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1. Introduction

A transcendental meromorphic function is meromorphic in the complex plane C and not
rational. We assume that the readers are familiar with the Nevanlinna theory of meromorphic
functions and the standard notations such as Nevanlinna deficiency δ(a, f) of f(z) with
respect to a ∈ ̂C and Nevanlinna characteristic T(r, f) of f(z). And the lower order μ and
the order λ are in turn defined as follows:

μ = μ
(

f
)

= lim inf
r→∞

log T
(

r, f
)

log r
,

λ = λ
(

f
)

= lim sup
r→∞

log T
(

r, f
)

log r
.

(1.1)

For the references, please see [1]. An a ∈ ̂C = C∪{∞} is called an IM (ignoring multiplicities)
shared value in X ⊆ ̂C of two meromorphic functions f(z) and g(z) if in X, f(z) = a if and
only if g(z) = a. It is Nevanlinna [2] who proved the first uniqueness theorem, called the
Five Value Theorem, which says that two meromorphic functions f(z) and g(z) are identical
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if they have five distinct IM shared values in X = C. After his very fundamental work,
the uniqueness of meromorphic functions with shared values in the whole complex plane
attracted many investigations (see [3]). Recently, Zheng in [4] suggested for the first time the
investigation of uniqueness of a function meromorphic in a precise subset of ̂C, and this is an
interesting topic.

Given m pair of real numbers {αj , βj} satisfying

−π ≤ α1 < β1 ≤ α2 < β2 ≤ · · · ≤ αm < βm ≤ π, (1.2)

we define

ω = max
{

π

β1 − α1
, . . . ,

π

βm − αm

}

. (1.3)

Zheng in [4] proved the following theorem.

Theorem A. Let f(z) and g(z) be both transcendental meromorphic functions, and let f(z) be of
finite order λ and such that for some a ∈ ̂C and an integer p ≥ 0, δ = δ(a, f (p)) > 0. For m pair of
real numbers {αj , βj} satisfying (1.2) and

m
∑

j=1

(

αj+1 − βj
)

<
4
σ
arcsin

√

δ

2
, (1.4)

where σ = max{ω, μ}, assume that f(z) and g(z) have five distinct IM shared values inX =
⋃m

j=1{z :
αj ≤ arg z ≤ βj}. If ω < λ(f), then f(z) ≡ g(z).

However, it was not discussed whether there are similar results dealing with multiple
values in some angular domains. In this paper we investigate this problem.

We use Ek)(a,X, f) to denote the set of zeros of f(z) − a in X, with multiplicities no
greater than k, in which each zero counted only once.

Our main result is what follows.

Theorem 1.1. Let f(z) and g(z) be both transcendental meromorphic functions, and let f(z) be of
finite order λ and such that for some a ∈ ̂C and an integer p ≥ 0, δ = δ(a, f (p)) > 0. For m pair of
real numbers {αj , βj} satisfying (1.2) and

m
∑

j=1

(

αj+1 − βj
)

<
4
σ
arcsin

√

δ

2
, (1.5)
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where σ = max{ω, μ}, assume that aj (j = 1, 2, . . . , q) are q distinct complex numbers, and let
kj (j = 1, 2, . . . , q) be positive integers or∞ satisfying

k1 ≥ k2 ≥ · · · ≥ kq, (1.6)

Ekj )
(

aj , X, f
)

= Ekj )
(

aj , X, g
)

, (1.7)

q
∑

j=3

kj

kj + 1
> 2, (1.8)

where X =
⋃q

j=1{z : αj ≤ arg z ≤ βj}. If ω < λ(f), then f(z) ≡ g(z).

2. Proof of Theorem 1.1

First we introduce several lemmas which are crucial in our proofs. The following result was
proved in [5] (also see [6]).

Lemma 2.1 (see [5]). Let f(z) be transcendental and meromorphic in C with the lower order 0 ≤
μ < ∞ and the order 0 < λ ≤ ∞. Then for arbitrary positive number σ satisfying μ ≤ σ ≤ λ and a set
E with finite linear measure, there exists a sequence of positive numbers {rn} such that

(1) rn ∈E, limn→∞(rn/n) = ∞,

(2) lim infn→∞(log T(rn, f)/ log rn) ≥ σ,

(3) T(t, f) < (1 + o(1))(t/rn )σT(rn, f), t ∈ [rn/n, nrn].

A sequence rn satisfying (1), (2), and (3) in Lemma 2.1 is called Polya peak of order σ
outside E in this article. For r > 0 and a ∈ C define

D(r, a) :=

{

θ ∈ [−π,π) : log+ 1
∣

∣f
(

reiθ
) − a
∣

∣

>
1

log r
T
(

r, f
)

}

, (2.1)

D(r,∞) :=
{

θ ∈ [−π,π) : log+
∣

∣

∣f
(

reiθ
)∣

∣

∣ >
1

log r
T
(

r, f
)

}

. (2.2)

The following result is a special version of the main result of Baernstein [7].

Lemma 2.2. Let f(z) be transcendental and meromorphic in C with the finite lower order μ and the
order 0 < λ ≤ ∞ and for some a ∈ ̂C, δ = δ(a, f) > 0. Then for arbitrary Polya peak rn of order
σ > 0, μ ≤ σ ≤ λ, we have

lim inf
n→∞

mesD(rn, a) ≥ min

⎧

⎨

⎩

2π,
4
σ
arcsin

√

δ

2

⎫

⎬

⎭

. (2.3)

Although Lemma 2.2 was proved in [7] for the Polya peak of order μ, the same
argument of Baernstein [7] can derive Lemma 2.2 for the Polya peak of order σ, μ ≤ σ ≤ λ.
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Nevanlinna theory on angular domain will play a key role in the proof of theorems.
Let f(z) be a meromorphic function on the angular domain Ω(α, β) = {z : α ≤ arg z ≤ β},
where 0 < β − α ≤ 2π . Nevanlinna defined the following notations (see [8]):

Aα,β

(

r, f
)

=
ω

π

∫ r

1

(

1
tω

− tω

r2ω

)

{

log+
∣

∣

∣f
(

teiα
)∣

∣

∣ + log+
∣

∣

∣f
(

teiβ
)∣

∣

∣

}dt

t
,

Bα,β

(

r, f
)

=
2ω
πrω

∫β

α

log+
∣

∣

∣f
(

reiθ
)∣

∣

∣ sinω(θ − α)dθ,

Cα,β = 2
∑

1<|bn|<r

(

1
|bn|ω

− |bn|ω
r2ω

)

sinω(θn − α),

(2.4)

where ω = π/(β − α) and bn = |bn|eiθn are the poles of f(z) on Ω(α, β) appearing according
to their multiplicities. Cα,β(r, f) is called the angular counting function of the poles of f on
Ω(α, β) and Nevanlinna’s angular characteristic is defined as follows:

Sα,β

(

r, f
)

= Aα,β

(

r, f
)

+ Bα,β

(

r, f
)

+ Cα,β

(

r, f
)

. (2.5)

Throughout, we denote by Rα,β(r, ∗) a quantity satisfying

Rα,β(r, ∗) = O
{

log
(

rSα,β(r, ∗)
)}

, r ∈E, (2.6)

where E denotes a set of positive real numbers with finite linear measure. It is not necessarily
the same for every occurrence in the context [9].

Lemma 2.3. Let f(z) be meromorphic on Ω(α, β). Then for arbitrary complex number a, we have

Sα,β

(

1
f − a

)

= Sα,β

(

r, f
)

+O(1), (2.7)

and for an integer p ≥ 0,

Sα,β

(

r, f (p)
)

≤ 2pSα,β

(

r, f
)

+ Rα,β

(

r, f
)

,

Aα,β

(

r,
f (p)

f

)

+ Bα,β

(

r,
f (p)

f

)

= Rα,β

(

r, f
)

,

(2.8)

and Rα,β(r, f (p)) = Rα,β(r, f).
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Lemma 2.4. Let f(z) be meromorphic on Ω(α, β). Then for arbitrary q distinct aj ∈ ̂C (1 ≤ j ≤ q),
we have

(

q − 2
)

Sα,β

(

r, f
) ≤

q
∑

j=1

Cα,β

(

r,
1

f − aj

)

+ R
(

r, f
)

, (2.9)

where the term Cα,β(r, 1/(f − aj)) will be replaced by Cα,β(r, f) when some aj = ∞.

We use C
k)
α,β(r, 1/(f −a)) to denote the zeros of f(z)−a inΩ(α, β)whose multiplicities

are no greater than k and are counted only once. Likewise, we useC
(k+1
α,β (r, 1/(f−a)) to denote

the zeros of f(z) − a in Ω(α, β) whose multiplicities are greater than k and are counted only
once.

Lemma 2.5. Let f(z) be meromorphic on Ω(α, β), and let kj (j = 1, 2, . . . , q) be q positive integers.
Then for arbitrary q distinct aj ∈ ̂C (1 ≤ j ≤ q), we have

(i)
(

q − 2
)

Sα,β

(

r, f
)

<
q
∑

j=1

kj

kj + 1
C

kj )
α,β

(

r,
1

f − aj

)

+
q
∑

j=1

1
kj + 1

Cα,β

(

r,
1

f − aj

)

+ R
(

r, f
)

,

(ii)

⎛

⎝q − 2 −
q
∑

j=1

1
kj + 1

⎞

⎠Sα,β

(

r, f
)

<
q
∑

j=1

kj

kj + 1
C

kj )
α,β

(

r,
1

f − aj

)

+ R
(

r, f
)

,

(2.10)

where the term Cα,β(r, 1/(f − aj)) will be replaced by Cα,β(r, f) when some aj = ∞.

Proof. According to our notations, we have

Cα,β

(

r,
1

f − a

)

= C
k)
α,β

(

r,
1

f − a

)

+ C
(k+1
α,β

(

r,
1

f − a

)

=
k

k + 1
C

k)
α,β

(

r,
1

f − a

)

+
1

k + 1
C

k)
α,β

(

r,
1

f − a

)

+ C
(k+1
α,β

(

r,
1

f − a

)

≤ k

k + 1
C

k)
α,β

(

r,
1

f − a

)

+
1

k + 1
C

k)
α,β

(

r,
1

f − a

)

+
1

k + 1
C

(k+1
α,β

(

r,
1

f − a

)

=
k

k + 1
C

k)
α,β

(

r,
1

f − a

)

+
1

k + 1
Cα,β

(

r,
1

f − a

)

.

(2.11)
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By Lemma 2.4,

(

q − 2
)

Sα,β

(

r, f
) ≤

q
∑

j=1

Cα,β

(

r,
1

f − aj

)

+ R
(

r, f
)

≤
q
∑

j=1

kj

kj + 1
C

kj )
α,β

(

r,
1

f − aj

)

+
q
∑

j=1

1
kj + 1

Cα,β

(

r,
1

f − aj

)

+ R
(

r, f
)

,

(2.12)

and (i) follows.
Furthermore, Cα,β(r, 1/(f − aj)) < Sα,β(r, f), and on combining this with (i), we get

(ii).

Proof of Theorem 1.1. Suppose f(z)/≡ g(z). For convenience, below we omit the subscript of all
the notations, such as S(r, ∗) and C(r, ∗). By applying Lemma 2.5 to g and (1.6), we have

⎛

⎝

q
∑

j=3

kj

kj + 1
+

2k2
k2 + 1

− 2

⎞

⎠S
(

r, g
) ≤ k2

k2 + 1

q
∑

j=1

C
kj )
(

r,
1

g − aj

)

+ R
(

r, g
)

≤ k2
k2 + 1

C

(

r,
1

f − g

)

+ R
(

r, g
)

≤ k2
k2 + 1

S
(

r, f − g
)

+ R
(

r, g
)

≤ k2
k2 + 1

S
(

r, f
)

+
k2

k2 + 1
S
(

r, g
)

+ R
(

r, g
)

,

(2.13)

so that

⎛

⎝

q
∑

j=3

kj

kj + 1
+

k2
k2 + 1

− 2

⎞

⎠S
(

r, g
) − R

(

r, g
)

<
k2

k2 + 1
S
(

r, f
)

. (2.14)

This implies that R(r, g) = R(r, f). We have also (2.14) for alternation of f and g, then

⎛

⎝

q
∑

j=3

kj

kj + 1
+

k2
k2 + 1

− 2

⎞

⎠S
(

r, f
) − R

(

r, f
)

<
k2

k2 + 1
S
(

r, g
) ≤ S

(

r, f
)

+ R
(

r, f
)

. (2.15)

By (1.8), we have

S
(

r, f
)

= O
(

log r
)

, r /∈E. (2.16)
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We assume that a ∈ C. By the same argument we can show Theorem 1.1 for the case
when a = ∞. By applying Lemma 2.3 and (2.16), we estimate

B

(

r,
1

f (p) − a

)

≤ S
(

r, f (p)
)

+O(1)

= (A + B)

(

r,
f (p)

f

)

+ (A + B)
(

r, f
)

+ pC
(

r, f
)

+ C
(

r, f
)

+O(1)

≤ (p + 1
)

S
(

r, f
)

+ R
(

r, f
)

= O
(

log r
)

, r /∈E.

(2.17)

The following method comes from [10]. But we quote it in detail here because of its
independent significance. Note that λ(f) > ω. We need to treat two cases.

(I) λ(f) > μ. Then λ(f (p)) = λ(f) > σ ≥ μ = μ(f (p)). And by the inequality (1.5), we
can take a real number ε > 0 such that

m
∑

j=1

(

αj+1 − βj + 2ε
)

+ 2ε <
4

σ + 2ε
arcsin

√

δ

2
, (2.18)

where αm+1 = 2π + α1, and

λ
(

f (p)
)

> σ + 2ε > μ. (2.19)

Applying Lemma 2.1 to f (p)(z) gives the existence of the Polya peak rn of order σ + 2ε of f (p)

such that rn /∈E, and then from Lemma 2.2 for sufficiently large n we have

mesD(rn, a) >
4

σ + 2ε
arcsin

√

δ

2
− ε, (2.20)

since σ + 2ε > 1/2. We can assume for all the n, (13) holds. Set

K := mes

⎛

⎝D(rn, a)
⋂

m
⋃

j=1

(

αj + ε, βj − ε
)

⎞

⎠. (2.21)

Then from (2.18) and (2.20) it follows that

K ≥ mes(D(rn, a)) −mes

⎛

⎝[0, 2π) \
m
⋃

j=1

(

αj + ε, βj − ε
)

⎞

⎠

= mes(D(rn, a)) −mes

⎛

⎝

m
⋃

j=1

(

βj − ε, αj+1 + ε
)

⎞

⎠

= mes(D(rn, a)) −
m
∑

j=1

(

αj+1 − βj + 2ε
)

> ε > 0.

(2.22)
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It is easy to see that there exists a j0 such that for infinitely many n, we have

mes
(

D(rn, a)
⋂
(

αj0 + ε, βj0 − ε
)

)

>
K

q
. (2.23)

We can assume for all the n, (2.23) holds. Set En = D(rn, a)
⋂

(α − j0 + ε, βj0 − ε). Thus from the
definition (2.1) of D(r, a) it follows that

∫βj0−ε

αj0+ε
log+

1
∣

∣f (p)
(

rneiθ
) − a
∣

∣

dθ ≥
∫

En

log+
1

∣

∣f (p)
(

rneiθ
) − a
∣

∣

dθ

≥ mes(En)
T
(

rn, f
(p))

log rn

>
K

m

T
(

rn, f
(p))

log rn
.

(2.24)

On the other hand, by the definition (2.4) of Bα,β(r, ∗) and (2.14), we have

∫βj0−ε

αj0+ε
log+

1
∣

∣f (p)
(

rneiθ
) − a
∣

∣

dθ ≤ π

2ωj0 sin
(

εωj0

)rωj0Bαj0 ,βj0

(

r,
1

f (p) − a

)

< ˜Kj0r
ωj0 log r, r /∈E.

(2.25)

Combining (2.24) with (2.25) gives

T
(

rn, f
(p)
)

≤ m ˜Kj0

K
r
ωj0
n log2rn. (2.26)

Thus from (1.5) in Lemma 2.1 for σ + 2ε, we have

σ + ε ≤ lim sup
n→∞

log T
(

rn, f
(p))

log rn
≤ ωj0 ≤ σ + ε. (2.27)

This is impossible.
(II) λ(f) = μ. Then σ = μ = λ(f) = λ(f (p)) = μ(f (p)). By the same argument as in (I)

with all the σ + 2ε replaced by σ = μ, we can derive

max
{

ω, μ
}

= σ ≤ ω < λ
(

f
)

. (2.28)

This is impossible. Theorem 1.1 follows.

Remark 2.6. In Theorem A, q = 5, k1 = k2 = k3 = k4 = k5 = ∞, then

k3
k3 + 1

+
k4

k4 + 1
+

k5
k5 + 1

= 3 > 2, (2.29)
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so Theorem A is a special case of Theorem 1.1. Meanwhile, Zheng in [4, pages 153–154] gave
some examples to indicate that the conditions are necessary. So the conditions in theorem are
also necessary.

Corollary 2.7. In Theorem 1.1,

(i) if q = 7, then f(z) ≡ g(z),

(ii) if q = 6, k3 ≥ 2, then f(z) ≡ g(z),

(iii) if q = 5, k3 ≥ 3, k5 ≥ 2, then f(z) ≡ g(z),

(iv) if q = 5, k4 ≥ 4, then f(z) ≡ g(z),

(v) if q = 5, k3 ≥ 5, then f(z) ≡ g(z),

(vi) if q = 5, k3 ≥ 6, k4 ≥ 2, then f(z) ≡ g(z),

Corollary 2.8. Let f(z) and g(z) be both transcendental meromorphic functions and let f(z) be of
finite lower order μ and such that for some a ∈ ̂C and an integer p ≥ 0, δ = δ(a, f (p)) > 0. For m
pair of real numbers {αj , βj} satisfying (1.2) and

m
∑

j=1

(

αj+1 − βj
)

<
4
σ
arcsin

√

δ

2
, (2.30)

where σ = max{ω, μ}, assume that aj (j = 1, 2, . . . , q) are q(= 5 + [2/k]) distinct complex numbers
satisfying that Ek)(aj , X, f) = Ek)(aj , X, g) (j = 1, 2, . . . , q), where k is an integer or ∞. If ω <
λ(f), then f(z) ≡ g(z).

Corollary 2.9. Let f(z) and g(z) be both transcendental meromorphic functions and let f(z) be of
finite lower order μ and such that for some a ∈ ̂C and an integer p ≥ 0, δ = δ(a, f (p)) > 0. For m
pair of real numbers {αj , βj} satisfying (1.2) and

m
∑

j=1

(

αj+1 − βj
)

<
4
σ
arcsin

√

δ

2
, (2.31)

where σ = max{ω, μ}, assume that aj (j = 1, 2, . . . , q) are q = 5 distinct complex numbers satisfying
that E3)(aj , X, f) = E3)(aj , X, g) (j = 1, 2, 3), E2)(aj , X, f) = E2)(aj , X, g) (j = 4, 5), then f(z) ≡
g(z).

Question 1. For two meromorphic functions defined in C, there are many uniqueness
theorems when they share small functions (a(z) is called a small function of f(z) if
T(r, a(z)) = o(T(r, f))(r → ∞)) (see [3]). So we ask an interesting question: are there similar
results when they share small functions in some precise domain X ⊆ C?
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