u ≤ ui ≤ U, 0 < v ≤ vi ≤ V , then

1 ≤
∑

u2
i

∑
v2
i

(
∑

uivi)
2
≤
(√

UV/uv +
√
uv/UV

2

)2

. (4.6)

In this form the Cauchy’s inequality was stated in [2, page 80].

Note that the same result can be obtained from inequality (4.4) by taking pi =
uivi/

∑
i uivi, xi = ui/vi.

Example 4.6. Let f(x) = xα, 0 < α < 1. Since in this case f is a concave function, applying the
second part of Theorem 2.1, we get the following.

Proposition 4.7. If 0 < a ≤ xi ≤ b, then

1 ≤
(∑

pixi

)α

∑
pix

α
i

≤
(
Eα,1(a, b)E1−α,1(a, b)

G2(a, b)

)α(1−α)
, (4.7)

independently of p.
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In the limiting cases we obtain two important converses. Namely, writing (4.7) as

1 ≤
∑

pixi
(∑

pix
α
i

)1/α ≤
(
Eα,1(a, b)E1−α,1(a, b)

G2(a, b)

)1−α
, (4.8)

and, letting α → 0+, the converse of generalized A −G inequality arises.

Proposition 4.8. If 0 < a ≤ xi ≤ b, then

1 ≤
∑

pixi
∏

x
pi
i

≤ L(a, b)I(a, b)
G2(a, b)

. (4.9)

Note that the right-hand side of (4.9) is exactly the Specht ratio (cf. [1]).
Analogously, writing (4.7) in the form

1 ≤
((∑

pixi

)α

∑
pix

α
i

)1/(1−α)
≤
(
Eα,1(a, b)E1−α,1(a, b)

G2(a, b)

)α

, (4.10)

and taking the limit α → 1−, one has the following.

Proposition 4.9. If 0 < a ≤ xi ≤ b, then

0 ≤
∑

pixi logxi −
∑

pixi log
(∑

pixi

)

∑
pixi

≤ log
L(a, b)I(a, b)

G2(a, b)
. (4.11)

Finally, putting in (4.7) pi = vi/
∑

i vi, xi = ui/vi, α = 1/p, 1 − α = 1/q, we obtain the
converse of discrete Hölder’s inequality.

Proposition 4.10. If p, q > 1, 1/p + 1/q = 1; 0 < a ≤ ui/vi ≤ b, then

1 ≤ (
∑

ui)
1/p(
∑

vi)
1/q

∑
u
1/p
i v

1/q
i

≤
(

E1/p,1(a, b)E1/q,1(a, b)
G2(a, b)

)1/pq

. (4.12)

It is interesting to compare (4.12)with the converse of Hölder’s inequality for integral
forms (cf. [4]).
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