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Using the fixed point method, we prove the generalized Hyers-Ulam stability of the Cauchy
additive functional inequality and of the Cauchy-Jensen additive functional inequality in fuzzy
Banach spaces.

1. Introduction and Preliminaries

Katsaras [1] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Some mathematicians have defined fuzzy norms on a vector space
from various points of view [2–4]. In particular, Bag and Samanta [5], following Cheng and
Mordeson [6], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michálek type [7]. They established a decomposition theorem of a
fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed
spaces [8].

We use the definition of fuzzy normed spaces given in [5, 9, 10] to investigate a fuzzy
version of the generalized Hyers-Ulam stability for the Cauchy additive functional inequality
and for the Cauchy-Jensen additive functional inequality in the fuzzy normed vector space
setting.

Definition 1.1 (see [5, 9–11]). Let X be a real vector space. A function N : X × R → [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only ifN(x, t) = 1 for all t > 0;

(N3) N(cx, t) =N(x, t/|c|) if c /= 0;
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(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1;

(N6) for x /= 0,N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given

in [10, 11].

Definition 1.2 (see [5, 9–11]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is said to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn −x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N-
limn→∞xn = x.

Definition 1.3 (see [5, 9, 10]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all n ≥ n0
and all p > 0, we haveN(xn+p − xn, t) > 1 − ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y
is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X →
Y is said to be continuous on X (see [8]).

The stability problem of functional equations originated from a question of Ulam [12]
concerning the stability of group homomorphisms. Hyers [13] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki
[14] for additive mappings and by Th. M. Rassias [15] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th. M. Rassias [15] has provided a lot of
influence in the development of what we call generalized Hyers-Ulam stability or as Hyers-
Ulam-Rassias stability of functional equations. A generalization of the Th. M. Rassias theorem
was obtained by Găvruţa [16] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Th. M. Rassias’ approach.

The functional equation

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
)

(1.1)

is called a quadratic mapping equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic function. A generalized Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [17] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [18] noticed that the theorem of Skof
is still true if the relevant domain X is replaced by an Abelian group. Czerwik [19] proved
the generalized Hyers-Ulam stability of the quadratic functional equation.

In [20], Jun and Kim considered the following cubic functional equation:

f
(
2x + y

)
+ f

(
2x − y) = 2f

(
x + y

)
+ 2f

(
x − y) + 12f(x), (1.2)
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which is called a cubic functional equation and every solution of the cubic functional equation
is said to be a cubic mapping. In [21], Lee et al. considered the following quartic functional
equation:

f
(
2x + y

)
+ f

(
2x − y) = 4f

(
x + y

)
+ 4f

(
x − y) + 24f(x) − 6f

(
y
)
, (1.3)

which is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping. Quartic functional equations have been investigated
in [22, 23].

Surveys of expository results on related advances both in single variables and in
multivariables have been given in [24, 25]. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [26–33]).

Gilányi [34] showed that if f satisfies the functional inequality

∥∥2f(x) + 2f
(
y
) − f(x − y)∥∥ ≤ ∥∥f

(
x + y

)∥∥, (1.4)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f
(
y
)
= f

(
x + y

)
+ f

(
x − y). (1.5)

See also [35]. Fechner [36] and Gilányi [37] proved the generalized Hyers-Ulam stability of
the functional inequality (1.4). Park et al. [38] investigated the Cauchy additive functional
inequality

∥∥f(x) + f
(
y
)
+ f(z)

∥∥ ≤ ∥∥f
(
x + y + z

)∥∥ (1.6)

and the Cauchy-Jensen additive functional inequality

∥∥f(x) + f
(
y
)
+ f(2z)

∥∥ ≤
∥∥∥∥2f

(
x + y
2

+ z
)∥∥∥∥ (1.7)

and proved the generalized Hyers-Ulam stability of the functional inequalities (1.6) and (1.7)
in Banach spaces.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.
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Theorem 1.4 (see [39, 40]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.8)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Th. M. Rassias [41] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [42–47]).

The generalized Hyers-Ulam stability of different functional equations in random
normed spaces and in probabilistic normed spaces has been recently studied in [48–52].

In [53], Park et al. proved the generalized Hyers-Ulam stability of the functional
inequalities (1.6) and (1.7) in fuzzy Banach spaces in the spirit of Hyers, Ulam, and Th. M.
Rassias.

This paper is organized as follows. In Section 2, using the fixed point method, we
prove the generalized Hyers-Ulam stability of the Cauchy additive functional inequality (1.6)
in fuzzy Banach spaces. In Section 3, using fixed point method, we prove the generalized
Hyers-Ulam stability of the Cauchy-Jensen additive functional inequality (1.7) in fuzzy
Banach spaces.

Throughout this paper, assume that X is a vector space and that (Y,N) is a fuzzy
Banach space.

2. Fuzzy Stability of the Cauchy Additive Functional Inequality

In this section, using the fixed point method, we prove the generalized Hyers-Ulam stability
of the Cauchy additive functional inequality (1.6) in fuzzy Banach spaces.

Theorem 2.1. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y, z

) ≤ L

2
ϕ
(
2x, 2y, 2z

)
(2.1)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

N
(
f(x) + f

(
y
)
+ f(z), t

) ≥ min

{

N

(
f
(
x + y + z

)
,
t

2

)
,

t

t + ϕ
(
x, y, z

)

}

(2.2)
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for all x, y, z ∈ X and all t > 0. Then A(x) := N-limn→∞2nf(x/2n) exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N
(
f(x) −A(x), t

) ≥ (2 − 2L)t
(2 − 2L)t + Lϕ(x, x,−2x) (2.3)

for all x ∈ X and all t > 0.

Proof. Since f is odd, f(0) = 0. So N(f(0), t/2) = 1. Letting y = x and replacing z by −2x in
(2.2), we get

N
(
f(2x) − 2f(x), t

) ≥ t

t + ϕ(x, x,−2x) (2.4)

for all x ∈ X.
Consider the set

S :=
{
g : X −→ Y

}
(2.5)

and introduce the generalized metric on S:

d
(
g, h

)
= inf

{
μ ∈ R+ :N

(
g(x) − h(x), μt) ≥ t

t + ϕ(x, x,−2x) , ∀x ∈ X, ∀t > 0
}
, (2.6)

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 of [49].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x
2

)
(2.7)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt) ≥ t

t + ϕ(x, x,−2x) (2.8)
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for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt) =N

(
2g

(x
2

)
− 2h

(x
2

)
, Lεt

)

=N
(
g
(x
2

)
− h

(x
2

)
,
L

2
εt

)

≥ Lt/2
Lt/2 + ϕ(x/2, x/2,−x) ≥ Lt/2

Lt/2 + (L/2)ϕ(x, x,−2x)

=
t

t + ϕ(x, x,−2x)

(2.9)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld(g, h) (2.10)

for all g, h ∈ S.
It follows from (2.4) that

N

(
f(x) − 2f

(x
2

)
,
L

2
t

)
≥ t

t + ϕ(x, x,−2x) (2.11)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L/2.
By Theorem 1.4, there exists a mapping A : X → Y satisfying the following.
(1) A is a fixed point of J , that is,

A
(x
2

)
=

1
2
A(x) (2.12)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
<∞}

. (2.13)

This implies that A is a unique mapping satisfying (2.12) such that there exists a μ ∈ (0,∞)
satisfying

N
(
f(x) −A(x), μt

) ≥ t

t + ϕ(x, x,−2x) (2.14)

for all x ∈ X.
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(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

N- lim
n→∞

2nf
( x
2n

)
= A(x) (2.15)

for all x ∈ X.
(3) d(f,A) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(
f,A

) ≤ L

2 − 2L
. (2.16)

This implies that the inequality (2.3) holds.
By (2.2),

N
(
2n
(
f
( x
2n

)
+ f

( y
2n

)
+ f

( z

2n
))
, 2nt

)

≥ min

{

N

(
2nf

(
x + y + z

2n

)
, 2n−1t

)
,

t

t + ϕ
(
x/2n, y/2n, z/2n

)

} (2.17)

for all x, y, z ∈ X, all t > 0 and all n ∈ N. So

N
(
2n
(
f
( x
2n

)
+ f

( y
2n

)
+ f

( z

2n
))
, t
)

≥ min

{

N

(
2nf

(
x + y + z

2n

)
,
t

2

)
,

t/2n

t/2n + (Ln/2n) ϕ
(
x, y, z

)

} (2.18)

for all x, y, z ∈ X, all t > 0 and all n ∈ N. Since limn→∞((t/2n)/((t/2n)+(Ln/2n)ϕ(x, y, z))) = 1
for all x, y, z ∈ X and all t > 0,

N
(
A(x) +A

(
y
)
+A(z), t

) ≥N
(
A
(
x + y + z

)
,
t

2

)
(2.19)

for all x, y, z ∈ X and all t > 0. By [53, Lemma 2.1], the mapping A : X → Y is Cauchy
additive, as desired.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

N
(
f(x) + f

(
y
)
+ f(z), t

) ≥ min

{

N

(
f
(
x + y + z

)
,
t

2

)
,

t

t + θ
(‖x‖p + ∥∥y

∥∥p + ‖z‖p)
}

(2.20)
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for all x, y, z ∈ X and all t > 0. Then A(x) := N-limn→∞2nf(x/2n) exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N
(
f(x) −A(x), t

) ≥ (2p − 2)t
(2p − 2)t + (2 + 2p)θ‖x‖p (2.21)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥
∥y

∥
∥p + ‖z‖p) (2.22)

for all x, y, z ∈ X. Then we can choose L = 21−p and we get the desired result.

Theorem 2.3. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y, z

) ≤ 2Lϕ
(x
2
,
y

2
,
z

2

)
(2.23)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (2.2). Then A(x) := N-
limn→∞(1/2n)f(2nx) exists for each x ∈ X and defines an additive mapping A : X → Y such
that

N
(
f(x) −A(x), t

) ≥ (2 − 2L)t
(2 − 2L)t + ϕ(x, x,−2x) (2.24)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
2
g(2x) (2.25)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt) ≥ t

t + ϕ(x, x,−2x) (2.26)
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for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt) =N

(
1
2
g(2x) − 1

2
h(2x), Lεt

)

=N
(
g(2x) − h(2x), 2Lεt)

≥ 2Lt
2Lt + ϕ(2x, 2x,−4x) ≥ 2Lt

2Lt + 2Lϕ(x, x,−2x)

=
t

t + ϕ(x, x,−2x)

(2.27)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld(g, h) (2.28)

for all g, h ∈ S.
It follows from (2.4) that

N

(
f(x) − 1

2
f(2x),

1
2
t

)
≥ t

t + ϕ(x, x,−2x) (2.29)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1/2.
By Theorem 1.4, there exists a mapping A : X → Y satisfying the following.
(1) A is a fixed point of J , that is,

A(2x) = 2A(x) (2.30)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
<∞}

. (2.31)

This implies that A is a unique mapping satisfying (2.30) such that there exists a μ ∈ (0,∞)
satisfying

N
(
f(x) −A(x), μt

) ≥ t

t + ϕ(x, x,−2x) (2.32)

for all x ∈ X.
(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

N- lim
n→∞

1
2n
f(2nx) = A(x) (2.33)

for all x ∈ X.
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(3) d(f,A) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(
f,A

) ≤ 1
2 − 2L

. (2.34)

This implies that the inequality (2.24) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.20). Then A(x) := N-
limn→∞(1/2n)f(2nx) exists for each x ∈ X and defines an additive mapping A : X → Y such
that

N
(
f(x) −A(x), t

) ≥ (2 − 2p)t
(2 − 2p)t + (2 + 2p)θ‖x‖p (2.35)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p + ‖z‖p) (2.36)

for all x, y, z ∈ X. Then we can choose L = 2p−1 and we get the desired result.

3. Fuzzy Stability of the Cauchy-Jensen Additive Functional Inequality

In this section, using the fixed point method, we prove the generalized Hyers-Ulam stability
of the Cauchy-Jensen additive functional inequality (1.7) in fuzzy Banach spaces.

Theorem 3.1. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y, z

) ≤ L

2
ϕ
(
2x, 2y, 2z

)
(3.1)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

N
(
f(x) + f

(
y
)
+ f(2z), t

) ≥ min

{

N

(
2f

(
x + y
2

+ z
)
,
2t
3

)
,

t

t + ϕ
(
x, y, z

)

}

(3.2)

for all x, y, z ∈ X and all t > 0. Then A(x) := N-limn→∞2nf(x/2n) exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N
(
f(x) −A(x), t

) ≥ (2 − 2L)t
(2 − 2L)t + Lϕ(x, x,−x) (3.3)

for all x ∈ X and all t > 0.
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Proof. Letting y = x = −z in (3.2), we get

N
(
f(2x) − 2f(x), t

) ≥ t

t + ϕ(x, x,−x) (3.4)

for all x ∈ X.
Consider the set

S :=
{
g : X −→ Y

}
(3.5)

and introduce the generalized metric on S:

d
(
g, h

)
= inf

{
μ ∈ R+ :N

(
g(x) − h(x), μt) ≥ t

t + ϕ(x, x,−x) , ∀x ∈ X, ∀t > 0
}
, (3.6)

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 of [49].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x
2

)
(3.7)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt) ≥ t

t + ϕ(x, x,−x) (3.8)

for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt) =N

(
2g

(x
2

)
− 2h

(x
2

)
, Lεt

)

=N
(
g
(x
2

)
− h

(x
2

)
,
L

2
εt

)

≥ Lt/2
(Lt/2) + ϕ(x/2, x/2,−x/2) ≥ Lt/2

Lt/2 + (L/2)ϕ(x, x,−x)

=
t

t + ϕ(x, x,−x)

(3.9)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld(g, h) (3.10)

for all g, h ∈ S.
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It follows from (3.4) that

N

(
f(x) − 2f

(x
2

)
,
L

2
t

)
≥ t

t + ϕ(x, x,−x) (3.11)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L/2.
By Theorem 1.4, there exists a mapping A : X → Y satisfying the following.
(1) A is a fixed point of J , that is,

A
(x
2

)
=

1
2
A(x) (3.12)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
<∞}

. (3.13)

This implies that A is a unique mapping satisfying (3.12) such that there exists a μ ∈ (0,∞)
satisfying

N
(
f(x) −A(x), μt

) ≥ t

t + ϕ(x, x,−x) (3.14)

for all x ∈ X.
(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

N- lim
n→∞

2nf
( x
2n

)
= A(x) (3.15)

for all x ∈ X.
(3) d(f,A) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(
f,A

) ≤ L

2 − 2L
. (3.16)

This implies that the inequality (3.3) holds.
The rest of proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

N
(
f(x) + f

(
y
)
+ f(2z), t

) ≥ min

{

N

(
f

(
x + y
2

+ z
)
,
2t
3

)
,

t

t + θ
(‖x‖p + ∥∥y

∥∥p + ‖z‖p)
}

(3.17)
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for all x, y, z ∈ X and all t > 0. Then A(x) := N-limn→∞2nf(x/2n) exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N
(
f(x) −A(x), t

) ≥ (2p − 2)t
(2p − 2)t + 3θ‖x‖p (3.18)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥
∥y

∥
∥p + ‖z‖p) (3.19)

for all x, y, z ∈ X. Then we can choose L = 21−p and we get the desired result.

Theorem 3.3. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y, z

) ≤ 2Lϕ
(x
2
,
y

2
,
z

2

)
(3.20)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (3.2). Then A(x) := N-
limn→∞(1/2n)f(2nx) exists for each x ∈ X and defines an additive mapping A : X → Y such
that

N
(
f(x) −A(x), t

) ≥ (2 − 2L)t
(2 − 2L)t + ϕ(x, x,−x) (3.21)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
2
g(2x) (3.22)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt) ≥ t

t + ϕ(x, x,−x) (3.23)



14 Journal of Inequalities and Applications

for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt) =N

(
1
2
g(2x) − 1

2
h(2x), Lεt

)

=N
(
g(2x) − h(2x), 2Lεt)

≥ 2Lt
2Lt + ϕ(2x, 2x,−2x) ≥ 2Lt

2Lt + 2Lϕ(x, x,−x)

=
t

t + ϕ(x, x,−x)

(3.24)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld(g, h) (3.25)

for all g, h ∈ S.
It follows from (3.4) that

N

(
f(x) − 1

2
f(2x),

1
2
t

)
≥ t

t + ϕ(x, x,−x) (3.26)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1/2.
By Theorem 1.4, there exists a mapping A : X → Y satisfying the following.
(1) A is a fixed point of J , that is,

A(2x) = 2A(x) (3.27)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
<∞}

. (3.28)

This implies that A is a unique mapping satisfying (3.27) such that there exists a μ ∈ (0,∞)
satisfying

N
(
f(x) −A(x), μt

) ≥ t

t + ϕ(x, x,−x) (3.29)

for all x ∈ X.
(2) d(Jnf,A) → 0 as n → ∞. This implies the equality

N- lim
n→∞

1
2n
f(2nx) = A(x) (3.30)

for all x ∈ X.



Journal of Inequalities and Applications 15

(3) d(f,A) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(
f,A

) ≤ 1
2 − 2L

. (3.31)

This implies that the inequality (3.21) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (3.17). Then A(x) := N-
limn→∞(1/2n)f(2nx) exists for each x ∈ X and defines an additive mapping A : X → Y such
that

N
(
f(x) −A(x), t

) ≥ (2 − 2p)t
(2 − 2p)t + 3θ‖x‖p (3.32)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p + ‖z‖p) (3.33)

for all x, y, z ∈ X. Then we can choose L = 2p−1 and we get the desired result.
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