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1. Introduction

Let H be a complex Hilbert space with inner product 〈·, ·〉, and let B(H) denote the C∗-
algebra of all bounded linear operators on H. For A ∈ B(H), the usual operator norm of
an operator A is defined by

‖A‖ = sup
‖x‖=1

‖Ax‖, (1.1)

where ‖x‖ = 〈x, x〉1/2.
The numerical range of A, known also as the field of values of A, is defined as the set

of complex numbers given by

W(A) =
{〈Ax, x〉 : x ∈ H, ‖x‖ = 1

}
. (1.2)

The most important properties of the numerical range are that it is convex and its closure
contains the spectrum of the operator.
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A unitarily invariant norm ||| · ||| on H is a norm on the ideal C|||·||| of B(H), satisfying
|||UAV ||| = |||A||| for all A ∈ B(H) and all unitary operators U and V in B(H). It is called
weakly unitarily invariant norm (or invariant under similarities) if |||UAU∗||| = |||A||| for all
A ∈ B(H) and all unitary operators U ∈ B(H).

The most familiar example of weakly unitarily invariant norm is the numerical radius
w(A), defined by

w(A) = sup
{|λ| : λ ∈ W(A)

}
. (1.3)

It is well known that w(A) defines a norm on B(H) and for every A ∈ B(H), we have

1
2
‖A‖ ≤ w(A) ≤ ‖A‖. (1.4)

Thus, the usual operator norm and the numerical radius norm are equivalent. The inequalities
in (1.4) are sharp: if A2 = 0, then the first inequality becomes an equality, while the second
inequality becomes an equality ifA is normal. In fact, for a nilpotant operator AwithAn = 0,
Haagerup and Harpe [1] show thatw(A) ≤ ‖A‖ cos(π/(n+1)). In particular, when n = 2, we
get the reverse inequality of the first inequality in (1.4). For a comprehensive account on the
theory of the numerical range and numerical radius, the reader is referred to [2, 3]. A detailed
study for the field of values of a matrix is given in [4].

The inequalities in (1.4) have been improved considerably by Kittaneh in [5, 6]. It has
been shown that if A ∈ B(H), then

w(A) ≤ 1
2
∥
∥|A| + ∣

∣A∗∣∣∥∥ ≤ 1
2
(‖A‖ + ∥

∥A2∥∥1/2)
, (1.5)

1
4
∥
∥A∗A +AA∗∥∥ ≤ w2(A) ≤ 1

2
∥
∥A∗A +AA∗∥∥, (1.6)

where |A| = (A∗A)1/2 is the absolute value of A. The second inequality in (1.5) refines the
second inequality in (1.4). For diverse applications of these inequalities we refer to [5, 7].

Considerable generalizations of the first inequality in (1.5) and the second inequality
in (1.6) have been established in [8] for the numerical radius of one operator and for the sum
of two operators. It has been shown that if A,B ∈ B(H), then

wr(A) ≤ 1
2

∥
∥
∥
∣
∣A

∣
∣2rα +

∣
∣A∗∣∣2r(1−α)

∥
∥
∥, (1.7)

wr(A + B) ≤ 2r−2
∥
∥
∥
∣
∣A

∣
∣2rα +

∣
∣A∗∣∣2r(1−α) +

∣
∣B

∣
∣2rα +

∣
∣B∗∣∣2r(1−α)

∥
∥
∥ (1.8)

for 0 < α < 1 and r ≥ 1. Other recent inequalities have been obtained in [9, 10], which are
related to the Euclidean radius of two Hilbert space operators and (α, β)-normal operators in
Hilbert spaces, respectively.
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A general numerical radius inequality has been proved by Kittaneh, it has been shown
in [6] that if A,B,C,D, S, T ∈ B(H), then

w(ATB + CSD) ≤ 1
2

∥
∥
∥A

∣
∣T ∗∣∣2(1−α)A∗ + B∗|T |2αB + C

∣
∣S∗∣∣2(1−α)C∗ +D∗∣∣S

∣
∣2αD

∥
∥
∥ (1.9)

for all α ∈ (0, 1). In particular,

w(AB ± BA) ≤ 1
2
∥
∥A∗A +AA∗ + B∗B + BB∗∥∥. (1.10)

Usual operator norm inequalities for sums of operators have attracted the attention
of several mathematicians. Some of these inequalities have been introduced in [3, 11]. It has
been shown in [6] that if A and B are normal and r ≥ 1, then

∥
∥A + B

∥
∥r ≤ 2r−1

∥
∥|A|r + |B|r∥∥. (1.11)

Another important norm inequalities for unitarily invariant norms, which are related to (1.11)
assert that if A1, A2, . . . , An ∈ B(H) are positive and r ≥ 1, then
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(see, e.g., [12]).
In Section 2 of this paper, we establish a general numerical radius inequality that

generalizes (1.6), (1.7), (1.8), and (1.9), from which numerical radius inequalities for sums,
products, and commutators of operators are obtained. Usual operator norm inequalities that
generalize (1.11) and related to (1.13) are presented in Section 3.

2. A General Numerical Radius Inequality

In this section, we establish a general numerical radius inequality for Hilbert space operators
which yields well known and new numerical radius inequalities as special cases. To prove our
generalized inequality, we need the following basic lemmas. The first lemma is a generalized
form of the mixed Schwarz inequality, which has been proved by Kittaneh [13].

Lemma 2.1. Let A be an operator in B(H), and let f and g be nonnegative functions on [0,∞)which
are continuous and satisfy the relation f(t)g(t) = t for all t ∈ [0,∞). Then

∣
∣〈Ax, y〉∣∣ ≤ ∥

∥f
(|A|)x∥∥∥∥g(∣∣A∗∣∣)y

∥
∥ (2.1)

for all x and y inH.
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The second lemma, which is calledHölder-McCarthy inequality, is a well-known result
that follows from the spectral theorem for positive operators and Jensen’s inequality (see
[13]).

Lemma 2.2. Let A be a positive operator in B(H) and let x ∈ H be any unit vector. Then

〈Ax, x〉r ≤ 〈Arx, x〉 ∀ r ≥ 1. (2.2)

The third lemma concerned with positive real numbers, and it is a consequence of the
convexity of the function f(t) = tr , r ≥ 1.

Lemma 2.3. Let ai be a positive real number (i = 1, 2, . . . , n). Then

(
n∑

i=1

ai

)r

≤ nr−1
n∑

i=1

ar
i ∀ r ≥ 1. (2.3)

The fourth lemma is a norm inequality for the sum of two operators, which can be
found in [14].

Lemma 2.4. If A and B are positive operators in B(H), then

‖A + B‖ ≤ max
(‖A‖, ‖B‖) + ∥

∥A1/2B1/2∥∥. (2.4)

Another important usual operator norm inequality which will be used in this section
says that for any positive operators A,B ∈ B(H)we have (see [11])

‖ArBr‖ ≤ ‖AB‖r ∀ 0 ≤ r ≤ 1. (2.5)

Our main result of this paper, which leads to a generalization of (1.6), (1.7), (1.8), and
(1.9), can be stated as follows.

Theorem 2.5. Let Ai,Bi,Xi ∈ B(H) (i = 1, 2, . . . , n), and let f and g be nonnegative functions on
[0,∞) which are continuous and satisfy the relation f(t)g(t) = t for all t ∈ [0,∞). Then

wr

(
n∑

i=1

A∗
i XiBi

)

≤ nr−1

2

∥
∥
∥
∥
∥

n∑

i=1

([
A∗

i g
2(∣∣X∗

i

∣
∣
)
Ai

]r
+
[
B∗
i f

2(∣∣Xi

∣
∣
)
Bi

]r)
∥
∥
∥
∥
∥

(2.6)

for all r ≥ 1.
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Proof. For every unit vector x ∈ H, we have
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∣
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i XiBi

)

x, x

〉∣
∣
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∣
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∣

n∑

i=1

〈
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i XiBix, x
〉
∣
∣
∣
∣
∣

r

≤
(

n∑

i=1

∣
∣
〈
A∗

i XiBix, x
〉∣
∣

)r

=

(
n∑

i=1

∣
∣
〈
XiBix,Aix

〉∣
∣

)r

≤
(

n∑

i=1

〈
f2(∣∣Xi

∣
∣
)
Bix, Bix

〉1/2〈
g2(∣∣X∗

i

∣
∣
)
Aix,Aix

〉1/2
)r

by (2.1)

≤ nr−1
n∑

i=1

〈
B∗
i f

2(∣∣Xi

∣
∣
)
Bix, x

〉r/2〈
A∗

i g
2(∣∣X∗

i

∣
∣
)
Aix, x

〉r/2
by (2.3)

≤ nr−1
n∑

i=1

〈(
B∗
i f

2(∣∣Xi

∣
∣
)
Bi

)r
x, x

〉1/2〈(
A∗

i g
2(∣∣X∗

i

∣
∣
)
Ai

)r
x, x

〉1/2
by (2.2)

≤ nr−1

2

n∑

i=1

(〈[
B∗
i f

2(∣∣Xi

∣
∣
)
Bi

]r
x, x

〉
+
〈[

A∗
i g

2(∣∣X∗
i

∣
∣
)
Ai

]r
x, x

〉)

by the arithmetic-geometric mean inequality

=
nr−1

2

〈
n∑

i=1

([
B∗
i f

2(∣∣Xi

∣
∣
)
Bi

]r
+
[
A∗

i g
2(∣∣X∗

i

∣
∣
)
Ai

]r)
x, x

〉

.

(2.7)

Now the result follows by taking the supremum over all unit vectors in H.

Inequality (2.6) includes several numerical radius inequalities as special cases.
Samples of inequalities are demonstrated in what follows.

For f(t) = tα and g(t) = t1−α, α ∈ (0, 1), in inequality (2.6), we get the following
inequality that generalizes (1.9).

Corollary 2.6. Let Ai,Bi,Xi ∈ B(H) (i = 1, 2, . . . , n), r ≥ 1, and 0 < α < 1. Then

wr

(
n∑

i=1

A∗
i XiBi

)

≤ nr−1

2

∥
∥
∥
∥
∥

n∑

i=1

((
A∗

i

∣
∣X∗

i

∣
∣2(1−α)Ai

)r
+
(
B∗
i

∣
∣Xi

∣
∣2αBi

)r)
∥
∥
∥
∥
∥
. (2.8)

In particular,

w

(
n∑

i=1

A∗
i XiBi

)

≤ 1
2

∥
∥
∥
∥
∥

n∑

i=1

(
A∗

i

∣
∣X∗

i

∣
∣Ai + B∗

i

∣
∣Xi

∣
∣Bi

)
∥
∥
∥
∥
∥
. (2.9)
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For Ai = Bi = I (i = 1, 2, . . . , n) in inequality (2.6), we get the following numerical
radius inequalities for sums of operators that generalizes (1.8).

Corollary 2.7. Let Xi ∈ B(H) (i = 1, 2, . . . , n), and let f and g be as in Lemma 2.1. Then

wr

(
n∑

i=1

Xi

)

≤ nr−1

2

∥
∥
∥
∥
∥

n∑

i=1

(
f2r(∣∣Xi

∣
∣
)
+ g2r(∣∣X∗

i

∣
∣
))
∥
∥
∥
∥
∥

∀ r ≥ 1. (2.10)

In particular,

wr

(
n∑

i=1

Xi

)

≤ nr−1

2

∥
∥
∥
∥
∥

n∑

i=1

(∣
∣Xi

∣
∣2rα +

∣
∣X∗

i

∣
∣2r(1−α)

)
∥
∥
∥
∥
∥

∀α ∈ (0, 1). (2.11)

It should be mentioned here that the inequality in (2.11) generalizes (1.7) in the case
X1 = X2 = · · · = Xn.

Remark 2.8. The case α = 1/2 in (2.11) gives

wr

(
n∑

i=1

Xi

)

≤ nr−1

2

∥
∥
∥
∥
∥

n∑

i=1

(
|Xi|r +

∣
∣X∗

i

∣
∣r
)
∥
∥
∥
∥
∥

∀ r ≥ 1, (2.12)

which generalizes the second inequality in (1.6), while the choice n = 1 will give a
generalization of the first inequality in (1.5) and can be stated as

wr(X) ≤ 1
2

∥
∥
∥|X|r + ∣

∣X∗∣∣r
∥
∥
∥ ∀ r ≥ 1. (2.13)

Note that using (2.4) and (2.5), a related inequality can be derived from (2.13). Indeed,

wr(X) ≤ 1
2

∥
∥
∥|X|r + ∣

∣X∗∣∣r
∥
∥
∥

≤ 1
2

(
max

(∥
∥|X|r∥∥,

∥
∥
∥
∣
∣X∗∣∣r

∥
∥
∥
)
+
∥
∥
∥|X|r/2∣∣X∗∣∣r/2

∥
∥
∥
)

=
1
2

(
‖X‖r +

∥
∥
∥|X|r∣∣X∗∣∣r

∥
∥
∥
1/2)

.

(2.14)

The above inequality generalizes the second inequality in (1.5). In fact, for 1 ≤ r ≤ 2, we have

wr(X) ≤ 1
2

(
‖X‖r +

∥
∥
∥|X|r/2∣∣X∗∣∣r/2

∥
∥
∥
)

≤ 1
2

(
‖X‖r + ∥

∥|X|∣∣X∗∣∣∥∥r/2
)

=
1
2

(
‖X‖r + ∥

∥X2∥∥r/2
)
.

(2.15)
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The last equality can be proved using the polar decomposition. In fact, if X = U|X| and X∗ =
V |X∗| are the polar decompositions of X and X∗, respectively, then ‖|X||X∗|‖ = ‖U∗XXV ‖ =
‖X2‖.

It is known that w(A + B) ≤ w(A) + w(B). However, the numerical radius is not
submultiplicative, even for commuting operators. On the other hand, we have the power
inequality, which asserts that if A ∈ B(H), then

w(An) ≤ wn(A) for n = 1, 2, . . . . (2.16)

It is evident from the first inequality in (1.4) that if A,B ∈ B(H), then

w(AB) ≤ 4w(A)w(B). (2.17)

Moreover, if AB = BA, then

w(AB) ≤ 2w(A)w(B). (2.18)

These inequalities, among other related ones, can be found in [2].
For Xi = I (i = 1, 2, . . . , n) in inequality (2.6), we get the following numerical radius

inequalities for products of operators that are related to the above inequalities.

Corollary 2.9. Let Ai,Bi ∈ B(H) (i = 1, 2, . . . , n) and r ≥ 1. Then

wr

(
n∑

i=1

A∗
i Bi

)

≤ nr−1

2

∥
∥
∥
∥
∥

n∑

i=1

(∣
∣Ai

∣
∣2r +

∣
∣Bi

∣
∣2r

)
∥
∥
∥
∥
∥
. (2.19)

In particular,

w

(
n∑

i=1

A∗
i Bi

)

≤ 1
2

∥
∥
∥
∥
∥

n∑

i=1

(
A∗

i Ai + B∗
i Bi

)
∥
∥
∥
∥
∥
. (2.20)

Remark 2.10. The case n = 1 in (2.19), provides the following inequality

wr(A∗B) ≤ 1
2
∥
∥
(
A∗A

)r +
(
B∗B

)r∥∥, (2.21)

which is a numerical radius inequality for the product of operators and is related to the
arithmetic-geometric mean inequality for operators. Note that a more general inequality can
be obtained by letting α = 1/2 and n = 1 in (2.8). In fact, we have

wr(A∗XB
) ≤ 1

2
∥
∥
(
A∗|X∗|A)r +

(
B∗|X|B)r∥∥. (2.22)
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For r = 1 in (2.22), we obtain the inequality

w
(
A∗XB

) ≤ 1
2
∥
∥A∗∣∣X∗∣∣A + B∗|X|B∥∥ (2.23)

as well as

w
(
A∗XB

) ≤ 1
2
∥
∥AA∗X +XBB∗∥∥ (2.24)

which follows from the the arithmetic-geometric mean inequality for operators (see [15]).
Inequalities (2.23) and (2.24) are not equivalent. This can be seen from the exampleA = [ 1 0

0 0 ],
X = I, B = [ 0 1

0 0 ].

The inequality in (2.22) can be used to give an upper bound for the numerical radius
of A2 and A3. In fact, we have

wr(A2) ≤ 1
2
∥
∥(AA∗)r + (A∗A)r

∥
∥, (2.25)

wr(A3) ≤ 1
2
∥
∥A|A∗|A∗ +A∗|A|A∥

∥. (2.26)

The commutator ofA and B is the operatorAB−BA. Commutators play an important
role in operator theory. It follows by the triangle inequality that if A,B ∈ B(H), then ‖AB −
BA‖ ≤ 2‖A‖‖B‖.

For n = 2 in inequality (2.6), we get the following numerical radius inequalities that
generalize (1.9), and give an estimate for the numerical radius of commutators.

Corollary 2.11. Let A,B,C,D, S, T ∈ B(H), and let f and g be as in Theorem 2.5. Then

wr(ATB + CSD)

≤ 2r−2
∥
∥
∥
(
Ag2(∣∣T ∗∣∣)A∗)r +

(
B∗f2(|T |)B)r + (

Cg2(∣∣S∗∣∣)C∗)r +
(
D∗f2(|S|)D)r

∥
∥
∥

(2.27)

for r ≥ 1. In particular,

wr(ATB + CSD) ≤ 2r−2
∥
∥
∥
(
A
∣
∣T ∗∣∣A∗)r +

(
B∗|T |B)r + (

C
∣
∣S∗∣∣C∗)r +

(
D∗|S|D)r

∥
∥
∥. (2.28)

We end this section by the following remark.

Remark 2.12. Inequality (2.28) gives a numerical radius inequality for commutators of
operators that generalizes (1.10). If D = A, C = B, and S = ±T = X, then

wr(AXB ± BXA) ≤ 2r−2
∥
∥
∥
(
A∗∣∣X∗∣∣A

)r +
(
A|X|A∗)r +

(
B∗|X|B)r + (

B
∣
∣X∗∣∣B∗)r

∥
∥
∥. (2.29)
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In particular,

wr(AB ± BA) ≤ 2r−2
∥
∥
∥|A|2r + ∣

∣A∗∣∣2r + |B|2r + ∣
∣B∗∣∣2r

∥
∥
∥. (2.30)

In fact, by letting B = A∗ in (2.29) and (2.30), respectively, we get the following inequalities
for the generalized commutator and the self commutator

wr(A∗XA ±AXA∗) ≤ 2r−1
∥
∥
∥
(
A∗|X|A)r +

(
A|X|A∗)r

∥
∥
∥, (2.31)

wr(A∗A ±AA∗) ≤ 2r−1
∥
∥
∥|A|2r + ∣

∣A∗∣∣2r
∥
∥
∥. (2.32)

3. A General Norm Inequality

In this section, we introduce a general norm inequality for Hilbert space operators, from
which new inequalities for operators and generalizations of earlier results can be derived. The
proof of this general inequality is similar to that of Theorem 2.5 under slight modification.

Theorem 3.1. Let Ai,Bi,Xi ∈ B(H) (i = 1, 2, . . . , n), and let f and g be as in Theorem 2.5. Then

∥
∥
∥
∥
∥

n∑

i=1

A∗
i XiBi

∥
∥
∥
∥
∥

r

≤ nr−1

2

(∥
∥
∥
∥
∥

n∑

i=1

(
A∗

i g
2(∣∣X∗

i

∣
∣
)
A
)r
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

n∑

i=1

(
B∗
i f

2(∣∣Xi

∣
∣
)
Bi

)r
∥
∥
∥
∥
∥

)

(3.1)

for r ≥ 1.

Inequality (3.1) yields several norm inequalities as special cases. Samples of these
inequalities are demonstrated below.

Corollary 3.2. Let Ai,Bi,Xi ∈ B(H) (i = 1, 2, . . . , n), r ≥ 1, and α ∈ (0, 1). Then

∥
∥
∥
∥
∥

n∑

i=1

A∗
i XiBi

∥
∥
∥
∥
∥

r

≤ nr−1

2

(∥
∥
∥
∥
∥

n∑

i=1

(
A∗

i

∣
∣X∗

i

∣
∣2(1−α)A

)r
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

n∑

i=1

(
B∗
i

∣
∣Xi

∣
∣2αBi

)r
∥
∥
∥
∥
∥

)

. (3.2)

In particular,

∥
∥A∗XB

∥
∥r ≤ 1

2

(∥
∥
(
A∗∣∣X∗∣∣A

)r∥∥ +
∥
∥
(
B∗|X|B)r∥∥

)
. (3.3)

For Ai = Bi = I (i = 1, 2, . . . , n) in inequality (3.2), we get the following operator
inequalities for sums of operators.

Corollary 3.3. Let Xi ∈ B(H) (i = 1, 2, . . . , n), r ≥ 1, and α ∈ (0, 1). Then

∥
∥
∥
∥
∥

n∑

i=1

Xi

∥
∥
∥
∥
∥

r

≤ nr−1

2

(∥
∥
∥
∥
∥

n∑

i=1

∣
∣Xi

∣
∣2αr

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

n∑

i=1

∣
∣X∗

i

∣
∣2(1−α)r

∥
∥
∥
∥
∥

)

. (3.4)
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In particular, if Xi is normal (i = 1, 2, . . . , n), then

∥
∥
∥
∥
∥

n∑

i=1

Xi

∥
∥
∥
∥
∥

r

≤ nr−1
∥
∥
∥
∥
∥

n∑

i=1

∣
∣Xi

∣
∣r
∥
∥
∥
∥
∥
. (3.5)

Remark 3.4. The inequality (3.5) is a generalized form of (1.11). The normality of Xi is
necessary, this inequality is not true for arbitrary operators Xi, as may be seen for n = 2, X1 =
[ 0 1
0 0 ] and X2 = [ 1 0

0 0 ].

For Xi = I (i = 1, 2, . . . , n) in inequality (3.2), we get norm inequalities for products of
operators.

Corollary 3.5. Let Ai, Bi ∈ B(H) (i = 1, 2, . . . , n) and r ≥ 1. Then

∥
∥
∥
∥
∥

n∑

i=1

A∗
i Bi

∥
∥
∥
∥
∥

r

≤ nr−1

2

(∥
∥
∥
∥
∥

n∑

i=1

∣
∣Ai

∣
∣2r

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

n∑

i=1

∣
∣Bi

∣
∣2r

∥
∥
∥
∥
∥

)

. (3.6)

In particular,

∥
∥
∥
∥
∥

n∑

i=1

A∗
i Bi

∥
∥
∥
∥
∥
≤ 1

2

(∥
∥
∥
∥
∥

n∑

i=1

A∗
i Ai

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

n∑

i=1

B∗
i Bi

∥
∥
∥
∥
∥

)

. (3.7)

For n = 2 in inequality (3.2), we get the following norm inequalities that give an
estimate for the usual norm of commutators.

Corollary 3.6. Let A,B,C,D, S, T ∈ B(H), and let r ≥ 1. Then

‖ATB + CSD‖r ≤ 2r−2
(∥
∥
(
A
∣
∣T ∗∣∣A∗)r +

(
C
∣
∣S∗∣∣C∗)r∥∥ +

∥
∥
(
B∗|T |B)r + (

D∗|S|D)r∥∥
)
. (3.8)

Finally, we end this paper by the following remark.

Remark 3.7. Inequality (3.8) gives a norm inequality for commutators of operators. If D = A,
C = B, and T = ±S = X, then we get

‖AXB ± BXA‖r ≤ 2r−2
(∥
∥
(
A|X∗|A∗)r +

(
B|X∗|B∗)r∥∥ +

∥
∥
(
B∗|X|B)r + (

A∗|X|A)r∥∥
)
. (3.9)

In particular,

‖AB ± BA‖r ≤ 2r−2
∥
∥
∥|A|2r + ∣

∣A∗∣∣2r + |B|2r + ∣
∣B∗∣∣2r

∥
∥
∥. (3.10)

In fact, by letting B = A∗ in (3.10), we get the following inequality for self commutator

∥
∥A∗A ±AA∗∥∥r ≤ 2r−1

∥
∥
∥
∣
∣A

∣
∣2r +

∣
∣A∗∣∣2r

∥
∥
∥. (3.11)
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Moreover a related inequality to (3.11) can be derived from (1.12) and (1.13). Indeed,

∣
∣
∣
∣
∣
∣
∣
∣
∣
(
A∗A

)r +
(
AA∗)r

∣
∣
∣
∣
∣
∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣
∣
∣
∣
(
A∗A +AA∗)r

∣
∣
∣
∣
∣
∣
∣
∣
∣ ≤ 2r−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
(
A∗A

)r +
(
AA∗)r

∣
∣
∣
∣
∣
∣
∣
∣
∣. (3.12)

Acknowledgment

The authors thank the anonymous referee for his valuable comments and suggestions for
improving this paper.

References

[1] U. Haagerup and P. de la Harpe, “The numerical radius of a nilpotent operator on a Hilbert space,”
Proceedings of the American Mathematical Society, vol. 115, no. 2, pp. 371–379, 1992.

[2] K. E. Gustafson and D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices,
Universitext, Springer, New York, NY, USA, 1997.

[3] X. Zhan,Matrix Inequalities, vol. 1790 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2002.
[4] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK,

1991.
[5] F. Kittaneh, “A numerical radius inequality and an estimate for the numerical radius of the Frobenius

companion matrix,” Studia Mathematica, vol. 158, no. 1, pp. 11–17, 2003.
[6] F. Kittaneh, “Numerical radius inequalities for Hilbert space operators,” Studia Mathematica, vol. 168,

no. 1, pp. 73–80, 2005.
[7] F. Kittaneh, “Bounds for the zeros of polynomials from matrix inequalities,” Archiv der Mathematik,

vol. 81, no. 5, pp. 601–608, 2003.
[8] M. El-Haddad and F. Kittaneh, “Numerical radius inequalities for Hilbert space operators. II,” Studia

Mathematica, vol. 182, no. 2, pp. 133–140, 2007.
[9] S. S. Dragomir, “Some inequalities for the Euclidean operator radius of two operators in Hilbert

spaces,” Linear Algebra and Its Applications, vol. 419, no. 1, pp. 256–264, 2006.
[10] S. S. Dragomir andM. S. Moslehian, “Some inequalities for (α, β)-normal operators in Hilbert spaces,”

Facta Universitatis. Series: Mathematics and Informatics, vol. 23, pp. 39–47, 2008.
[11] R. Bhatia,Matrix Analysis, vol. 169 of Graduate Texts in Mathematics, Springer, Berlin, Germany, 1997.
[12] K. Shebrawi and H. Albadawi, “Operator norm inequalities of Minkowski type,” Journal of Inequalities

in Pure and Applied Mathematics, vol. 9, no. 1, article 26, pp. 1–10, 2008.
[13] F. Kittaneh, “Notes on some inequalities for Hilbert space operators,” Publications of the Research

Institute for Mathematical Sciences, vol. 24, no. 2, pp. 283–293, 1988.
[14] F. Kittaneh, “Norm inequalities for certain operator sums,” Journal of Functional Analysis, vol. 143, no.

2, pp. 337–348, 1997.
[15] F. Kittaneh, “A note on the arithmetic-geometric-mean inequality for matrices,” Linear Algebra and Its

Applications, vol. 171, pp. 1–8, 1992.


