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1. Introduction

The bidirectional associative memory (BAM) neural network which was first introduced by
Kosko in 1987 [1, 2] is formed by neurons arranged in two layers. The neurons in one layer
are fully interconnected to the neurons in the other layer, while there are no interconnections
among neurons in the same layer. Through iterations of forward and backward information
flows between the two layers, it performs a two-way associative search for stored bipolar
vector pairs and generalizes the single-layer autoassociative hebbian correlation to a two-
layer pattern matched heteroassociative.

As it is well known, research on neural dynamical systems not only involves a
discussion of stability properties, but also involves many dynamic behavior such as periodic
oscillatory behavior, bifurcation, and chaos [3–19]. In the application of neural networks
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to some practical problems, the properties of equilibrium points play important roles. An
equilibrium point can be looked as a special periodic solution of neural networks with
arbitrary period. In this sense, the analysis of periodic solutions of neural networks could
be more general than that of equilibrium points. There are some results on the existence and
stability of periodic solution of BAM neural networks. Liu et al. [20, 21] obtained several
sufficient conditions which ensure existence and stability of periodic solution for BAM neural
networks with periodic coefficients and time-varying delays. Subsequently, Guo et al. [22]
obtained some sufficient conditions ensuring the existence, uniqueness, and stability of the
periodic solution for BAM neural networks with periodic variable coefficients and variable
delays, and they also estimated the exponentially convergent rate. Song et al. obtained several
sufficient conditions which ensure existence and stability of periodic solution for BAM neural
networks with periodic coefficients and periodic time-varying delays [23]. Moreover, neural
networks usually has a spatial extent due to the presence of an amount of parallel pathways
with a variety of axon sizes and lengths. Thus, the delays in neural networks are usually
continuously distributed. Recently, there are some authors studied the BAM neural networks
with distributed delays and constants coefficients [24–26].

Until recently, few studies have considered periodic solution for the BAM neural
networks with periodic coefficients and distributed delays. Zhou et al. considered the
periodic solution for the BAM neural networks with period coefficients and continuously
distributed delays [27]. However, the result in Zhou et al. contains two limitations, one
made for periodic T and the other is min1�i,j�n{(ai −

∑m
j=1 djiNji), (cj −

∑n
i=1 bijMij)} > 0,

which also in the Wang et al. [28]. This limitation is being removed by this paper. Based on
the continuation theorem of Mawhin’s coincidence degree theory, the nonsingular M-matrix
and Lyapunov functionals, we derive a new global exponential stability criterion in matrix
form for periodic oscillation of BAM neural networks with period coefficients and distributed
delay. Moreover, our criterion is easy to check out.

The paper is organized as follows. Our model and some preliminaries are given in
Section 2. The existence of periodic solution is proved in Section 3. The exponential stability
of periodic oscillator is considered in Section 4. An example is shown in Section 5. Several
summary remarks are finally given in Section 6.

2. Preliminaries

In this paper, we study the BAM neural networks with periodic coefficients and continuously
distributed delays modeled by the following system:

u̇i(t) = −ai(t)ui(t) +
m∑

j=1

bij(t)hij

(∫ tij

0
fij(s)vj(t − s)ds

)

+ Ii(t),

v̇j(t) = −cj(t)vj(t) +
n∑

i=1

dji(t)eji
(∫ τji

0
gji(s)ui(t − s)ds

)

+ Lj(t),

(2.1)

where i = 1, 2, . . . , n; j = 1, 2, . . . , m; ai(t) > 0 and cj(t) > 0 denote the rate with which the cells
i and j reset their potential to the resting state when isolated from the other cells and inputs;
bij(t) and dji(t) are connection weights of the neural network; Ii(t), Lj(t) denote the ith and
the jth component of an external input source introduced from outside the network to the ith
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cell and jth cell at time t, respectively. Moreover, the jth cell has an impact on the ith cell in
the time of tij and the jth cell has an impact on the ith cell in the time of τji.

If ui(t) and vj(t) satisfy system (2.1) and ui(t + T) = ui(t), vj(t + T) = vj(t), then they
are T -periodic solutions of system (2.1). The initial conditions associated with system (2.1)
are given as follows:

ui(s) = φi(s), vj(s) = ψj(s), s ∈ (−∞, 0], (2.2)

where φi(s), ψj(s) are continuous function (i = 1, 2, . . . , n; j = 1, 2, . . . , m).
Throughout this paper, we make the following assumptions.

Assumption 2.1. ai(t), bij(t), cj(t), dji(t), Ii(t) and Jj(t) are continuous T -periodic functions on
R. In addition, a+i = supt∈R|ai(t)| < +∞, a−i = inft∈R|ai(t)| > 0, b+ij = supt∈R|bij(t)| < +∞, c+i =
supt∈R|cj(t)| < +∞, c−i = inft∈R|cj(t)| > 0, d+

ji = supt∈R|dji(t)| < +∞, I+i = supt∈R|Ii(t)| < +∞, and
L+
j = supt∈R|Lj(t)| < +∞.

Assumption 2.2. Signal transmission functions hij(u), eji(v) are bounded on R, and there exist
number Mij > 0 and Nji > 0 such that

∣
∣hij(u) − hij(v)

∣
∣ � Mij |u − v|,

∣
∣eji(u) − eji(v)

∣
∣ � Nji|u − v| (2.3)

for each u, v ∈ R, i = 1, 2, . . . , n and j = 1, 2, . . . , m.

Assumption 2.3. The delay kernels fij(s), gji(s) : [0,+∞) → [0,+∞) (i = 1, 2, . . . , n; j = 1, 2,
. . . , m) are continuous and integrable and satisfy

∫+∞

0
fij(s)ds = 1,

∫+∞

0
gji(s)ds = 1. (2.4)

Assumption 2.4. The delay kernels fij(s), gji(s) : [0,+∞) → [0,+∞) (i = 1, 2, . . . , n; j = 1, 2,
. . . , m) satisfy

∫+∞

0
eαsfij(s)ds � 1,

∫+∞

0
eαsgji(s)ds � 1, (2.5)

where α is a bounded positive real number.

Now, we give some useful notations, definitions, and lemmas as follows: ‖u‖ =
(
∫T

0 |u(s)|
2ds)1/2 and v = (1/T)

∫T
0v(s)ds, where u(s) ∈ C(R,R), v(s) is T -periodic function.

Assume that T
n×n = {A = (aij)n×n : aij � 0, i /= j}, then we have the following.

Lemma 2.5 (see [17, 29, 30]). Let A ∈ T
n×n. Then, each of the following conditions is equivalent to

the statement ‘A is a nonsingular M -matrix’:

(a) all of the principal minors of A are positive;

(b) the real parts of all the eigenvalue of A are positive;
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(c) A is inverse-positive; that is, A−1 exists and A−1 � 0;

(d) there is a vector x (or y), whose elements are all positive, such that the elements of Ax (or
ATy) are all positive;

(e) A has all positive diagonal elements and there exists a positive diagonal matrixD such that
AD is strictly diagonally dominant; that is,

aiidi >
∑

i /= j

∣
∣aij

∣
∣dj, i = 1, 2, . . . , n. (2.6)

In the following, we introduce some concepts and results from the book by Gaines and
Mawhin [31].

Let X and Z be two Banach spaces, L : DomL ⊂ X → Z a linear mapping, and
N : X → Z a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if dim KerL = codimImL < +∞ and ImL is closed inZ. If L is a Fredholm mapping
of index zero and there exist continuous projectors P : X → X andQ : Z → Z such that ImP
= KerL, KerQ = ImL = Im(I −Q), it follows that mapping L|DomL

⋂
KerP : (I −P)X → ImL is

invertible. We denote the inverse of that mapping byKP . If Ω is an open bounded subset ofX,
the mapping N will be called L-compact on if QN(Ω) is bounded and KP (I −Q)N : Ω → X
is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 2.6 (Mawhin’s continuation theorem). Let X and Z be two Banach spaces and L be a
Fredholm mapping of index zero. Assume that Ω ⊂ X is an open bounded set and N : X → Z is a
continuous operator which is L-compact onΩ. Then Lx =Nx has at least one solution in DomL

⋂
Ω,

if the following conditions are satisfied:

(a) for each λ ∈ (0, 1), x ∈ ∂Ω
⋂

DomL, Lx /=λNx;

(b) for each x ∈ ∂Ω
⋂

KerL, QNx/= 0;

(c) deg{JQNx,Ω
⋂

KerL, 0}/= 0,

where J : ImQ → KerL is an isomorphism.

3. Existence of Periodic Solutions

Now we give the following sufficient conditions on the existence of periodic solutions.

Theorem 3.1. Assume that Assumptions 2.1–2.3 hold. Then, system (2.1) has at least one T-periodic
solution, if

P =

(
In P12

P21 In

)

(3.1)

is a nonsingular M-matrix, where In is unite matrix and P12 = (pij)n×m, pij = −b+ijMij/a
−
i ; P21 =

(qji)m×n, qji = −d+
jiNji/c

−
j .
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Proof. Let X = Z = {x(t) = (u1(t), . . . , un(t), v1(t), . . . , vm(t))
� ∈ C(R,Rn+m) | ui(t) = ui(t +

T), vj(t) = vj(t + T), i = 1, 2, . . . , n; j = 1, 2, . . . , m}, then X is a Banach space with the norm
‖x‖1 =

∑n
i=1 maxt∈[0,T]|ui(t)| +

∑m
j=1 maxt∈[0,T]|vj(t)|.

Let L : DomL ⊂ X → Z, P : X
⋂

DomL → KerL, Q : X → X/ImL, and N : X → Z
be given by the following:

Lx = (u̇1(t), u̇2(t), . . . , u̇n(t), v̇1(t), v̇2(t), . . . , v̇m(t))
�,

Px = Qx = (u1(t), u2(t), . . . , un(t), v1(t), v2(t), . . . , vm(t))
�,

Nx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−a1(t)u1(t) +
m∑

j=1

b1j(t)h1j

(∫ t1j

0
f1j(s)vj(t − s)ds

)

+ I1(t)

· · ·

−an(t)un(t) +
m∑

j=1

bnj(t)hnj

(∫ tnj

0
fnj(s)vj(t − s)ds

)

+ In(t)

−c1(t)v1(t) +
n∑

i=1

d1i(t)e1i

(∫ τ1i

0
g1i(s)ui(t − s)ds

)

+ L1(t)

· · ·

−cm(t)vm(t) +
n∑

i=1

dmi(t)emi
(∫ τmi

0
gmi(s)ui(t − s)ds

)

+ Lm(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.2)

It is easy to see that L is a linear operator with KerL = {x(t) | x(t) = κ ∈ Rn+m}.
ImL = {x(t) | x(t) ∈ Z,

∫T
0x(t)dt = 0} is closed in Z, and dim KerL = codimImL = n + m.

Therefore, L is a Fredholm mapping of index zero. It is easy to prove that P and Q are two
projectors, and ImP = KerL, ImL = KerQ = Im(I −Q). By using the Arzelá-Ascoli theorem,
it is easy to prove that for every bounded subset Ω ∈ X,Kp(I − Q)N are relatively compact
on Ω in X, that is, N is L-compact on Ω.

Consider the operator equation

Lx = λNx, λ ∈ (0, 1), (3.3)

that is

u̇i(t) = −λai(t)ui(t) + λ
m∑

j=1

bij(t)hij

(∫ tij

0
fij(s)vj(t − s)ds

)

+ λIi(t),

v̇j(t) = −λcj(t)vj(t) + λ
n∑

i=1

dji(t)eji
(∫ τji

0
gji(s)ui(t − s)ds

)

+ λLj(t),

(3.4)

where i = 1, 2, . . . , n and j = 1, 2, . . . , m. Denote μi = λ(
∑m

j=1 b
+
ijsups∈R|hij(s)| + I+i ). By using

(3.4), we obtain

−μi � u̇i(t) + λai(t)ui(t) � μi. (3.5)
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Multiplying both sides of (3.5) by eλ
∫ t

0ai(s)ds, we have

−μieλ
∫ t

0ai(s)ds �
(
ui(t)eλ

∫ t
0ai(s)ds

)′
� μie

λ
∫ t

0ai(s)ds. (3.6)

Integrating the inequality above from 0 to ν (ν � 0) [27], we obtain

−μi
∫ν

0
eλ

∫ t
0ai(s)dsdt � ui(ν)eλ

∫ν
0ai(s)ds − ui(0) � μi

∫ν

0
eλ

∫ t
0ai(s)dsdt. (3.7)

Hence,

−μi
∫ν

0
e−λ

∫ν
t ai(s)dsdt + ui(0)e−λ

∫ν
0ai(s)ds � ui(ν) � μi

∫ν

0
e−λ

∫ν
t ai(s)dsdt + ui(0)e−λ

∫ν
0ai(s)ds (3.8)

for ν � t � 0. So we have

−
(

|ui(0)| −
μi

λa−i

)

e−λa
−
i ν −

μi

λa−i
� ui(ν) �

(

|ui(0)| −
μi

λa−i

)

e−λa
−
i ν +

μi

λa−i
, (3.9)

that is,

|ui(ν)| �
∣
∣
∣
∣
∣

(

|ui(0)| −
μi

λa−i

)∣
∣
∣
∣
∣
+

μi

λa−i
, (3.10)

which implies that ui is bounded and similarly vj . By the Assumption 2.3, we know that

∫ tij

0
fij(s)vj(t − s)ds (3.11)

is uniformly convergent. Therefore, the following iterated integral:

∫T

0
ui(t)

∫ tij

0
fij(s)vj(t − s)dsdt (3.12)

can be changed integrating order.
Suppose that (u1(t), . . . , un(t), v1(t), . . . , vm(t))

� ∈ X is any periodic solution of system
(2.1) for a certain λ ∈ (0, 1). Multiplying both sides of

u̇i(t) = −λai(t)ui(t) + λ
m∑

j=1

bij(t)hij

(∫ tij

0
fij(s)vj(t − s)ds

)

+ λIi(t) (3.13)
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by ui(t) and integrating from 0 to T , we obtain

∫T

0
λai(t)u2

i (t)dt =
∫T

0
λ

m∑

j=1

bij(t)ui(t)hij

(∫ tij

0
fij(s)vj(t − s)ds

)

dt +
∫T

0
λIi(t)ui(t)dt. (3.14)

From Assumptions 2.1, 2.2, and 2.3 and noting that (
∫T

0 |vj(t − s)|2dt)1/2 =
(
∫T

0 |vj(t)|
2dt)1/2 = ‖vj‖, we have

a−i

∫T

0
u2
i (t)dt �

∫T

0
ai(t)u2

i (t)dt

=
∫T

0

m∑

j=1

bij(t)ui(t)

[

hij

(∫ tij

0
fij(s)vj(t − s)ds

)

− hij(0)
]

dt

+
∫T

0

m∑

j=1

bij(t)hij(0)ui(t)dt +
∫T

0
Ii(t)ui(t)dt

�
m∑

j=1

b+ijMij

∫+∞

0
fij(s)

∫T

0

∣
∣vj(t − s)

∣
∣|ui(t)|dt ds

+
√
T

⎛

⎝
m∑

j=1

b+ij
∣
∣hij(0)

∣
∣ + I+i

⎞

⎠‖ui‖

�
m∑

j=1

b+ijMij

∥
∥vj

∥
∥‖ui‖ +

√
T

⎛

⎝
m∑

j=1

b+ij
∣
∣hij(0)

∣
∣ + I+i

⎞

⎠‖ui‖,

(3.15)

that is,

‖ui‖ � 1
a−i

m∑

j=1

b+ijMij

∥
∥vj

∥
∥ +

√
T

a−i

⎛

⎝
m∑

j=1

b+ij
∣
∣hij(0)

∣
∣ + I+i

⎞

⎠. (3.16)

By similar argument, we have

∥
∥vj

∥
∥ � 1

c−j

n∑

i=1

d+
jiNji‖ui‖ +

√
T

c−j

(
n∑

i=1

d+
ji

∣
∣eji(0)

∣
∣ + L+

j

)

. (3.17)

It follows (3.16) and (3.17) that

Py � s, (3.18)
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where P =
(

In P12

P21 In

)
, In is a unite matrix and P12 = (pij)n×m, pij = −b+ijMij/a

−
i ; P21 = (qji)m×n,

qji = −d+
jiNji/c

−
j , y = (‖u1‖, ‖u2‖, . . . , ‖un‖, ‖v1‖, ‖v2‖, . . . , ‖vm‖)�, s = (s1, s2, . . . , sn+m)

�, si =√
T(

∑m
j=1 b

+
ij |hij(0)| + I

+
i )/a

−
i , sn+j =

√
T(

∑n
i=1 d

+
ji|eji(0)| + L

+
j )/c

−
j , 1 � i � n, 1 � j � m.

Application of Lemma 2.5 yields

y � P
−1s � (r1, r2, . . . , rn+m)�, (3.19)

which implies that

‖ui‖ � ri,
∥
∥vj

∥
∥ � rn+j . (3.20)

It is not difficult to check that there exist t∗i , t
∗
n+j ∈ [0, T] such that

ui
(
t∗i
)

� ri√
T
, vj

(
t∗n+j

)
�
rn+j√
T

(3.21)

for 1 � i � n and 1 � j � m. Multiplying both sides of (3.13) by u̇i(t) (i = 1, 2, . . . , n) and
integrating from 0 to T , we obtain

‖u̇i‖2 = λ
m∑

j=1

∫T

0
bij(t)u̇i(t)hij

(∫ tij

0
fij(s)vj(t − s)ds

)

dt

− λ
∫T

0
ai(t)u̇i(t)ui(t)dt + λ

∫T

0
Ii(t)u̇i(t)dt

= λ
m∑

j=1

∫T

0
bij(t)u̇i(t)

[

hij

(∫ tij

0
fij(s)vj(t − s)ds

)

dt − hij(0)
]

+ λ
m∑

j=1

∫T

0
bij(t)hij(0)u̇i(t)dt − λ

∫T

0
ai(t)ui(t)u̇i(t)dt + λ

∫T

0
Ii(t)u̇i(t)dt

�
m∑

j=1

b+ijMij

∫+∞

0
fij(s)

(∫T

0
|u̇i(t)|2dt

)1/2(∫T

0
|vj(t − s)|2dt

)1/2

ds

+
√
T

m∑

j=1

b+ij
∣
∣hij(0)

∣
∣‖u̇i‖ + a+i

(∫T

0
|u̇i(t)|2dt

)1/2(∫T

0
|ui(t)|2dt

)1/2

+
√
TI+i ‖u̇i‖

�
m∑

j=1

b+ijMij‖u̇i‖
∥
∥vj

∥
∥ + a+i ‖u̇i‖‖ui‖ +

√
T

m∑

j=1

b+ij
∣
∣hij(0)

∣
∣‖u̇i‖ +

√
TI+i ‖u̇i‖.

(3.22)

Therefore, ‖u̇i‖ � ∑m
j=1 b

+
ijMij‖vj‖ + a+i ‖ui‖ +

√
T(

∑m
j=1 b

+
ij |hij(0)| + I

+
i ).
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It is easy check that

ui(t) = ui(t∗) +
∫T

t∗
u̇i(t)dt � ri√

T
+
√
T‖u̇i‖

� ri√
T
+
√
T

⎡

⎣
m∑

j=1

b+ijMij

∥
∥vj

∥
∥ + a+i ‖ui‖ +

√
T

⎛

⎝
m∑

j=1

b+ij
∣
∣hij(0)

∣
∣ + I+i

⎞

⎠

⎤

⎦

� ri√
T
+
√
T

⎡

⎣
m∑

j=1

b+ijMijrn+j + a+i ri +
√
T

⎛

⎝
m∑

j=1

b+ij
∣
∣hij(0)

∣
∣ + I+i

⎞

⎠

⎤

⎦ � ri√
T
+ ζi,

vj(t) �
rn+j√
T

+
√
T

[
n∑

i=1

d+
jiNjiri + c+j rn+j +

√
T

(
n∑

i=1

d+
ji

∣
∣eji(0)

∣
∣ + L+

j

)]

�
rn+j√
T

+ ζn+j .

(3.23)

Let ξi = ri/
√
T + ζi + ε and ξn+j = rn+j/

√
T + ζn+j + ε (0 < ε � 1). We take

Ω =
{
x = (u1(t), . . . , un(t), v1(t), . . . , vm(t))� ∈ X | |ui(t)| < ξi,

∣
∣vj(t)

∣
∣ < ξn+j

}
. (3.24)

Obviously, condition (a) of Lemma 2.6 is satisfied. When x ∈ ∂Ω
⋂

KerL = ∂Ω
⋂
Rn+m,

x is a constant vector in Rn+m with |ui(t)| = ξi, |vj(t)| = ξn+j . Then, we have

ui(QNx)i = −aiu2
i + ui

m∑

j=1

bijhij
(
vj

)
+ uiIi,

vj(QNx)n+j = −cjv2
j + vj

n∑

i=1

djieji(ui) + vjLj .

(3.25)

We claim that there exists some i or j (1 � i � n, 1 � j � m) such that

ui(QNx)i < 0 or vj(QNx)n+j < 0. (3.26)

If ui(QNx)i � 0 and vj(QNx)n+j � 0, then, we obtain

aiu
2
i � ui

m∑

j=1

bijhij
(
vj

)
+ uiI+i

=
m∑

j=1

uibij
[
hij

(
vj

)
− hij(0)

]
+ ui

m∑

j=1

bijhij(0) + uiI+i

� |ui|
m∑

j=1

b+ijMij

∣
∣vj

∣
∣ + |ui|

m∑

j=1

b+ij
∣
∣hij(0)

∣
∣ + |ui|I+i .

(3.27)
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Which implies

ξi � 1
ai

m∑

j=1

b+ijMijξn+j +
1
ai

⎛

⎝
m∑

j=1

b+ij
∣
∣hij(0)

∣
∣ + I+i

⎞

⎠ � 1
a−i

m∑

j=1

b+ijMijξn+j +
si√
T
. (3.28)

By a similar argument, we obtain

ξn+j � 1
cj

n∑

i=1

d+
jiNjiξi +

1
cj

(
n∑

i=1

d+
ji

∣
∣eij(0)

∣
∣ + L+

j

)

� 1
c−j

n∑

i=1

d+
jiNjiξi +

sn+j√
T
. (3.29)

On the other hand,

ξ >
r√
T
+ ζ >

r√
T

=
P
−1s√
T
, (3.30)

where ξ = (ξ1, ξ2, . . . , ξn+m), ζ = (ζ1, ζ2, . . . , ζn+m), and r = (r1, r2, . . . , rn+m). It follows that there
exists some i or j such that

ξi −
1
a−i

m∑

j=1

b+ijMij

(
ξn+j

)
>

si√
T

(3.31)

or

ξn+j −
1
c−j

n∑

i=1

d+
jiNji(ξi) >

sn+j√
T
, (3.32)

which is contradiction with (3.28) and (3.29). Then, there exists some i or j (1 � i � n,
1 � j � m) such that ui(QNx)i < 0 or vj(QNx)n+j < 0. Therefore,

‖QNx‖1 =
n∑

i=1

|(QNx)i| +
m∑

j=1

∣
∣
∣(QNx)n+j

∣
∣
∣ > 0. (3.33)

This indicates that condition (b) of Lemma 2.6 is satisfied.
Define H(x, θ) = −θx + (1 − θ)QNx, θ ∈ [0, 1], where x = (u1(t), . . . , un(t), v1(t),

. . . , vm(t))� ∈ Rn+m. When x ∈ KerL
⋂
∂Ω, we have

‖H(x, θ)‖1 =
n∑

i=1

|H(ui, θ)| +
m∑

j=1

∣
∣H

(
vj , θ

)∣
∣

=
n∑

i=1

|−θui + (1 − θ)(QNx)i| +
m∑

j=1

∣
∣
∣−θvj + (1 − θ)(QNx)j

∣
∣
∣ > 0.

(3.34)
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According to the invariant of homology, we have

deg
{
JQNx,Ω

⋂
KerL, 0

}
/= 0, (3.35)

where J : ImQ → KerL is an isomorphism. Therefore, according to the continuation
theorem of Gaines and Mawhin, system (2.1) has at least one T -periodic solution. The proof
is completed.

Remark 3.2. In [27], the period T was assumed to be T < min{1/a+i , 1/c
+
j }. In [28], the

inequations min1�i,j�n{(ai −
∑m

j=1 djiNji), (cj −
∑n

i=1 bijMij)} > 0 must hold and also in [27].
Here, the limitation is being removed.

4. Global Exponential Stability of Periodic Solution

In this section, we discuss the global exponential stability of the periodic solution of system
(2.1). Under the assumptions of Theorem 3.1, system (2.1) has at least one T -periodic solution

x∗(t) =
(
u∗1(t), . . . , u

∗
n(t), v

∗
1(t), . . . , v

∗
m(t)

)�
. (4.1)

Now, we give the following definition about global exponential of periodic solution:

Definition 4.1. The periodic solution x∗(t) of model (2.1) is said to be globally exponentially
stable, if there exist positive constants β,M such that

⎛

⎝
n∑

i=1

|u(t) − u∗(t)|2 +
m∑

j=1

|v(t) − v∗(t)|2
⎞

⎠

1/2

≤M
∥
∥x0 − x∗0

∥
∥

2e
−βt (4.2)

for all t > 0, where x0, x∗0 represent the history of x and x∗ on (−∞, 0), respectively, and
‖x0 − x∗0‖2 = {

∑n
i=1(sup−∞<t�0|φi(t) − u∗i (t)|)

2 +
∑m

j=1(sup−∞<t�0|ψj(t) − v∗j (t)|)
2}1/2.

Definition 4.2. A matrix M is said to be diagonally dominant if |mii| � ∑
j /= i |mij | for all i,

|mii| >
∑

j /= i |mij | for at least one i, where mij denotes the entry in the ith row and jth column.

Theorem 4.3. Assume that Assumptions 2.1, 2.2, 2.4 hold and P is a nonsingularM-matrix, where
P is the same as in Theorem 3.1. System (2.1) has a unique T -periodic solution, which is globally
exponentially stable, if (Q − αI)T ∈ T and is a weakly diagonally dominant matrix as

Q =

(
Q11 Q12

Q21 Q22

)

, (4.3)

where Q11 = diag(2a−1 −
∑m

j=1 b
+
1jM1j , 2a−2 −

∑m
j=1 b

+
2jM2j , . . . , 2a−n −

∑m
j=1 b

+
njMnj); Q12 =

(mij)n×m, mij = −b+ijMij ; Q21 = (nji)m×n, nji = −d+
jiNji; Q22 = diag(2c−1 −

∑n
i=1 d

+
1iN1i, 2c−2 −∑n

i=1 d
+
2iN2i, . . . , 2c−m −

∑n
i=1 d

+
miNmi).
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Proof. Let z(t) = (u1(t) − u∗1(t), . . . , un(t) − u∗n(t), v1(t) − v∗1(t), . . . , vm(t) − v∗m(t))
�. Then,

zi(t)żi(t) = −ai(t)|zi(t)|2 +
m∑

j=1

bij(t)zi(t)hij

{∫ tij

0
fij(s)

[
zn+j(t − s) + v∗j (t − s)

]
ds

}

−
m∑

j=1

bij(t)zi(t)hij

(∫ tij

0
fij(s)v∗j (t − s)ds

)

� −a−i |zi(t)|
2 +

m∑

j=1

b+ijMij

∫ tij

0
fij(s)zi(t)zn+j(t − s)ds

� −a−i |zi(t)|
2 +

m∑

j=1

b+ijMij

∫+∞

0
fij(s)

|zi(t)|2 +
∣
∣zn+j(t − s)

∣
∣2

2
ds

� −a−i |zi(t)|
2 +

1
2

m∑

j=1

b+ijMij

(

|zi(t)|2 +
∫+∞

0
fij(s)

∣
∣zn+j(t − s)

∣
∣2
ds

)

,

zn+j(t)żn+j(t) � −c−j
∣
∣zn+j(t)

∣
∣2 +

1
2

n∑

i=1

d+
jiNji

(
∣
∣zn+j(t)

∣
∣2 +

∫+∞

0
gji(s)|zi(t − s)|2ds

)

(4.4)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m.
We define the following Lyapunov functionals:

V̂i(t) =
eαt

α
|zi(t)|2 +

1
α

m∑

j=1

b+ijMij

∫+∞

0

∫ t

t−s
fij(s)

∣
∣zn+j

(
γ
)∣
∣2
eα(γ+s)dγds,

V̂n+j(t) =
eαt

α

∣
∣zn+j(t)

∣
∣2 +

1
α

n∑

i=1

d+
jiNji

∫+∞

0

∫ t

t−s
gji(s)

∣
∣zi

(
γ
)∣
∣2
eα(γ+s)dγds.

(4.5)

Calculating the Dini upper right derivative of V̂j(t) and V̂n+j(t) along the solution of
(2.1), and estimating it via the assumptions [32], we have

D+V̂i(t) � eαt|zi(t)|2 +
eαt

α

⎧
⎨

⎩
−2a−i |zi(t)|

2 +
m∑

j=1

b+ijMij

[

|zi(t)|2 +
∫+∞

0
fij(s)

∣
∣zn+j(t − s)

∣
∣2
ds

]
⎫
⎬

⎭

+
eαt

α

⎧
⎨

⎩

m∑

j=1

b+ijMij

[∫+∞

0
fij(s)

∣
∣zn+j(t)

∣
∣2
eαsds −

∫+∞

0
fij(s)

∣
∣zn+j(t − s)

∣
∣2
ds

]
⎫
⎬

⎭

=
eαt

α

⎛

⎝α +
m∑

j=1

b+ijMij − 2a−i

⎞

⎠|zi(t)|2 +
eαt

α

m∑

j=1

b+ijMij

∣
∣zn+j(t)

∣
∣2
∫+∞

0
fij(s)eαsds

� eαt

α

⎧
⎨

⎩

⎛

⎝α +
m∑

j=1

b+ijMij − 2a−i

⎞

⎠|zi(t)|2 +
m∑

j=1

b+ijMij

∣
∣zn+j(t)

∣
∣2

⎫
⎬

⎭
,
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D+V̂n+j(t) � eαt

α

{(

α +
n∑

i=1

d+
jiNji − 2c−j

)
∣
∣zn+j(t)

∣
∣2 +

n∑

i=1

d+
jiNji|zi(t)|2

}

. (4.6)

Let

Q =

(
Q11 Q12

Q21 Q22

)

, (4.7)

where Q11 = diag(2a−1 −
∑m

j=1 b
+
1jM1j , 2a−2 −

∑m
j=1 b

+
2jM2j , . . . , 2a−n −

∑m
j=1 b

+
njMnj); Q12 =

(mij)n×m, mij = −b+ijMij ; Q21 = (nji)m×n, nji = −d+
jiNji; Q22 = diag(2c−1 −

∑n
i=1 d

+
1iN1i, 2c−2 −∑n

i=1 d
+
2iN2i, . . . , 2c−m −

∑n
i=1 d

+
miNmi).

Consider the Lyapunov functional

V(t) =
n+m∑

k=1

V̂k(t). (4.8)

When (Q − αI)T ∈ T and is a weakly diagonally dominant matrix, calculating the Dini
upper right derivative of V along the solution of (2.1), we have

D+
V(t) = D+

n+m∑

k=1

V̂k(t)

� eαt

α

⎧
⎨

⎩

⎛

⎝−2a−i +
m∑

j=1

b+ijMij + α

⎞

⎠|zi(t)|2 +
m∑

j=1

b+ijMij

∣
∣zn+j(t)

∣
∣2

⎫
⎬

⎭

+
eαt

α

{(

−2c−j +
n∑

i=1

d+
jiNji + α

)
∣
∣zn+j(t)

∣
∣2 +

n∑

i=1

d+
jiNji|zi(t)|2

}

=
eαt

α

⎧
⎨

⎩
−2a−i +

m∑

j=1

b+ijMij +
n∑

i=1

d+
jiNji + α

⎫
⎬

⎭
|zi(t)|2

+
eαt

α

⎧
⎨

⎩
−2c−j +

n∑

i=1

d+
jiNji +

m∑

j=1

b+ijMij + α

⎫
⎬

⎭
|zn+i(t)|2 < 0.

(4.9)

Therefore, for V(t) � V(0),

V(0) =
1
α

⎧
⎨

⎩

n+m∑

k=1

z2
i (0) +

m∑

j=1

b+ijMij

∫+∞

0

∫0

−s
fij(s)

∣
∣zn+j

(
γ
)∣
∣2
eα(γ+s)dγds

+
n∑

i=1

d+
jiNji

∫+∞

0

∫0

−s
gji(s)

∣
∣zi

(
γ
)∣
∣2
eα(γ+s)dγds

}
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� 1
α

⎧
⎨

⎩
n +m +

m∑

j=1

b+ijMij

∫+∞

0

∫0

−s
fij(s)eα(γ+s)dγds

+
n∑

i=1

d+
jiNji

∫+∞

0

∫0

−s
gji(s)eα(γ+s)dγds

}

max
k∈{1,...,m+n}

sup
γ�0

z2
k

(
γ
)

� 1
α
(n +m) max

k∈{1,...,m+n}
sup
γ�0

z2
k

(
γ
)

� 1
α
(n +m)

⎧
⎨

⎩

n∑

i=1

(

sup
−∞<t�0

∣
∣φi(t) − u∗i (t)

∣
∣

)2

+
m∑

j=1

(

sup
−∞<t�0

∣
∣
∣ψj(t) − v∗j (t)

∣
∣
∣

)2
⎫
⎬

⎭
.

(4.10)

Thus,

eαt

⎛

⎝
n∑

i=1

|u(t) − u∗(t)|2 +
m∑

j=1

|v(t) − v∗(t)|2
⎞

⎠ < αV(t) < αV(0)

� (n +m)

⎧
⎨

⎩

n∑

i=1

(

sup
−∞<t�0

∣
∣φi(t) − u∗i (t)

∣
∣

)2

+
m∑

j=1

(

sup
−∞<t�0

∣
∣
∣ψj(t) − v∗j (t)

∣
∣
∣

)2
⎫
⎬

⎭
,

(4.11)

that is,

⎛

⎝
n∑

i=1

|u(t) − u∗(t)|2 +
m∑

j=1

|v(t) − v∗(t)|2
⎞

⎠

1/2

<
√
n +m

∥
∥x0 − x∗0

∥
∥

2e
−αt/2. (4.12)

This means that periodic solution of system (2.1) is globally exponentially stable. The proof
is completed.

Remark 4.4. For system (2.1), when delay kernels fij(s), gji(s) are δ-functions, that is, we take
fij(s) = δ(s − �i) and gji(s) = δ(s − σj), then system (2.1) can be reduced to a fixed time delay
system and all above theorems are hold.

5. Example

In this section, we present an example to show the effectiveness and correctness of our
theoretical results.
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Figure 1: Time evolution of u1 of system (5.1).

Consider the following BAM neural networks:

u̇i(t) = −ai(t)ui(t) +
3∑

j=1

bij(t)hij

(∫ tij

0
fij(s)vj(t − s)ds

)

+ Ii(t),

v̇j(t) = −cj(t)vj(t) +
3∑

i=1

dji(t)eji
(∫ τji

0
gji(s)ui(t − s)ds

)

+ Lj(t).

(5.1)

We select a set of parameters as α = 4/5, ai(t) = 2 + 0.1 sin t, cj(t) = 2 + 0.1 cos t, fij(s) =
gji(s) = e−s, Ii(t) = −0.2 + 0.4 cos t and Lj(t) = 0.3 + 0.3 sin t, hij(s) = tanh(s), eji(s) = 1/(1 + s),
tij = τji = 20,

(
bij(t)

)
3×3 =

⎛

⎜
⎜
⎝

0.1 + 0.1 sin t 0.2 + 0.1 sin t 0.3 + 0.1 sin t

0.5 + 0.1 sin t 0.4 + 0.1 sin t 0.3 + 0.1 sin t

0.3 + 0.1 sin t 0.2 + 0.1 sin t −0.5 + 0.1 sin t

⎞

⎟
⎟
⎠,

(
dji(t)

)
3×3 =

⎛

⎜
⎜
⎝

0.2 + 0.1 cos t 0.4 + 0.1 cos t 0.1 + 0.1 cos t

−0.2 + 0.1 cos t 0.3 + 0.1 cos t 0.5 + 0.1 cos t

0.5 + 0.1 cos t 0.2 + 0.1 cos t 0.3 + 0.1 cos t

⎞

⎟
⎟
⎠.

(5.2)

Remark 5.1. A frequently used model for distributed time delays in biological, neural
networks applications is to choose for the Gamma kernel due to mathematical difficulties.
In this paper, we set a weak delay kernel, that is, an exponential kernel.
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Figure 2: Time evolution of u2 of system (5.1).
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Figure 3: Time evolution of u3 of system (5.1).

It is easy to check that maxh′ij � 1 and max e′ji � 1. Let Mij = 1 and Nji = 1. By some
computations, we obtain

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 −0.1053 −0.1579 −0.2105

0 1 0 −0.3158 −0.2632 −0.2105

0 0 1 −0.3158 −0.1579 −0.2105

−0.1579 −0.2632 −0.1053 1 0 0

−0.1579 −0.2105 −0.3158 0 1 0

−0.3158 −0.1579 −0.2105 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Figure 4: Time evolution of v1 of system (5.1).
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Figure 5: Time evolution of v2 of system (5.1).

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.9 0 0 −0.2 −0.3 −0.4

0 2.3 0 −0.6 −0.5 −0.4

0 0 2.5 −0.6 −0.3 −0.4

−0.3 −0.5 −0.2 2.8 0 0

−0.3 −0.4 −0.6 0 2.5 0

−0.6 −0.3 −0.4 0 0 2.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.3)

It is easy to check that P is a nonsingular M-matrix and (Q − 0.8I)T is a weakly
diagonally dominant matrix. From Theorem 4.3 system (5.1) has T -periodic oscillation, which
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Figure 6: Time evolution of v3 of system (5.1).

is globally exponentially stable. In Figures 1, 2, 3, 4, 5, and 6, we plot the trajectories of ui and
vj , respectively.

6. Conclusion

In this paper, we derive a new criterion for checking the global stability of periodic oscillation
of BAM neural networks with distributed delay and periodic external input sources and find
that the criterion rely on the Lipschitz constants of the signal transmission functions, weights
of the neural network and delay kernels by using the continuation theorem of Mawhin’s
coincidence degree theory, the nonsingular M-matrix and Lyapunov function. The proposed
model transforms the original interacting network into matrix analysis, thereby significantly
reducing the computational complexity and making analysis of periodic oscillation for even
large-scale networks. Most importantly, our result is very practical in the design of BAM
neural networks.
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