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1. Introduction

Let p be a fixed odd prime. Throughout this paper Zp, Qp, Q, C, and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the rational
number field, the complex number field, and the completion of algebraic closure of Qp. For a
fixed positive integer d with (p, d) = 1, let

X = Xd = lim
←
N

Z/dpNZ, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dp Zp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.1)

where a ∈ Z lies in 0 ≤ a < dpN (cf. [1–24]).
Let N be the set of natural numbers. In this paper we assume that q ∈ Cp,with |1 − q|p <

p−1/(p−1), which implies that qx = exp(x log q) for |p|p ≤ 1. We also use the notations

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

, (1.2)
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for all x ∈ Zp. For any positive integer N, the distribution is defined by

µq

(
a + dpNZp

)
=

qa
[
dpN

]
q

. (1.3)

We say that f is a uniformly differentiable function at a point a ∈ Zp and denote this property
by f ∈ UD(Zp), if the difference quotients Ff(x, y) = (f(x) − f(y))/(x − y) have a limit
l = f ′(a) as (x, y) → (a, a) (cf. [1–24]).

For f ∈ UD(Zp), the above distribution µq yields the bosonic p-adic invariant q-
integral as follows:

Iq
(
f
)
=
∫

Zp

f(x)dµq(x) = lim
N→∞

1
[
pN
]
q

pN−1∑

x=0

f(x)qx, (1.4)

representing the p-adic q-analogue of the Riemann integral for f . In the sense of fermionic,
let us define the fermionic p-adic invariant q-integral on Zp as

I−q
(
f
)
=
∫

Zp

f(x)dµ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)
(−q)x, (1.5)

for f ∈ UD(Zp) (see [16]). Now, we consider the fermionic p-adic invariant q-integral on Zp

as

I−1
(
f
)
= lim

q→ 1
I−q
(
f
)
=
∫

Zp

f(x)dµ−1(x). (1.6)

From (1.5)we note that

I−1
(
f
)
+ I−1

(
f
)
= 2f(0), (1.7)

where f1(x) = f(x + 1) (see [16]).
We also introduce the classical Hölder inequality for the Lebesgue integral in [25].

Theorem 1.1. Letm,m′ ∈ Q with 1/m + 1/m′ = 1. If f ∈ Lm and g ∈ Lm′ , then f · g ∈ L1 and

∫∣∣fg
∣∣dx ≤ ∥∥f∥∥m

∥∥g
∥∥
m′ (1.8)

where f ∈ Lm ⇔ ∫ |f |mdx <∞ and g ∈ Lm′ ⇔ ∫ |g|m′dx <∞ and ‖f‖m = {∫ |f |mdx}1/m.

The purpose of this paper is to find Hölder type inequality for the fermionic p-adic
invariant q-integral I−1.
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2. Hölder Type Inequality for Fermionic p-Adic Invariant q-Integrals

In order to investigate the Hölder type inequality for I−1, we introduce the new concept of
the inequality as follows.

Definition 2.1. For f, g ∈ UD(Zp), we define the inequality on UD(Zp) (resp., Cp) as follows.
For f, g ∈ UD(Zp) (resp., x, y ∈ Cp), f≤pg(resp., x ≤p y) if and only if |f |p ≤ |g|p (resp.,
|x|p ≤ |y|p).

Letm,m′ ∈ Q with 1/m+ 1/m′ = 1. By substituting f(x) = qx and g(x) = ext into (1.3),
we obtain the following equation:

∫

Zp

f(x)g(x)µ−1(x) =
∫

Zp

(
qet
)x
dµ−1(x) =

2
qet + 1

, (2.1)

∫

Zp

f(x)mµ−1(x) =
∫

Zp

qmxdµ−1(x) =
2

qm + 1
, (2.2)

∫

Zp

g(x)m
′
µ−1(x) =

∫

Zp

em
′xtdµ−1(x) =

2
em′t + 1

. (2.3)

From (2.1), (2.2), and (2.3), we derive

∫
Zp
f(x)g(x)dµ−1(x)

{∫
Zp
f(x)mdµ−1

}1/m{∫
Zp
g(x)m

′
dµ−1

}1/m′ =

(
emt + 1

)1/m(
qm

′
+ 1
)1/m′

qet + 1

=
∞∑

n=0

n∑

l=0

⎛

⎜⎝
1
m

l

⎞

⎟⎠elmt

⎛

⎜⎝
1
m′

n − l

⎞

⎟⎠q(n−l)m
′ 1
qet + 1

=
∞∑

n=0

n∑

l=0

⎛

⎜⎝
1
m

l

⎞

⎟⎠

⎛

⎜⎝
1
m′

n − l

⎞

⎟⎠q(n−l)m
′ elmt

qet + 1
.

(2.4)

We remark that the nth Frobenius-Euler numbers Hn(q) and the nth Frobenius-Euler
polynomialsHn(q, x) attached to algebraic number q(/= 1)may be defined by the exponential
generating functions (see [16]):

1 − q
et − q =

∞∑

n=0

Hn

(
q
) tn

n!
, (2.5)

1 − q
et − qe

xt =
∞∑

n=0

Hn

(
q, x
) tn

n!
. (2.6)
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Then, it is easy to see that

[2]qe
mlt

qex + 1
=
∞∑

k=0

Hn

(
−q−1, ml

) tk

k!
. (2.7)

From (2.4) and (2.7), we have the following theorem.

Theorem 2.2. Letm,m′ ∈ Q with 1/m+ 1/m′ = 1. If one takes f(x) = qx and g(x) = ext, then one
has

∫
Zp
f(x)g(x)dµ−1(x)

{∫
Zp
f(x)mdµ−1

}1/m{∫
Zp
g(x)m

′
dµ−1

}1/m′

=
1

[2]q

∞∑

n=0

n∑

l=0

⎛

⎜⎝
1
m

l

⎞

⎟⎠

⎛

⎜⎝
1
m′

n − l

⎞

⎟⎠q(n−l)m
′
∞∑

k=0

Hk

(
−q−1, ml

) tk

k!
.

(2.8)

We note that form,m′, k, l ∈ Q with 1/m + 1/m′ = 1,

max

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣∣∣
1

[2]q

∣∣∣∣∣
p

,

∣∣∣∣∣∣∣

⎛

⎜⎝
1
m

l

⎞

⎟⎠

∣∣∣∣∣∣∣
p

,

∣∣∣∣∣∣∣

⎛

⎜⎝
1
m′

n − l

⎞

⎟⎠

∣∣∣∣∣∣∣
p

,
∣∣∣qm

′(l−1)
∣∣∣
p
,

∣∣∣∣
1
k!

∣∣∣∣
p

⎫
⎪⎪⎬

⎪⎪⎭
≤ 1, (2.9)

By Theorem 2.2 and (2.7) and the definition of p-adic norm, it is easy to see that

∣∣∣∣∣∣∣

∫
Zp
f(x)g(x)dµ−1(x)

{∫
Zp
f(x)mdµ−1

}1/m{∫
Zp
g(x)m

′
dµ−1

}1/m′

∣∣∣∣∣∣∣
p

≤ max
{∣∣∣Hk(−q−1, ml

∣∣∣
p

}
, (2.10)

for all m,m′, k, l ∈ Q with 1/m + 1/m′ = 1. We note that M = max{|Hk(−q−1, ml)|p} lies
in (0,∞). Thus by Definition 2.1 and (2.10), we obtain the following Hölder type inequality
theorem for fermionic p-adic invariant q-integrals.

Theorem 2.3. Let m,m′ ∈ Q with 1/m + 1/m′ = 1 and M = max{|Hk(−q−1, ml)|p}. If one takes
f(x) = qx and g(x) = ext, then one has

∫

Zp

f(x)g(x)dµ−1(x) ≤p M

{∫

Zp

f(x)mdµ−1

}1/m{∫

Zp

g(x)m
′
dµ−1

}1/m′

. (2.11)
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