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Recently, Baktash et al. (2008) proved the stability of the cubic functional equation f(2x+y)+f(2x−
y) = 2f(x + y) + 2f(x − y) + 12f(x) and the quartic functional equation f(2x + y) + f(2x − y) =
4f(x+y)+4f(x−y)+24f(x)−6f(y) in random normed spaces. In this note, we correct the proofs.
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any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

If inf{t > 0 : F(t) > a} ≤ inf{t > 0 : G(t) > a}, in general we cannot conclude that F(t) ≥ G(t).
For example, let F(t) = 3/4, G(t) = t/(t + 1) and a = 1/2. We know that inf{t > 0 : 3/4 >
1/2} = 0 ≤ inf{t > 0 : t/(t + 1) > 1/2} = 1 but F(4) = 3/4 < G(4) = 4/5. This example shows
that in [1], inequalities (2.13) and (3.13) do not follow from inequalities (2.12) and (3.12).

The functional equation

f
(
2x + y

)
+ f
(
2x − y

)
= 2f

(
x + y

)
+ 2f

(
x − y

)
+ 12f(x) (1.1)

is said to be the cubic functional equation since the function f(x) = cx3 is its solution. Every
solution of the cubic functional equation is said to be a cubic mapping. The stability problem
for the cubic functional equation was solved by Jun and Kim [2] and Lee [3] for mappings
f : X → Y , where X is a real normed space and Y is a Banach space. Later, a number of
mathematicians have worked on the stability of some types of the cubic equation [4]. The
functional equation
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is said to be the quartic functional equation since the function f(x) = cx4 is its solution.
Every solution of the quartic functional equation is said to be a quartic mapping. The stability
problem for the quartic functional equation first was solved by Rassias [5] and Lee andChung
[6] for mappings f : X → Y , where X is a real normed space and Y is a Banach space.

In the sequel, we shall adopt the usual terminology, notations and conventions of
the theory of random normed spaces as in [7–15]. Throughout this paper, the space of all
probability distribution functions is denoted by

Δ+ = {F : R ∪ {−∞,+∞} → [0, 1] : F is left-continuous

and nondecreasing on R and F(0) = 0, F(+∞) = 1
} (1.3)

and the subset D+ ⊆ Δ+ is the set D+ = {F ∈ Δ+ : l−F(+∞) = 1}, where l−f(x) denotes the
left limit of the function f at the point x. The spaceΔ+ is partially ordered by the usual point-
wise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t in R. The maximal
element for Δ+ in this order is the distribution function given by

ε0(t) =

⎧
⎨

⎩

0, if t ≤ 0,

1, if t ≤ 0.
(1.4)

Definition 1.1 (see [13]). A function T : [0, 1]× [0, 1] → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Three typical examples of continuous t-norms are T(a, b) = ab, T(a, b) = max(a + b −
1, 0) and T(a, b) = min(a, b).

Recall that, if T is a t-norm and {an} is a given sequence of numbers in [0, 1], Tn
i=1ai is

defined recursively by T1
i=1ai = a1 and Tn

i=1ai = T(Tn−1
i=1 ai, an) for n ≥ 2.

Definition 1.2. A random normed space (briefly, RN-space) is a triple (X, μ, T), where X is a
vector space, T is a continuous t-norm and μ is a mapping from X into D+ such that the
following conditions hold:

(PN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(PN2) μαx(t) = μx(t/|α|) for all x in X, α/= 0 and t ≥ 0;

(PN2) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 1.3. Let (X, μ, T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every t > 0 and ε > 0,
there exists a positive integer N such that μxn−x(t) > 1 − ε whenever n ≥ N.

(2) A sequence {xn} in X is called Cauchy sequence if, for every t > 0 and ε > 0, there
exists a positive integer N such that μxn−xm(t) > 1 − ε whenever n ≥ m ≥ N.
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(3) An RN-space (X, μ, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X.

Theorem 1.4 (see [13]). If (X, μ, T) is an RN-space and {xn} is a sequence such that xn → x, then
limn→∞μxn(t) = μx(t).

In this paper, we establish the stability of the cubic and quartic functional equations in
the setting of random normed spaces.

2. On the Stability of Cubic Mappings in RN-Spaces

Theorem 2.1. Let X be a linear space, (Z, μ ′,min) be an RN-space, ϕ : X × X → Z be a function
such that for some 0 < α < 8,

μ ′
ϕ(2x,0)(t) ≥ μ ′

αϕ(x,0)(t), ∀x ∈ X, t > 0, (2.1)

f(0) = 0 and limn→∞μ ′
ϕ(2nx,2ny)(8

nt) = 1 for all x, y ∈ X and t > 0. Let (Y, μ,min) be a complete
RN-space. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)(t) ≥ μ ′
ϕ(x,y)(t), ∀x ∈ X, t > 0, (2.2)

then there exists a unique cubic mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ ′
ϕ(x,0)(2(8 − α)t). (2.3)

Proof. Putting y = 0 in (2.2), we get

μ(f(2x)/8)−f(x)(t) ≥ μ ′
ϕ(x,0)(16t), ∀x ∈ X. (2.4)

Replacing x by 2nx in (2.4) and using (2.1), we obtain

μ(f(2n+1x)/8n+1)−(f(2nx)/8n)(t) ≥ μ ′
ϕ(2nx,0)(16 × 8n)

≥ μ ′
ϕ(x,0)

(
16 × 8n

αn

)
.

(2.5)

It follows from (f(2nx)/8n) − f(x) =
∑n−1

k=0((f(2
k+1x)/8k+1) − (f(2kx)/8k)) and (2.5) that

μ(f(2nx)/8n)−f(x)

(
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(
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ϕ(x,0)(t), (2.6)
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that is,

μ(f(2nx)/8n)−f(x)(t) ≥ μ ′
ϕ(x,0)

(
t

∑n−1
k=0
(
αk/
(
16 × 8k

))

)

. (2.7)

By replacing x with 2mx in (2.7), we observe that

μ(f(2n+mx)/8n+m)−(f(2mx)/8m)(t) ≥ μ ′
ϕ(x,0)

(
t

∑n+m
k=m
(
αk/
(
16 × 8k

))

)

. (2.8)

As μ ′
ϕ(x,0)(t/

∑n+m
k=m(α

k/16 × 8k)) tends to 1 as m,n tend to ∞, then {f(2nx)/8n} is a Cauchy
sequence in (Y, μ,min). Since (Y, μ,min) is a complete RN-space, this sequence converges to
some point C(x) ∈ Y . Fix x ∈ X and put m = 0 in (2.8). Then we obtain

μ(f(2nx)/8n)−f(x)(t) ≥ μ ′
ϕ(x,0)

(
t

∑n−1
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(
αk/
(
16 × 8k

))

)

(2.9)

and so, for every δ > 0, we have

μC(x)−f(x)(t + δ) ≥ T
(
μC(x)−(f(2nx)/8n)(δ), μ(f(2nx)/8n)−f(x)(t)

)

≥ T

(
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′
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(
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.
(2.10)

Taking the limit as n → ∞ and using (2.10), we get

μC(x)−f(x)(t + δ) ≥ μ ′
ϕ(x,0)(2t(8 − α)). (2.11)

Since δ was arbitrary, by taking δ → 0 in (2.11), we get

μC(x)−f(x)(t) ≥ μ ′
ϕ(x,0)(2t(8 − α)). (2.12)

Replacing x and y by 2nx and 2ny in (2.2), respectively, we get

μ(f(2n(2x+y))/8n)+(f(2n(2x−y))/8n)−(2f(2n(x+y))/8n)−(2f(2n(x−y))/8n)−(12f(2n(x))/8n)(t)

≥ μ ′
ϕ(2nx,2ny) (8nt)

(2.13)

for all x, y ∈ X and for all t > 0. Since limn→∞μ ′
ϕ(2nx,2ny)(8

nt) = 1, we conclude that C
fulfills (1.1). To prove the uniqueness of the cubic mapping C, assume that there exists a
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cubic mapping D : X → Y which satisfies (2.3). Fix x ∈ X. Clearly, C(2nx) = 8nC(x) and
D(2nx) = 8nD(x) for all n ∈ N. It follows from (2.3) that

μC(x)−D(x)(t) = lim
n→∞

μ(C(2nx)/8n)−(D(2nx)/8n)(t),

μ(C(2nx)/8n)−(D(2nx)/8n)(t) ≥ min
{
μ(C(2nx)/8n)−(f(2nx)/8n)

(
t

2

)
, μ(D(2nx)/8n)−(f(2nx)/8n)

(
t

2

)}

≥ μ ′
ϕ(2nx,0)(8

n(8 − α)t)

≥ μ ′
ϕ(x,0)

(
8n(8 − α)t

αn

)
.

(2.14)

Since limn→∞(8n(8 − α)t/αn) = ∞, we get limn→∞μ ′
ϕ(x,0)(8

n(8 − α)t/αn) = 1. Therefore, it
follows that μC(x)−D(x)(t) = 1 for all t > 0 and so C(x) = D(x). This completes the proof.

3. On the Stability of Quartic Mappings in RN-Spaces

Theorem 3.1. Let X be a linear space, (Z, μ ′,min) be an RN-space, ϕ : X × X → Z be a function
such that for some 0 < α < 16,

μ ′
ϕ(2x,0)(t) ≥ μ ′

αϕ(x,0)(t), ∀x ∈ X, t > 0, (3.1)

f(0) = 0 and limn→∞μ ′
ϕ(2nx,2ny)(16

nt) = 1 for all x, y ∈ X and t > 0. Let (Y, μ,min) be a complete
RN-space. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−24f(x)+6f(y)(t) ≥ μ ′
ϕ(x,y)(t), ∀x ∈ X, t > 0, (3.2)

then there exists a unique quartic mapping Q : X → Y such that

μf(x)−Q(x)(t) ≥ μ ′
ϕ(x,0)(2(16 − α)t). (3.3)

Proof. The proof is the same as Theorem 2.1.
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