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1. Introduction

Let X be a real Banach space with the topological dual space of X∗, let 〈x, y〉 be the pairing
between x ∈ X∗ and y ∈ X, let 2X

∗
denote the family of all subsets ofX∗, and letCB(X) denote

the family of all nonempty closed bounded subsets of X. We denote by the 〈z, x〉 = z(x) for
all x ∈ X and z ∈ X∗. Let f : X → X∗, T : X → 2X

∗
, g : X → X, and A : X → X∗

be nonlinear operators, and let M : X → 2X
∗
be a general A-monotone operator such that

g(X)∩domM(·)/= ∅. We will consider the following nonlinear generalA-monotone operator
equation with multivalued operator.

Find x ∈ X such that u ∈ T(x) and

εg(x) = PA
M

[
A
(
g(x)

) − ρ
(
f(x) + u

)]
, (1.1)
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where ε ∈ (0, 1] is a constant and PA
M = (A + ρM)−1 is the proximal mapping associated with

the general A-monotone operator M due to Cui et al. [1].
It is easy to see that the problem (1.1) is equivalent to the problem of finding x ∈ X

such that

εg(x) ∈ PA
M

[
A
(
g(x)

) − ρ
(
f(x) + T(x)

)]
. (1.2)

Example 1.1. If ε ≡ 1, then the problem (1.1) is equivalent to finding x ∈ X such that u ∈ T(x)
and

g(x) = PA
M

[
A
(
g(x)

) − ρ
(
f(x) + u

)]
. (1.3)

Based on the definition of the proximal mapping PA
M, (1.3) can be written as

0 ∈ f(x) + u +M
(
g(x)

)
. (1.4)

Example 1.2. If T : X → X∗ is a single-valued operator, then a special case of the problem
(1.3) is to determine element x ∈ X such that

g(x) − PA
M

[
A
(
g(x)

) − ρQ(x)
]
= 0, (1.5)

where Q : X → X∗ is defined by Q(x) = f(x) + T(x) for all x ∈ X. The problem (1.5)
was studied by Xia and Huang [2] when M is a general H-monotone mapping. Further, the
problem (1.5) was studied by Peng et al. [3] if g = I, the identity operator, and M is a
multivalued maximal monotone mapping.

Example 1.3. If g = I, T : X → X∗, and N : X × X → X∗ are single-valued operators, and
f(x) + T(x) = N(x, x) for all x ∈ X, then the problem (1.3) reduces to finding an element
x ∈ X such that

x − PA
M

[
A(x) − ρN(x, x)

]
= 0, (1.6)

which was considered by Verma [4, 5].

We note that for appropriate and suitable choices of ε, g, A, M, f , T , and
X, it is easy to see that the problem (1.1) includes a number of quasivariational
inclusions, generalized quasivariational inclusions, quasivariational inequalities, implicit
quasivariational inequalities, complementarity problems, and equilibrium problems studied
by many authors as special cases; see, for example, [4–7] and the references therein.

The study of such types of problems is motivated by an increasing interest to
study the behavior and approximation of the solution sets for many important nonlinear
problems arising in mechanics, physics, optimization and control, nonlinear programming,
economics, finance, regional structural, transportation, elasticity, engineering, and various
applied sciences in a general and unified framework. It is well known that many authors
have studied a number of nonlinear variational inclusions and many systems of variational
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inequalities, variational inclusions, complementarity problems, and equilibrium problems by
using the resolvent operator technique, which is a very important method to find solutions
of variational inequality and variational inclusion problems; see, for example, [1–15] and the
references therein.

On the other hand, Verma [4, 5] introduced the concept of A-monotone mappings,
which generalizes the well-known general class of maximal monotone mappings and
originates way back from an earlier work of the Verma [7]. Furthermore, motivated and
inspired by the works of Xia and Huang [2], Cui et al. [1] introduced first a new class
of general A-monotone operators in Banach spaces, studied some properties of general A-
monotone operator, and defined a new proximal mapping associated with the general A-
monotone operator.

Inspired and motivated by the research works going on this field, the purpose of this
paper is to introduce the new class of nonlinear general A-monotone operator equation with
multivalued operator. By using Alber’s inequalities, Nalder’s results, and the new proximal
mapping technique, some new perturbed iterative algorithms with mixed errors for solving
the nonlinear general A-monotone operator equations will be constructed, and applications
of general A-monotone operators to the approximation-solvability of the nonlinear operator
equations in Banach spaces will be studied. The results presented in this paper improve and
extend some corresponding results in recent literature.

2. Preliminaries

In this paper, we will use the following definitions and lemmas.

Definition 2.1. Let A : X → X∗, g : X → X, and f : X → X be single-valued operators.
Then

(i) A is r-strongly monotone, if there exists a positive constant r such that

〈A(x) −A
(
y
)
, x − y〉 ≥ r

∥∥x − y
∥∥2

, ∀x, y ∈ X; (2.1)

(ii) A is τ-Lipschitz continuous, if there exists a constant τ > 0 such that

∥∥A(x) −A
(
y
)∥∥ ≤ τ

∥∥x − y
∥∥2

, ∀x, y ∈ X; (2.2)

(iii) g is k-strongly accretive if for any x, y ∈ X, there exist j(x − y) ∈ J(x − y) and a
positive constant k such that

〈
j
(
x − y

)
, g(x) − g

(
y
)〉 ≥ k

∥∥x − y
∥∥2

, (2.3)

where the generalized duality mapping Jq : X → 2X
∗
is defined by

Jq(x) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖q, ∥∥f∗∥∥ = ‖x‖q−1

}
, ∀x ∈ X; (2.4)
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(iv) f is (γ, μ)-relaxed cocoercive with respect toA, if for all x, y ∈ X, there exist positive
constants γ and μ such that

〈A(x) −A
(
y
)
, f(x) − f

(
y
)〉 ≥ −γ∥∥f(x) − f(y)

∥∥2 + μ
∥∥x − y

∥∥2
. (2.5)

Example 2.2 (see [11, 12]). (1) Consider an r-strongly monotone (and hence r-expanding)
operator T : X → X. Then T is (r + r2, 1)-relaxed cocoercive with respect to I.

(2) Very m-cocoercive operator is m-relaxed cocoercive, while each r-strongly
monotone mapping is (r + r2, 1)-relaxed cocoercive with respect to I.

Remark 2.3. The notion of the cocoercivity is applied in several directions, especially to
solving variational inequality problems using the auxiliary problem principle and projection
methods [5], while the notion of the relaxed cocoercivity is more general than the strong
monotonicity as well as cocoercivity. Several classes of relaxed cocoercive variational
inequalities have been studied in [4, 5].

Definition 2.4. A multivalued operator M : X → 2X
∗
is said to be

(i) maximal monotone if, for any x ∈ X, u ∈ M(x),

〈
u − v, x − y

〉 ≥ 0 implies y ∈ X, v ∈ M
(
y
)
; (2.6)

(ii) m-relaxed monotone if, for any x, y ∈ X, u ∈ M(x), and v ∈ M(y), there exists a
positive constant m such that

〈u − v, x − y〉 ≥ −m∥∥x − y
∥∥2; (2.7)

(iii) ξ-Ĥ-Lipschitz continuous, if there exists a constant ξ > 0 such that

Ĥ
(
M(x),M

(
y
)) ≤ ξ

∥∥x − y
∥∥, ∀x, y ∈ X, (2.8)

where Ĥ : 2X × 2X → (−∞,+∞) ∪ {+∞} is the Hausdorff pseudometric, that is,

Ĥ(D,E) = max

{

sup
x∈D

inf
y∈E

∥∥x − y
∥∥, sup

x∈E
inf
y∈D

∥∥x − y
∥∥
}

, ∀D,E ∈ 2X
∗
. (2.9)

Note that if the domain of Ĥ is restricted to closed bounded subsets CB(X), then Ĥ is the
Hausdorff metric.

Definition 2.5. A single-valued operator g : X → X∗ is said to be

(i) coercive if

lim
‖x‖→∞

〈g(x), x〉
‖x‖ = +∞; (2.10)
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(ii) hemicontinuous if, for any fixed x, y, z ∈ X, the function t → 〈g(x + ty), z〉 is
continuous at 0+.

We remark that the uniform convexity of the space X means that for any given ε > 0,
there exists δ > 0 such that for all x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ = ε ensure the
inequality ‖x + y‖ ≤ 2(1 − δ). The function

δX(ε) = inf

{

1 −
∥∥x + y

∥∥

2
: ‖x‖ = 1,

∥∥y
∥∥ = 1,

∥∥x − y
∥∥ = ε

}

(2.11)

is called the modulus of the convexity of the spaceX.
The uniform smoothness of the space X means that for any given ε > 0, there exists

δ > 0 such that (1/2)(‖x + y‖ + ‖x − y‖) − 1 ≤ ε‖y‖ holds. The function 	X : [0,∞) → [0,∞)
defined by

	X(t) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : ‖x‖ ≤ 1,
∥∥y

∥∥ ≤ t

}
(2.12)

is called the modulus of the smoothness of the space X.
We also remark that the space X is uniformly convex if and only if δX(ε) > 0 for

all ε > 0, and it is uniformly smooth if and only if limt→ 0(	X(t))/t = 0. Moreover, X is
uniformly convex if and only if X is uniformly smooth. In this case, X is reflexive by the
Milman theorem. A Hilbert space is uniformly convex and uniformly smooth. The proof of
the following inequalities can be found, for example, in page 24 of Alber [16].

Lemma 2.6. LetX be a uniformly smooth Banach space, and let J be the normalized duality mapping
fromX intoX∗. Then, for all x, y ∈ X, we have

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉;

(ii) 〈x − y, J(x) − J(y)〉 ≤ 2d2	X(4‖x − y‖/d), where d =
√
(‖x‖2 + ‖y‖2)/2.

Definition 2.7. Let X be a Banach space with the dual space X∗, A : X → X∗ be a nonlinear
operator, and M : X → 2X

∗
be a multivalued operator. The map M is said to be general

A-monotone if M ism-relaxed monotone and R(A + ρM) = X∗ holds for every ρ > 0.
This is equivalent to stating thatM is general A-monotone if.

(i) M ism-relaxed monotone;

(ii) A + ρM is maximal monotone for every ρ > 0.

Remark 2.8. (1) If m = 0, that is, M is 0-relaxed monotone, then the general A-monotone
operators reduce to general H-monotone operators (see, e.g., [1, 2]).

(2) If X = H is a Hilbert space, then the general A-monotone operator reduces to the
A-monotone operator in Verma [7]. Therefore, the class of general A-monotone operators
provides a unifying frameworks for classes of maximal monotone operators, H-monotone
operators, A-monotone operators, and general H-monotone operators. For details about
these operators, we refer the reader to [1, 2, 7] and the references therein.
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Example 2.9. Let X be a reflexive Banach space with the dual space X∗, M : X → 2X
∗
a

maximal monotone mapping, and A : X → X a bounded, coercive, hemicontinuous, and
relaxed monotone mapping. Then for any given ρ > 0, it follows from Theorem 3.1 in page
401 of Guo [10] that (A+ρM)(X) = X∗. This shows thatM is a generalA-monotone operator.

Example 2.10 (see [4]). Let X be a reflexive Banach space with X∗ its dual, and let A :
X → X∗ be r-strongly monotone. Let f : X → R be locally Lipschitz such that ∂f is m-
relaxed monotone. Then ∂f is A-monotone, which is equivalent to stating that A + ∂f is
pseudomonotone (and in fact, maximal monotone).

Lemma 2.11 (see [1]). Let X be a reflexive Banach space with the dual space X∗, let A : X → X∗

be a nonlinear operator, and let M : X → 2X
∗
be a general A-monotone operator. Then the proximal

mapping PA
M is

(i) (1/(r − ρm))-Lipschitz continuous when A is r-strongly monotone with r > m and
ρ ∈ (0, r/m);

(ii) (1/ρm)-Lipschitz continuous if A is a strictly monotone operator andM is anm-strongly
monotone operator.

3. Perturbed Algorithms and Convergence

Now we will consider some new perturbed algorithms for solving the nonlinear general A-
monotone operator equation problem (1.1) or (1.2) by using the proximal mapping technique
associated with the general A-monotone operators and the convergence of the sequences
given by the algorithms.

Lemma 3.1. Let ε, g, A, M, f , and T be the same as in (1.1). Then the following propositions are
equivalent.

(1) (x, u) is a solution of the problem (1.1), where x ∈ X and u ∈ T(x).

(2) x is the fixed-point of the function F defined by

F(x) =
⋃

u∈T(u)

{
x − εg(x) + PA

M

[
A
(
g(x)

) − ρ
(
f(x) + u

)]}
, (3.1)

where ρ > 0 is a constant.

(3) (x, u, z) is a solution of the following equation system:

εg(x) − PA
M(z) = 0,

z = A
(
g(x)

) − ρ
(
f(x) + u

)
,

(3.2)

where x ∈ X, u ∈ T(x) and z ∈ X∗.
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Lemma 3.2 (see [17]). Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying the
following condition. There exists a natural number n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0, (3.3)

where tn ∈ [0, 1],
∑∞

n=0tn = ∞, limn→∞bn = 0,
∑∞

n=0cn < ∞. Then an → 0 (n → ∞).

Algorithm 3.3.
Step 1. Choose an arbitrary initial point x0 ∈ X.
Step 2. Take any {un} ⊂ {T(xn)} ⊂ X for n = 0, 1, 2, . . . .
Step 3. Choose sequences {αn}, {dn}, {en}, and {ωn} such that for n ≥ 0, {αn}, {βn} are two
sequences in (0, 1] and

∑∞
i=0αi = ∞; {dn}, {en}, and {ωn} are error sequences inX to take into

account a possible inexact computation of the operator point, which satisfies the following
conditions:

(i) dn = d′
n + d′′

n;

(ii) limn→∞‖d′
n‖ = limn→∞‖en‖ = 0;

(iii)
∑∞

n=0‖d′′
n‖ < ∞,

∑∞
n=0‖ωn‖ < ∞.

Step 4. Let {(xn, zn, un)} ⊂ X ×X∗ × X satisfy

xn+1 = (1 − αn)xn + αn

{
xn − εg(xn) + PA

M(zn)
}
+ αndn +ωn,

zn = A
(
g(xn)

) − ρ
(
f(xn) + un

)
+ en,

(3.4)

where ρ > 0 is a constant.
Step 5. If xn, zn, un, ωn, dn, and en (n = 0, 1, 2, . . .) satisfy (3.4) to sufficient accuracy, stop;
otherwise, set k := k + 1 and return to Step 2.

Algorithm 3.4. For any x0 ∈ X, u0 ∈ T(x0), compute the iterative sequence {xn} by

xn+1 = (1 − αn)xn + αn

{
xn − g(xn) + PA

M(zn)
}
+ αndn +ωn,

zn = A
(
g(xn)

) − ρ
(
f(xn) + un

)
+ en, ∀un ∈ T(xn),

n = 0, 1, 2, . . . ,

(3.5)

where ρ, αn, dn, ωn, and en are the same as in Algorithm 3.3.

Theorem 3.5. Let X be a uniformly smooth Banach space with 	X(t) ≤ Ct2 for some C > 0, and let
X∗ be the dual space of X. Let A : X → X∗ be r-strongly monotone and τ-Lipschitz continuous,
and let T : X → CB(X) be ξ-Ĥ-Lipschitz continuous. Suppose that f : X → X is (γ, μ)-relaxed
cocoercive with respect to g1 and π-Lipschitz continuous, g : X → X is δ-strongly monotone and
σ-Lipschitz continuous, andM : X → 2X

∗
is general A-monotone, where g1 : X → X is defined by
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g1(x) = A◦g(x) = A(g(x)) for all x ∈ X. If, in addition, there exist constants ρ > 0 andm ∈ (0, r)
such that

k =
√
1 − 2εδ + 64Cεσ2 < 1, τσ > r(1 − k),

h = ξ +m(1 − k) < 8π
√
C, ρ < min

{
r

m
,
r(1 − k)

h

}
,

μπ2 > γτ2σ2 + rh(1 − k) +
√
(
64Cπ2μ2 − h2

)[
τ2σ2 − r2(1 − k)2

]
,

∣∣∣∣∣
ρ−μπ2−γτ2σ2−rh(1 −k)

64Cπ2 − h2

∣∣∣∣∣
<

√
[μπ2−γτ2σ2−rh(1 − k)]2−(64Cπ2−h2)

[
τ2σ2−r2(1 −k)2

]

64Cπ2 − h2
,

(3.6)

then the following results hold:

(1) the solution set of the problem (1.1) is nonempty;

(2) the iterative sequence {(xn, un)} generated by Algorithm 3.3 converges strongly to the
solution (x∗, u∗) of the problem (1.1).

Proof. Setting a multivalued function F : X → 2X to be the same as (3.1), then we can prove
that F is a multivalued contractive operator.

In fact, for any x, x̂ ∈ X and any a ∈ F(x), there exists u ∈ T(x) such that

a = x − εg(x) + PA
M

[
A
(
g(x)

) − ρ
(
f(x) + u

)]
. (3.7)

Note that T(x̂) ∈ CB(X); it follows from Nadler’s result [18] that there exists û ∈ T(x̂) such
that

‖u − û‖ ≤ Ĥ(T(x), T(x̂)). (3.8)

Letting

b = x̂ − εg(x̂) + PA
M

[
A
(
g(x̂)

) − ρ
(
f(x̂) + û

)]
, (3.9)

then we have b ∈ F(x̂). The δ-strongly monotonicity and σ-Lipschitz continuity of g, the ξ-Ĥ-
Lipschitz continuity of T , the (γ, μ)-relaxed cocoercivity with respect to g1 and π-Lipschitz



Journal of Inequalities and Applications 9

continuity of f , and the τ-Lipschitz continuity of A, Lemma 2.6, and the inequality (3.8)
imply that

∥∥x − x̂ − ε
[
g(x) − g(x̂)

]∥∥2

≤ ‖x − x̂‖2 − 2ε
〈
j(x − x̂), g(x) − g(x̂)

〉

+ 2ε
〈
j
(
x − x̂ − [

g(x) − g(x̂)
]) − j(x − x̂),−[g(x) − g(x̂)

]〉

≤ ‖x − x̂‖2 − 2δε‖x − x̂‖2 + 4εd2	X

(
4
∥∥g(x) − g(x̂)

∥∥

d

)

≤
(
1 − 2εδ + 64Cεσ2

)
‖x − x̂‖2,

‖u − û‖ ≤ Ĥ(T(u), T(û)) ≤ ξ‖x − x̂‖,
∥∥A

(
g(x)

) −A
(
g(x̂)

) − ρ
[
f(x) − f(x̂)

]∥∥2

≤ ∥∥A
(
g(x)

)−A(
g(x̂)

)∥∥2−2ρ〈j(A(
g(x)

)−A(
g(x̂)

))
, f(x)−f(x̂)〉

+ 2
〈
j
(
A
(
g(x)

) −A
(
g(x̂)

) − ρ
[
f(x) − f(x̂)

]) − j
(
A
(
g(x)

) −A
(
g(x̂)

)) − ρ
[
f(x) − f(x̂)

]〉

≤ τ2σ2‖x − x̂‖2 − 2
[
−γ∥∥A(

g(x)
) −A

(
g(x̂)

)∥∥2 + μ
∥∥f(x) − f(x̂)

∥∥2
]

+ 4d2	X

(
4
∥∥ρ

[
f(x) − f(x̂)

]∥∥

d

)

≤
(
τ2σ2 − 2ρμπ2 + 2ργτ2σ2 + 64Cρ2π2

)
‖x − x̂‖2.

(3.10)

Thus, it follows from (3.4) and Lemma 2.11 that

‖a − b‖ ≤ ∥∥x − x̂ − ε
[
g(x) − g(x̂)

]∥∥

+
∥∥∥PA

M

[
A
(
g(x)

) − ρ
(
f(x) + u

)] − PA
M

[
A
(
g(x̂)

) − ρ
(
f(x̂) + û

)]∥∥∥

≤ ∥∥x − x̂ − ε
[
g(x) − g(x̂)

]∥∥ +
ρ

r − ρm
‖u − û‖

+
1

r − ρm

∥∥A
(
g(x)

) −A
(
g(x̂)

) − ρ
[
f(x) − f(x̂)

]∥∥

≤ θ‖x − x̂‖,

(3.11)

where

θ =
√
1 − 2εδ + 64Cεσ2 +

ρξ +
√
τ2σ2 − 2ρμπ2 + 2ργτ2σ2 + 64Cρ2π2

r − ρm
. (3.12)
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It follows from condition (3.6) that θ < 1. Hence, from (3.11), we get

d(a, F(x̂)) = inf
b∈F(x̂)

‖a − b‖ ≤ θ‖x − x̂‖. (3.13)

Since a ∈ F(x) is arbitrary, we obtain supa∈F(x)d(a, F(x̂)) ≤ θ‖x−x̂‖. By using same argument,
we can prove supb∈F(x̂)d(F(x), b) ≤ θ‖x − x̂‖. It follows from the definition of the Hausdorff

metric Ĥ on CB(X) that

Ĥ(F(x), F(x̂)) ≤ θ‖x − x̂‖, ∀x, x̂ ∈ X, (3.14)

and so F is a multivalued contractive mapping. By a fixed-point theorem of Nadler [18], the
definition of F and (3.2), now we know that F has a fixed-point x∗, that is, x∗ ∈ F(x∗), and
there exists u∗ ∈ T(x∗) such that

εg(x∗) = PA
M

[
A
(
g(x∗)

) − ρ
(
f(x∗) + u∗)]. (3.15)

Hence, it follows from Lemma 3.1 that (x∗, u∗) is a solution of the problem (1.1), that is, the
solution set of the problem (1.1) is nonempty.

Next, we prove the conclusion (2). Let (x∗, u∗) be a solution of problem (1.1). Then for
all n ≥ 0, we have

x∗ = (1 − αn)x∗ + αn

{
x∗ − εg(x∗) + PA

M(z∗)
}
, z∗ = A

(
g(x∗)

) − ρ
(
f(x∗) + u∗). (3.16)

From Algorithm 3.3, the assumptions of the theorem 3.5 and Lemma 2.11, it follows that

‖zn − z∗‖ ≤ ∥∥A
(
g(xn)

) −A
(
g(x∗)

) − ρ
(
f(xn) − f(x∗)

)∥∥ + ρ‖un − u∗‖ + ‖en‖, (3.17)

‖xn+1 − x∗‖ ≤ (1 − αn)‖xn − x∗‖ + αn

∥∥xn − x∗ − ε
(
g(xn) − g(x∗)

)∥∥

+ αn

∥∥∥PA
M(zn) − PA

M(z∗)
∥∥∥ + αn‖dn‖ + ‖ωn‖

≤ (1 − αn)‖xn − x∗‖ + αn

∥∥xn − x∗ − ε
(
g(xn) − g(x∗)

)∥∥

+
αn

r − ρm
‖zn − z∗‖ + αn

∥∥d′
n

∥∥ +
(∥∥d′′

n

∥∥ + ‖ωn‖
)
.

(3.18)

Combining (3.17) and (3.18), we obtain

‖xn+1 − x∗‖

≤ (1 − αn)‖xn − x∗‖ + θαn‖xn − x∗‖ + αn

r − ρm
‖en‖ + αn

∥∥d′
n

∥∥ +
(∥∥d′′

n

∥∥ + ‖ωn‖
)

≤ [1 − αn(1 − θ)]‖xn − x∗‖ + αn

(∥∥d′
n

∥∥ +
1

r − ρm
‖en‖

)
+
(∥∥d′′

n

∥∥ + ‖ωn‖
)
,

(3.19)
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where θ is the same as in (3.11). Since θ < 1, we know that 1 − θ > 0 and (3.19) implies

‖un+1 − u∗‖

≤ [1 − αn(1 − θ)]‖xn − x∗‖ + αn(1 − θ) · 1
1 − θ

(∥∥d′
n

∥∥ +
1

r − ρm
‖en‖

)
+
(∥∥d′′

n

∥∥ + ‖ωn‖
)
.

(3.20)

Since
∑n

i=0αi = ∞, it follows from Lemma 3.2 that the sequence xn strongly converges to x∗.
By un ∈ T(xn), u∗ ∈ T(u∗), and the Ĥ-Lipschitz continuity of T , we obtain

‖un − u∗‖ ≤ Ĥ(S(un), S(u∗)) ≤ ξ‖un − u∗‖, ∥∥yn − y∗∥∥ ≤ Ĥ(T(un), T(u∗)) ≤ ζ‖un − u∗‖.
(3.21)

Thus, {un} is also strongly converges to u∗. Therefore, the iterative sequence {(xn, un)}
generated by Algorithm 3.3 converges strongly to the solution (x∗, u∗) of the problem (1.1)
or (1.2). This completes the proof.

Based on Theorem 3.3 in [2], we have the following comment.

Remark 3.6. If ε ≡ 1, g is k-strongly accretive and δ-Lipschitz continuous, A is a strictly
monotone and s-Lipschitz continuous operator, M is a general H-monotone and β-strongly
monotone operator, T is a single-valued operator and Q = f + T is α-Lipschitz continuous,
and ρ > 0 is some constant such that

ρ >
sδ

β − α − β
√
1 − 2k + 64Cδ2

,
√
1 − 2k + 64Cδ2 + αβ−1 < 1, (3.22)

then (3.6) holds.

Theorem 3.7. Assume that A, T , f , g, M, and X are the same as in Theorem 3.5. If there exist
constants ρ > 0 and m ∈ (0, r)such that

k =
√
1 − 2δ + 64Cσ2 < 1, τσ > r(1 − k),

h = ξ +m(1 − k) < 8π
√
C, ρ < min

{
r

m
,
r(1 − k)

h

}
,

μπ2 > γτ2σ2 + rh(1 − k) +
√
(
64Cπ2μ2 − h2

)[
τ2σ2 − r2(1 − k)2

]
,

∣∣∣∣∣
ρ−μπ2−γτ2σ2−rh(1 −k)

64Cπ2 − h2

∣∣∣∣∣
<

√
[μπ2−γτ2σ2−rh(1 −k)]2−(64Cπ2−h2)

[
τ2σ2−r2(1 −k)2

]

64Cπ2 − h2
,

(3.23)

then there exists x∗ ∈ X such that x∗ is a solution of the problem (1.3), and the iterative sequence
{xn} generated by Algorithm 3.4 converges strongly to the solution x∗ of the problem (1.3).



12 Journal of Inequalities and Applications

Remark 3.8. If αn = ωn = en ≡ 0 for n ≥ 0 in Algorithm 3.4, T andQ as the same in the problem
(1.5), then the results of Theorem 3.4 obtained by Xia and Huang [2] also hold. For details,
we can refer to [1, 2, 4, 5].

Remark 3.9. If dn = 0 or en = 0 or ωn = 0 (n ≥ 0) in Algorithms 3.3 and 3.4, then the
conclusions of Theorems 3.5 and 3.7 also hold, respectively. The results of Theorems 3.5 and
3.7 improve and generalize the corresponding results of [2, 4–9, 15, 17]. For other related
works, we refer to [1–16] and the references therein.
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