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The shadowing property is to find an exact solution to an iterated map that remains
close to an approximate solution. In this article, using shadowing property, we show
the stability of the following equation in normed group: 4n−2Cn/2−1r2f(

∑n
j=1(xj/r)) +

n
∑

ik∈{0,1},
∑n

k=1 ik=n/2
r2f(

∑n
i=1 (−1)ik (xi/r)) = 4n·n−2Cn/2−1

∑n
i=1 f(xi), where n ≥ 2, r ∈ R (r2 /=n)

and f is a mapping. And we prove that the even mapping which satisfies the above equation is
quadratic and also the Hyers-Ulam stability of the functional equation in Banach spaces.
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1. Introduction

The notion of pseudo-orbits very often appears in several areas of the dynamical systems.
A pseudo-orbit is generally produced by numerical simulations of dynamical systems. One
may consider a natural question which asks whether or not this predicted behavior is
close to the real behavior of system. The above property is called the shadowing property
(or pseudo-orbit tracing property). The shadowing property is an important feature of stable
dynamical systems. Moreover, a dynamical system satisfying the shadowing property is in
many respects close to a (topologically, structurally) stable system. It is well known that the
shadowing property is a useful notion for the study about the stability theory, and the concept
of the shadowing is close to this of the stability in dynamical systems.

In this paper, we are going to investigate the stability of functional equations using the
shadowing property derived from dynamical systems.
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The study of stability problems for functional equations is related to the following
question raised by Ulam [1] concerning the stability of group homomorphisms. Let G1 be a
group, and let G2 be a metric group with the metricd(·, ·). Given ε > 0 does there exist a δ > 0
such that if amapping h : G1 → G2satisfies the inequality

d
(
h
(
xy
)
, h(x)h

(
y
))

< δ (1.1)

for all x, y ∈ G1, then a homomorphism H : G1 → G2 exists with d(h(x),H(x)) < ε for all
x ∈ G1?

D. H. Hyers [2] provided the first partial solution of Ulam’s question as follows. Let X
and Y be Banach spaces with norms ‖·‖ and ‖·‖, respectively. Hyers showed that if a function
f : X → Y satisfies the following inequality:

∥
∥f
(
x + y

) − f(x) − f
(
y
)∥
∥ ≤ ε (1.2)

for some ε ≥ 0 and for all x, y ∈ X, then the limit

a(x) = lim
n→∞

2−nf(2nx) (1.3)

exists for each x ∈ X and a : X → Y is the unique additive function such that

∥
∥f(x) − a(x)

∥
∥ ≤ ε (1.4)

for any x ∈ X. Moreover, if f(tx) is continuous in t for each fixed x ∈ X, then a is linear.
Hyers’ theorem was generalized in various directions. The very first author who

generalized Hyers’ theorem to the case of unbounded control functions was T. Aoki [3].
In 1978 Th. M. Rassias [4] by introducing the concept of the unbounded Cauchy difference
generalized Hyers’s Theorem for the stability of the linear mapping between Banach spaces.
Afterward Th. M. Rassias’s Theorem was generalized by many authors; see [5–7].

The quadratic function f(x) = cx2 (c ∈ R) satisfies the functional equation

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)
. (1.5)

Hence this equation is called the quadratic functional equation, and every solution of the
quadratic equation (1.5) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.5) was first
proved by Skof [8] for functions f : X → Y, where X is a normed space, and Y is a Banach
space. Cholewa [9] noticed that the theorem of Skof is still true if the relevant domain X is
replaced by an abelian group. Several functional equations have been investigated in [10–12].
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From now on, we let n be an even integer, and r ∈ R − {0} such that r2 /=n. We denote
nCk = n!/(n − k)! k!. In this paper, we investigate that a mapping f : X → Y satisfies the
following equation:

4 n−2Cn/2−1r2f

⎛

⎝
n∑

j=1

xj

r

⎞

⎠ + n
∑

ik∈{0,1}∑n
k=1 ik=n/2

r2f

(
n∑

i=1

(−1)ik xi

r

)

= 4n·n−2Cn/2−1
n∑

i=1

f(xi),

(1.6)

for a mapping f : X → Y. We will prove the stability in normed group by using shadowing
property and also the Hyers-Ulam stability of each functional equation in Banach spaces.

2. A Generalized Quadratic Functional Equation in Several Variables

Lemma 2.1. Let n ≥ 2 be an even integer number, r ∈ R − {0} with r2 /=n, and X,Y vector spaces. If
an even mapping f : X → Y which satisfies

4 n−2Cn/2−1r2f

⎛

⎝
n∑

j=1

xj

r

⎞

⎠ + n
∑

ik∈{0,1}∑n
k=1 ik=n/2

r2f

(
n∑

i=1

(−1)ik xi

r

)

= 4n·n−2Cn/2−1
n∑

i=1

f(xi),

(2.1)

then f is quadratic, for all x1, . . . , xn ∈ X.

Proof. By letting x1 = · · · = xn = 0 in the equation (2.1), we have

4 n−2Cn/2−1r2f(0) + n nCn/2r
2f(0) = 4n2·n−2Cn/2−1f(0). (2.2)

Since nCn/2 = 4(n − 1)/n n−2Cn/2−1,we have

(4 + 4(n − 1))r2f(0) = 4n2f(0), (2.3)

that is, (r2 − n)f(0) = 0. By the assumption r2 /=n, we have f(0) = 0. Now, by letting x1 =
x, x2 = y, and x3 = · · · = xn = 0, we get

4 n−2Cn/2−1r2f
(
x + y

r

)

+ n n−2Cn/2r
2f

(
x + y

r

)

+ n n−2Cn/2−1r2f
(−x + y

r

)

+ nn−2Cn/2−1r2f
(
x − y

r

)

+ nn−2Cn/2−2r2f
(−x − y

r

)

= 4n·n−2Cn/2−1
(
f(x) + f

(
y
))

(2.4)
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for all x, y ∈ X. Since f is even, we have

4 n−2Cn/2−1r2f
(
x + y

r

)

+ 2n n−2Cn/2r
2f

(
x + y

r

)

+ 2n n−2Cn/2−1r2f
(−x + y

r

)

= 4n·n−2Cn/2−1
(
f(x) + f

(
y
))

(2.5)

for all x, y ∈ X. From the following equation:

4 n−2Cn/2−1 + 2n n−2Cn/2 = 4
(n − 2)!

(n/2 − 1)!(n/2 − 1)!
+

2 · n(n − 2)!
(n/2)!(n/2 − 2)!

= 2n·n−2Cn/2−1,

(2.6)

we have

2n·n−2Cn/2−1r2f
(
x + y

r

)

+ 2n·n−2Cn/2−1r2f
(
x − y

r

)

= 4n·n−2Cn/2−1
(
f(x) + f

(
y
))
. (2.7)

Now letting x = x and y = 0, we have

r2f

(
x

r

)

= f(x). (2.8)

Hence

f
(
x + y

)
+ f
(
x − y

)
= r2f

(
x + y

r

)

+ r2f

(
x − y

r

)

= 2 · (f(x) + f
(
y
))

(2.9)

for all x, y ∈ X. Then it is easily obtained that f is quadratic. This completes the proof.

We call this quadratic mapping a generalized quadratic mapping of r-type.

3. Stability Using Shadowing Property

In this section, we will take r = 1, that is, we will investigate the generalized mappings of
1-type, and hence we will study the stability of the following functional equation by using
shadowing property:

Df(x1, . . . , xn)

:= 4 n−2Cn/2−1f

⎛

⎝
n∑

j=1

xj

⎞

⎠ + n
∑

ik∈{0,1}∑n
k=1 ik=n/2

f

(
n∑

i=1

(−1)ikxi

)

− 4n·n−2Cn/2−1
n∑

i=1

f(xi)
(3.1)

for all x1, . . . , xn ∈ G, where G is a commutative semigroup.
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Before we proceed, we would like to introduce some basic definitions concerning
shadowing and concepts to establish the stability; see [13]. After then we will investigate
the stability of the given functional equation based on ideas from dynamical systems.

Let us introduce some notations which will be used throughout this section.We denote
N the set of all nonnegative integers, X a complete normed space, B(x, s) the closed ball
centered at x with radius s, and let φ : X → X be given.

Definition 3.1. Let δ ≥ 0. A sequence (xk)k∈N
in X is a δ-pseudo-orbit for φ if

d
(
xk+1, φ(xk)

) ≤ δ for k ∈ N. (3.2)

A 0-pseudo-orbit is called an orbit.

Definition 3.2. Let s, R > 0 be given. A function φ : X → X is locally (s, R)-invertible
at x0 ∈ X if for any point y in B(φ(x0), R), there exists a unique element x in B(x0, s) such
that φ(x) = y. If φ is locally (s, R)-invertible at each x ∈ X, then we say that φ is locally(s, R)-
invertible.

For a locally (s, R)-invertible function φ, we define a function φ−1
x0

: B(φ(x0), R) →
B(x0, s) in such a way that φ−1

x0
(y) denote the unique x from the above definition which

satisfies φ(x) = y. Moreover, we put

lipRφ
−1 := sup

x0∈X
lip
(
φ−1
x0

)
. (3.3)

Theorem 3.3 (see [14]). Let l ∈ (0, 1), R ∈ (0,∞) be fixed, and let φ : X → X be locally (lR, R)-
invertible. We assume additionally that lipR(φ

−1) ≤ l. Let δ ≤ (1−l)R, and let (xk)k∈N
be an arbitrary

δ-pseudo-orbit. Then there exists a unique y ∈ X such that

d
(
xk, φ

k(y
)) ≤ lR for k ∈ N. (3.4)

Moreover,

d
(
xk, φ

k(y
)) ≤ lδ

1 − l
for k ∈ N. (3.5)

Let X be a semigroup. Then the mapping ‖ · ‖ : X → R is called a (semigroup) norm if
it satisfies the following properties:

(1) for all x ∈ X, ‖x‖ ≥ 0;

(2) for all x ∈ X, k ∈ N, ‖kx‖ = k‖x‖;
(3) for all x, y ∈ X, ‖x‖ + ‖y‖ ≥ ‖x ∗ y‖ and also the equality holds when x = y,where ∗

is the binary operation on X.

Note that ‖ · ‖ is called a group norm if X is a group with an identity 0X , and it
additionally satisfies that ‖x‖ = 0 if and only if x = 0X.
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From now on, we will simply denote the identity 0G of G and the identity 0X of X by
0. We say that (X, ∗, ‖ · ‖) is a normed (semi)group if X is a (semi)group with the (semi)group
norm ‖ · ‖. Now, given an Abelian group X and n ∈ Z, we define the mapping [nX] : X → X
by the formula

[nX](x) := nx for x ∈ X. (3.6)

Since X is a normed group, it is clear that [nX] is locally (R/n,R)-invertible at 0, and
lipR[nX]

−1 = 1/n.
Also, we are going to need the following result. Tabor et al. proved the next lemma by

using Theorem 3.3.

Lemma 3.4. Let l ∈ (0, 1), R ∈ (0,∞), δ ∈ (0, (1−l)R), ε > 0, m ∈ N, n ∈ Z. LetG be a commutative
semigroup, and X a complete Abelian metric group. We assume that the mapping [nX] is locally
(lR, R)-invertible and that lipR([nX]

−1) ≤ l. Let f : G → X satisfy the following two inequalities:

∥
∥
∥
∥
∥

N∑

i=1

aif(bi1x1 + · · · + binxn)

∥
∥
∥
∥
∥
≤ ε for x1, . . . , xn ∈ G,

∥
∥f(mx) − nf(x)

∥
∥ ≤ δ for x ∈ G,

(3.7)

where ai are endomorphisms inX, and bij , are endomorphisms inG.We assume additionally that there
exists K ∈ {1, . . . ,N} such that

K∑

i=1

lip(ai)ffi ≤ (1 − l)R, ” +
N∑

i=K+1

lip(ai)
lffi
1 − l

≤ lR. (3.8)

Then there exists a unique function F : G → X such that

F(mx) = nF(x) for x ∈ G,

∥
∥f(x) − F(x)

∥
∥ ≤ lδ

1 − l
for x ∈ G.

(3.9)

Moreover, then F satisfies

N∑

i=1

aiF(bi1x1 + · · · + binxn) = 0 for x1, . . . , xn ∈ G. (3.10)

Proof. Using the proof of [13, Theorem 2], one can easily show this lemma.

Let R > 0, n ≥ 2 an even integer, G an Abelian group, and X a complete normed
Abelian group.
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Theorem 3.5. Let ε ≤ 3n/4(n3 + n2 + 4n + 1)R be arbitrary, and let f : G → X be a function such
that

∥
∥Df(x1, . . . , xn)

∥
∥ ≤ ε (3.11)

for all x1, . . . , xn ∈ G. Then there exists a unique function F : G → X such that

F(nx) = n2F(x),

DF(x1, . . . , xn) = 0,

∥
∥F(x) − f(x)

∥
∥ ≤ n + 1

12n n−2Cn/2−1
ε

(3.12)

for all x1, . . . , xn, x ∈ G.

Proof. By letting x1 = · · · = xn = 0 in (3.11), we have

∥
∥
∥4 n−2Cn/2−1f(0) + n nCn/2f(0) − 4n2·n−2Cn/2−1f(0)

∥
∥
∥ =
∥
∥4n(n − 1)n−2Cn/2−1f(0)

∥
∥ ≤ ε,

(3.13)

Thus ‖f(0)‖ ≤ ε/4n(n − 1)n−2Cn/2−1. Now, let xk = x (k = 1, . . . , n) in (3.11). From the
inequality ‖f(0)‖ ≤ ε/4n(n − 1)n−2Cn/2−1, we have

∥
∥
∥4 n−2Cn/2−1f(nx) − 4n2·n−2Cn/2−1f(x)

∥
∥
∥ ≤ n + 1

n
ε. (3.14)

Thus we obtain

∥
∥
∥f(nx) − n2f(x)

∥
∥
∥ ≤ n + 1

4n n−2Cn/2−1
ε (3.15)

for all x ∈ G. To apply Lemma 3.4 for the function f, we may let

l =
1
4
, δ =

n + 1
4n n−2Cn/2−1

ε, K = nCn/2,

a1 = · · · = aK = idX, aK+1 = 4 n−2Cn/2−1idX,

aK+2 = · · · = aK+(n+1) = −4n n−2Cn/2−1idX, where N = K + n + 1.

(3.16)
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Then we have

δ =
n + 1

4n n−2Cn/2−1
ε ≤ n + 1

4(n3 + n2 + 4n + 1) n−2Cn/2−1
· 3
4
R <

3
4
R = (1 − l)R,

K∑

i=1

lip(ai)δ = K · n + 1
4n n−2Cn/2−1

ε ≤ n2 − 1
n3 + n2 + 4n + 1

· 3
4
R ≤ 3

4
R = (1 − l)R,

ε +
N∑

i=K+1

lip(ai)
lδ

1 − l
=ε+

(
4n−2Cn/2−1+4n2

n−2Cn/2−1
)δ

3
=ε·n

3+n2+4n+1
3n

≤ 1
4
R= lR.

(3.17)

Thus we also obtain lipR([nX]
−1) ≤ l, and so all conditions of Lemma 3.4 are satisfied. Hence

we conclude that there exists a unique function F : G → X such that

F(nx) = n2F(x),

4n−2Cn/2−1F

⎛

⎝
n∑

j=1

xj

⎞

⎠ + n
∑

ik∈{0,1}∑n
k=1 ik=n/2

F

(
n∑

i=1

(−1)ikxi

)

= 4n·n−2Cn/2−1
n∑

i=1

F(xi),
(3.18)

and also we have

∥
∥f(x) − F(x)

∥
∥ ≤ n + 1

12n n−2Cn/2−1
ε for all x1, . . . , xn, x ∈ G. (3.19)

Theorem 3.6. Suppose that [(2n n−2Cn/2−1)X] is locally (R/2n n−2Cn/2−1, R)-invertible,
[(n n−1Cn/2−1)X] is locally (R/n n−1Cn/2−1, R)-invertible, and [(4n(n − 1)n−2Cn/2−1)X] is locally
(R/4n(n − 1) n−1Cn/2−1, R)-invertible. If a function f : G → X satisfies the following equation:

Df(x1, . . . , xn) = 0 (3.20)

for all x1, . . . , xn ∈ G then f is a quadratic function.

Proof. By letting xk = 0 (k = 1, . . . , n) in (3.20), we have

4n(n − 1)n−2Cn/2−1f(0) = 0. (3.21)

By the uniqueness of the local division by 4n(n − 1) n−2Cn/2−1, we get f(0) = 0. Also, setting
x1 = x, xk = 0 (k = 2, . . . , n) in (3.20), f(0) = 0 implies that

4 n−2Cn/2−1f(x) + n n−1Cn/2f(x) + n n−1Cn/2−1f(−x) = 4n·n−2Cn/2−1f(x), (3.22)

that is, we have

n n−1Cn/2f(x) = n n−1Cn/2−1f(−x) (3.23)
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for all x ∈ G. By the uniqueness of the local division by n n−1Cn/2−1, we get f(x) = f(−x) for
all x ∈ G. Now, by letting x1 = x, x2 = y, and x3 = . . . = xn = 0 in (3.20), we get

4 n−2Cn/2−1f
(
x + y

)
+ 2n n−2Cn/2f

(
x + y

)
+ 2n n−2Cn/2−1f

(
x − y

)

= 4n·n−2Cn/2−1
(
f(x) + f

(
y
)) (3.24)

for all x, y ∈ G. By the uniqueness of the local division by 2n n−2Cn/2−1, we have

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)
, (3.25)

for all x, y ∈ G.Hence f is a quadratic mapping which completes the proof.

Theorems 3.5 and 3.6 yield the following corollary.

Corollary 3.7. Let f : G → X be a function satisfying (3.11), and let ε ≤ 3n/4(n3 + n2 +
4n+ 1)R be arbitrary. Suppose that [(4n(n − 1) n−2Cn/2−1)X] is locally (R/4n(n− 1) n−1Cn/2−1, R)-
invertible, [(n n−1Cn/2−1)X] is locally (R/n n−1Cn/2−1, R)-invertible, and [(2n n−2Cn/2−1)X] is
locally (R/2n n−2Cn/2−1, R)-invertible. Then there exists a quadratic function F : G → X such
that

∥
∥F(x) − f(x)

∥
∥ ≤ n + 1

12n n−2Cn/2−1
ε (3.26)

for all x ∈ G.

4. On Hyers-Ulam-Rassias Stabilities

In this section, let X be a normed vector space with norm ‖ · ‖, Y a Banach space with norm
‖ · ‖ and n ≥ 2 an even integer. For the given mapping f : X → Y, we define

Df(x1, . . . , xn)

:=4 n−2Cn/2−1r2f

⎛

⎝
n∑

j=1

xj

r

⎞

⎠ + n
∑

ik∈{0,1}∑n
k=1 ik=n/2

r2f

(
n∑

i=1

(−1)ik xi

r

)

− 4n·n−2Cn/2−1
n∑

i=1

f(xi),

(4.1)

for all x1, . . . , xn ∈ X.

Theorem 4.1. Let f : X → Y be an even mapping satisfying f(0) = 0. Assume that there exists a
function φ : Xn → [0,∞) such that

φ̃(x1, . . . , xn) :=
∞∑

j=0

( r

2

)2j
φ

((
2
r

)j

x1, . . . ,

(
2
r

)j

xn

)

< ∞, (4.2)
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∥
∥Df(x1, . . . , xn)

∥
∥ ≤ φ(x1, . . . , xn) (4.3)

for all x1, . . . , xn ∈ X. Then there exists a unique generalized quadratic mapping of r-typeQ : X → Y
such that

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

8n·n−2Cn/2−1
φ̃(x, x, 0, . . . , 0) (4.4)

for all x ∈ X.

Proof. By letting x1 = x2 = x and xj = 0 (j = 3, . . . , n) in (4.3), since f is an even mapping and
n−2Cn/2 = n − 2/n·n−2Cn/2−1,we have

∥
∥
∥
∥4 n−2Cn/2−1r2f

(
2
r
x

)

+ 2n n−2Cn/2r
2f

(
2
r
x

)

− 8n·n−2Cn/2−1f(x)
∥
∥
∥
∥

= 8n n−2Cn/2−1

∥
∥
∥
∥

( r

2

)2
f

(
2
r
x

)

− f(x)
∥
∥
∥
∥

≤ φ(x, x, 0, . . . , 0)

(4.5)

for all x ∈ X. Then we obtain that

∥
∥
∥
∥f(x) −

( r

2

)2
f

(
2
r
x

)∥
∥
∥
∥ ≤ 1

8n·n−2Cn/2−1
φ(x, x, 0, . . . , 0), (4.6)

for all x ∈ X.
Using (4.6), we have

∥
∥
∥
∥
∥

( r

2

)2d
f

((
2
r

)d

x

)

−
( r

2

)2(d+1)
f

((
2
r

)d+1

x

)∥
∥
∥
∥
∥

≤
( r

2

)2d
· 1
8n

· 1
n−2Cn/2−1

φ

((
2
r

)d

x,

(
2
r

)d

x, 0, . . . , 0

) (4.7)

for all x ∈ X and all positive integer d.Hence we get

∥
∥
∥
∥
∥

( r

2

)2s
f

((
2
r

)s

x

)

−
( r

2

)2d
f

((
2
r

)d

x

)∥
∥
∥
∥
∥

≤
d−1∑

j=s

( r

2

)2j
· 1
8n

· 1

n−2Cn/2−1
φ

((
2
r

)j

x,

(
2
r

)j

x, 0, . . . , 0

) (4.8)
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for all x ∈ X and all positive integers s and d with s < d. Hence the sequence
{(r/2)2sf((2/r)sx)} is a Cauchy sequence. From the completeness of Y, we may define a
mapping Q : X → Y by

Q(x) = lim
s→∞

( r

2

)2s
f

((
2
r

)s

x

)

(4.9)

for all x ∈ X. Since f is even, so is Q. By the definition of DQ(x1, . . . , xn) and (4.3), we have
that

‖DQ(x1, . . . , xn)‖ = lim
s→∞

( r

2

)2s
∥
∥
∥
∥Df

((
2
r

)s

x1, . . . ,

(
2
r

)s

xn

)∥
∥
∥
∥

≤ lim
s→∞

( r

2

)2s
φ

((
2
r

)s

x1, . . . ,

(
2
r

)s

xn

)

= 0

(4.10)

for all x1, . . . , xn ∈ X. Since DQ(x1, . . . , xn) = 0, the mapping Q : X → Y is a generalized
quadratic mapping of r-type by Lemma 2.1. Also, letting s = 0 and passing the limit d → ∞
in (4.8), we get (4.4).

To prove the uniqueness, suppose that Q′ : X → Y is another generalized quadratic
mapping of r-type satisfying (4.4). Then we have

∥
∥Q(x) −Q′(x)

∥
∥ =
( r

2

)2s
∥
∥
∥
∥Q

((
2
r

)s

x

)

−Q′
((

2
r

)s

x

)∥
∥
∥
∥

≤
( r

2

)2s(
∥
∥
∥
∥Q

((
2
r

)s

x

)

− f

((
2
r

)s

x

)∥
∥
∥
∥ +
∥
∥
∥
∥Q

′
((

2
r

)s

x

)

− f

((
2
r

)s

x

)∥
∥
∥
∥

)

≤ 2 · 1
8n·n−2Cn/2−1

·
( r

2

)2s
φ̃

((
2
r

)s

x,

(
2
r

)s

x, 0, . . . , 0
)

=
1
4n

· 1

n−2Cn/2−1

∞∑

j=s

( r

2

)2j
φ

((
2
r

)j

x,

(
2
r

)j

x, 0, . . . , 0

)

−→ 0

(4.11)

for all x ∈ X as s → ∞. Thus the generalized quadratic mapping Q is unique.

Theorem 4.2. Let f : X → Y be an even mapping satisfying f(0) = 0. Assume that there exists a
function φ : Xn → [0,∞) such that

φ̃(x1, . . . , xn) :=
∞∑

j=1

(
2
r

)2j

φ

(( r

2

)j
x1, . . . ,

( r

2

)j
xn

)

< ∞, (4.12)

∥
∥Df(x1, . . . , xn)

∥
∥ ≤ φ(x1, . . . , xn) (4.13)
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for all x1, . . . , xn ∈ X. Then there exists a unique generalized quadratic mapping of r-typeQ : X → Y
such that

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

8n ·n−2Cn/2−1
φ̃(x, x, 0, . . . , 0) (4.14)

for all x ∈ X.

Proof. If x is replaced by (r/2)x in the inequality (4.6), then the proof follows from the proof
of Theorem 4.1.
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