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Denote by Ak the sequence space defined by Ak = {(sn) :
∑∞

n=1 n
k−1|an|k < ∞, an = sn − sn−1} for

k ≥ 1. In a recent paper by E. Savaş and H. Şevli (2007), they proved every Cesàro matrix of order
α, for α > −1, (C, α) ∈ B(Ak) for k ≥ 1. In this paper, we consider a further extension of absolute
Cesàro summability.
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1. Introduction

Let
∑

av denote a series with partial sums (sn). For an infinite matrix T , tn, the nth term of
the T -transform of (sn) is denoted by

tn =
∞∑

v=0

tnvsv. (1.1)

A series
∑

av is said to be absolutely T -summable if
∑

n |Δtn−1| < ∞, where Δ is the forward
difference operator defined by Δtn−1 = tn−1 − tn. Papers dealing with absolute summability

date back at least as far as Fekete [1].

A sequence (sn) is said to be of bounded variation (bv) if
∑

n |Δsn| < ∞. Thus, to say
that a series is absolutely summable by amatrix T is equivalent to saying that the T -transform
the sequence is in bv. Necessary and sufficient conditions for a matrix T : bv → bv are
known. (See, e.g., Stieglitz and Tietz [2]).

Let σα
n denote the nth terms of the transform of a Cesáro matrix (C, α) of a sequence

(sn). In 1957 Flett [3] made the following definition. A series
∑

an, with partial sums (sn), is
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said to be absolutely (C, α) summable of order k ≥ 1, written
∑

an is summable |C, α|k, if

∞∑

n=1

nk−1∣∣σα
n−1 − σα

n

∣
∣k < ∞. (1.2)

He then proved the following inclusion theorem.

Theorem 1.1 (see [3]). If a series
∑

an is summable |C, α|k, then it is summable |C, β|r for each
r ≥ k ≥ 1, α > −1, β > α + 1/k − 1/r.

It then follows that if one chooses r = k, then a series
∑

an, which is |C, α|k summable,
is also |C, β|k summable for k ≥ 1, β > α > −1.

Absolute Abel summability, written as |A|, was defined by Whittaker [4] as follows. A
series

∑
an is said to be summable |A| if the series ∑anx

n is convergent for 0 ≤ x < 1 and its
sum-function φ(x) satisfies the condition:

∫1

0

∣
∣φ′(x)

∣
∣dx < ∞. (1.3)

In the same paper, Flett extended this result to index k by replacing condition (1.3) by the
condition:

∫1

0
(1 − x)k−1

∣
∣φ′(x)

∣
∣kdx < ∞. (1.4)

Thus the series
∑

an is said to be summable |A|k, k ≥ 1, if the series
∑

anx
n is convergent

for 0 ≤ x < 1 and its sum-function φ(x) satisfies condition (1.4). He then showed that
summability |A|k is a weaker property than summability |C, α|k for any α > −1.

2. The Space Ak

Let
∑

an be a series with partial sums (sn). Denote byAk the sequence space defined by

Ak =

{

(sn) :
∞∑

n=1

nk−1|an|k < ∞, an = sn − sn−1

}

. (2.1)

If one sets α = 0 in the inclusion statement involving (C, α) and (C, β), then one obtains
the fact that (C, β) ∈ B(Ak) for each β > 0, where B(Ak) denotes the algebra of all matrices
that map Ak toAk.

Let A be a sequence to sequence transformation mapping, the sequence (sn) into
(tn). If whenever (sn) converges absolutely, (tn) converges absolutely, A is called absolutely
conservative. If the absolute convergence of (sn) implies the absolute convergence of (tn) to
the same limit, A is called absolutely regular.
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In 1970, using the same definition as Flett, Das [5] defined such a matrix to be
absolutely kth power conservative for k ≥ 1, if T ∈ B(Ak); that is, if (sn) is a sequence
satisfying

∞∑

n=1

nk−1|sn − sn−1|k < ∞, (2.2)

then

∞∑

n=1

nk−1|tn − tn−1|k < ∞. (2.3)

For k = 1, condition (2.2) guarantees the convergence of (sn). Note that when k > 1, (2.2)
does not necessarily imply the convergence of (sn). For example, take

sn =
n∑

v=1

1
v log(v + 1)

. (2.4)

Then (2.2) holds but (sn) does not converge. Thus, since the limit of (sn) needs not to exist,
we cannot introduce the concept of absolute kth power regularity when k > 1.

In that same paper, Das proved that every conservative Hausdorff matrix H ∈ B(Ak),
which contains as a special case the fact that (C, β) ∈ B(Ak) for β > 0. We know that if β ≥ 0,
then (C, β) is regular, and if β < 0, then (C, β) is neither conservative nor regular. In [6], the
result of Flett and Das was extended by the following theorem.

Theorem 2.1 (see [6]). It holds that (C, α) ∈ B(Ak) for each α > −1.

Remark 2.2. In [6], when −1 < α < 0 it should be added the condition

∞∑

n=1

nk− α−1|an|k = O(1). (2.5)

in the statement of Theorem 2.1. Also, it should be added the absolute values of the binomial
coefficients in the proof of Theorem 2.1 for the case −1 < α < 0.

Since summability |A|k is a weaker property than summability |C, α|k for any α > −1,
from Theorem 2.1, we obtain the following theorem.

Theorem 2.3. If (sn) ∈ Ak then
∑

an is summable |A|k, k ≥ 1.

3. The Main Results

In this paper we consider a further extension of absolute Cesàro summability. If one sets
α = 0 in Theorem 1.1, then one obtains the fact that (C, β) ∈ (Ak,Ar) for each r ≥ k ≥ 1,
β > 1/k − 1/r. It is the purpose of this work to extend this result to the case β > −k/r.
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We will use the following Lemma.

Lemma 3.1 (see [7]). If θ > −1 and θ − ϕ > 0, then

∞∑

n=v

E
ϕ
n−v

nEθ
n

=
1

vE
θ−ϕ−1
v

, Eθ
n =

Γ(θ + n + 1)
Γ(n + 1)Γ(θ + 1)

≈ nθ

Γ(θ + 1)
. (3.1)

We now prove the following theorem.

Theorem 3.2. Let r ≥ k ≥ 1.

(i) It holds that (C, α) ∈ (Ak,Ar) for each α > 1 − k/r.

(ii) If α = 1 − k/r and the condition
∑∞

n=1n
k− 1 log n|an|k = O(1) is satisfied then (C, α) ∈

(Ak,Ar).

(iii) If the condition
∑∞

n=1n
k+(r/k)(1−α)−2|an|k = O(1) is satisfied then (C, α) ∈ (Ak,Ar) for

each −k/r < α < 1 − k/r.

Proof. Let σα
n denote the nth term of the Cesáro mean of order α of a sequence (sn); that is,

σα
n =

1
Eα
n

n∑

v=0

Eα−1
n−vsv. (3.2)

We will show that (σα
n) ∈ Ar ; that is,

∞∑

n=1

nr−1∣∣σα
n − σα

n−1
∣
∣r < ∞. (3.3)

Let ταn denote the nth term of the Cesáro mean of order α (α > −1) of the sequence (nan); that
is,

ταn =
1
Eα
n

n∑

v=1

Eα−1
n−vvav. (3.4)

Since ταn = n(σα
n − σα

n−1) (see [8]), condition (3.3) can also be written as

∞∑

n=1

1
n
|ταn |r < ∞. (3.5)

It follows from Hölder’s inequality that

∞∑

n=1

1
n
|ταn |r =

∞∑

n=1

1
n

∣
∣
∣
∣
∣

1
Eα
n

n∑

v=1

Eα−1
n−vvav

∣
∣
∣
∣
∣

r

≤
∞∑

n=1

1
n(Eα

n)
r

{
n∑

v=1

∣
∣
∣Eα−1

n−v
∣
∣
∣vk|av|k

}r/k

×
{

n∑

v=1

∣
∣
∣Eα−1

n−v
∣
∣
∣

}(k−1)r/k
.

(3.6)
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Since

n∑

v=1

∣
∣
∣Eα−1

n−v
∣
∣
∣ =

∣
∣
∣Eα−1

0

∣
∣
∣ +

n−1∑

v=1

∣
∣
∣Eα−1

n−v
∣
∣
∣ =

∣
∣
∣Eα−1

0

∣
∣
∣ +

∣
∣
∣
∣
∣

n−1∑

v=1

Eα−1
n−v

∣
∣
∣
∣
∣

=
∣
∣
∣Eα−1

0

∣
∣
∣ +

∣
∣
∣
∣
∣

n∑

v=0

Eα−1
n−v−Eα−1

n − Eα−1
0

∣
∣
∣
∣
∣
=
∣
∣
∣Eα−1

0

∣
∣
∣ +

∣
∣
∣Eα

n−1 − Eα−1
0

∣
∣
∣,

(3.7)

and using the fact that

∣
∣
∣
∣
Eα
n−1
Eα
n

∣
∣
∣
∣ = O(1), (3.8)

we obtain

∞∑

n=1

1
n
|ταn |r ≤

∞∑

n=1

(Eα
n)

(k−1)r/k

n(Eα
n)

r

{
n∑

v=1

∣
∣
∣Eα−1

n−v
∣
∣
∣vk|av|k

}r/k

≤
∞∑

n=1

(Eα
n)

−r/k

n

{
n∑

v=1

∣
∣
∣Eα−1

n−v
∣
∣
∣v1−k/r+k2/r |av|k

2/rv−(r−k)+k(r−k)/r |av|k(r−k)/r
}r/k

.

(3.9)

Applying Hölder’s inequality with indices r/k, r/(r − k), we deduce that

∞∑

n=1

1
n
|ταn |r ≤

∞∑

n=1

(Eα
n)

−r/k

n

n∑

v=1

∣
∣
∣Eα−1

n−v
∣
∣
∣
r/k

vk−1+r/k|av|k
{

n∑

v=1

vk−1|av|k
}(r−k)/k

. (3.10)

Since (sn) ∈ Ak,we have

∞∑

n=1

1
n
|ταn |r = O(1)

∞∑

v=1

vk−1|av|kvr/k
∞∑

n=v

∣
∣Eα−1

n−v
∣
∣r/k

n(Eα
n)

r/k
. (3.11)

From Lemma 3.1, if α > 1 − k/r, then

∞∑

n=v

(
Eα−1
n−v

)r/k

n(Eα
n)

r/k
= O

(
v
−r/k)

, (3.12)

therefore

∞∑

n=1

1
n
|ταn |r = O(1)

∞∑

v=1

vk−1|av|k = O(1). (3.13)
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If α = 1 − k/r, then (See Lemma 5 of [[9]]).

∞∑

n=v

∣
∣Eα−1

n−v
∣
∣r/k

n(Eα
n)

r/k
= O

(
v
−r/k

logv
)
, (3.14)

and then

∞∑

n=1

1
n
|ταn |r = O(1)

∞∑

v=1

vk−1 logv|av|k = O(1). (3.15)

If −k/r < α < 1 − k/r, then (See Lemma 5 of [[9]])

∞∑

n=v

∣
∣Eα−1

n−v
∣
∣r/k

n(Eα
n)

r/k
= O

(
v
−α(r/k)−1)

, (3.16)

hence

∞∑

n=1

1
n
|ταn |r = O(1)

∞∑

v=1

vk+(r/k)(1−α)−2|av|k = O(1). (3.17)

Theorem 3.2 includes Theorem 2.1 with the special case r = k.

Theorem 3.3. If (sn) ∈ Ak, then
∑

an is summable |A|r , r ≥ k ≥ 1.

Proof. Using the fact that the summability |A|k is a weaker property than summability |C, α|k
for any α > −1, then the proof follows from Theorem 3.2.

Now we give some negative results.

Corollary 3.4. Let k < r. Then (sn) ∈ Ar does not imply that the series
∑

an is summable |A|k.

Proof. Let p be any number such that k < p < r and let an = 1/n(log n)1/p. Then, we
have (sn) ∈ Ar . As in the proof of Flett, since

∫1
0(1 − x)k−1|φ′(x)|kdx is divergent,

∑
an is

not summable |A|k.

Corollary 3.5. Let k < r. Then (C, α)/∈ (Ar ,Ak) for any α > −1.

Proof. The proof follows Theorem 3.3 and Corollary 3.4.

Corollary 3.6. Let k < r. Then (C, α)/∈ (Ak,Ar) for any −1 < α < −k/r.
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726, 1911.

[2] M. Stieglitz and H. Tietz, “Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht,”
Mathematische Zeitschrift, vol. 154, no. 1, pp. 1–16, 1977.

[3] T. M. Flett, “On an extension of absolute summability and some theorems of Littlewood and Paley,”
Proceedings of the London Mathematical Society, vol. 7, pp. 113–141, 1957.

[4] J. M. Whittaker, “The absolute summability of a series,” Proceedings of the Edinburgh Mathematical
Society, vol. 2, pp. 1–5, 1930.

[5] G. Das, “A Tauberian theorem for absolute summability,” Proceedings of the Cambridge Philosophical
Society, vol. 67, pp. 321–326, 1970.
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