
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2009, Article ID 494257, 18 pages
doi:10.1155/2009/494257

Research Article
A Hilbert-Type Linear Operator with the Norm and
Its Applications

Wuyi Zhong

Department of Mathematics, Guangdong Institute of Education, Guangzhou, Guangdong 510303, China

Correspondence should be addressed to Wuyi Zhong, wp@bao.ac.cn

Received 9 February 2009; Accepted 9 March 2009

Recommended by Nikolaos Papageorgiou

A Hilbert-type linear operator T : �p
φ
→ �

p
ψ is defined. As for applications, a more precise operator

inequality with the norm and its equivalent forms are deduced. Moreover, three equivalent
reverses from them are given as well. The constant factors in these inequalities are proved to be
the best possible.

Copyright q 2009 Wuyi Zhong. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In 1925, Hardy [1] extended Hilbert inequality as follows.
If p > 1, 1/p + 1/q = 1, an, bn ≥ 0, 0 <

∑∞
n=1a

p
n <∞, and 0 <

∑∞
n=1b

q
n <∞, then

∞∑

n=1

∞∑

m=1

ambn
m + n

<
π

sin
(
π/p
)

( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q

, (1.1)

∞∑

n=1

[ ∞∑

m=1

am
m + n

]p

<

[
π

sin(π/p)

]p ∞∑

n=1

a
p
n, (1.2)

where (p, q) is a pair of conjugate exponents. The constant factors π/sin(π/p) and
[π/sin(π/p)]p are the best possible. The expression (1.1) is the famous Hardy-Hilbert’s
inequality.
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Under the same conditions, there are the classic inequalities [2]:

∞∑

n=1

∞∑

m=1

ln(m/n)ambn
m − n <

[
π

sin
(
π/p
)

]2( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q

, (1.3)

∞∑

n=1

[ ∞∑

m=1

ln(m/n)am
m − n

]p

<

[
π

sin
(
π/p
)

]2p ∞∑

n=1

a
p
n, (1.4)

where the constant factors [π/sin(π/p)]2 and [π/sin(π/p)]2p are also the best possible. The
expression (1.3) is well known as a Hilbert-type inequality.

By setting a real space of sequences: �p := {a; a = {an}∞n=0, ‖a‖p = {∑∞
n=1|an|p}1/p < ∞}

and defining a linear operator T : �p → �p, (Ta)(n) = Cn =
∑∞

n=1(ln(m/n)am/(m − n))
(n ∈N0), the expressions (1.3) and (1.4) can be rewritten as

(Ta, b) < ‖T‖‖a‖p‖b‖q, (1.5)

‖Ta‖p < ‖T‖‖a‖p, (1.6)

respectively, where ‖T‖ = [π/sin(π/p)]2, b ∈ �q. (Ta, b) is the formal inner product of Ta
and b.

The inequalities (1.1)–(1.4) play important roles in theoretical analysis and appli-
cations [3]. These inequalities and their integral forms have been recently extended
or strengthened in [4–8]. Zhao and Debnath [9] obtained a Hilbert-Pachpatte’s reverse
inequality. Zhong and Yang [10, 11] have given some reverses concerning some extensions
of (1.1). Papers in [12–15] studied some multiple Hardy-Hilbert-type or Hilbert-type
inequalities. Articles in [16, 17] got some Hilbert-type linear operator inequalities. In 2006,
Yang [18] deduced a new Hilbert-type inequality as follows.

Set (p, q) as a pair of conjugate exponents, and p > 1, 1/2 ≤ α ≤ 1, an, bn ≥ 0, such that
0 <
∑∞

n=1a
p
n <∞, 0 <

∑∞
n=1b

q
n <∞, then one has

∞∑

n=0

∞∑

m=0

ln((m + α)/(n + α))ambn
m − n <

[
π

sin
(
π/p
)

]2( ∞∑

n=0

a
p
n

)1/p( ∞∑

n=0

b
q
n

)1/q

, (1.7)

∞∑

n=0

[ ∞∑

m=0

ln((m + α)/(n + α))am
m − n

]p

<

[
π

sin
(
π/p
)

]2p ∞∑

n=0

a
p
n. (1.8)

It has been proved that (1.7) and (1.8) are two equivalent inequalities and their constant
factors [π/sin(π/p)]2 and [π/sin(π/p)]2p are the best possible. When α = 1, the expressions
(1.7) and (1.8) can be reduced to (1.3) and (1.4), respectively.

This paper reports the studies on a Hilbert-type linear operator T : �p
φ

→ �
p
ψ . As

for the applications, a more precise linear operator’s general form of Hilbert-type inequality
(1.3) incorporating the norm and its equivalent form are deduced. Moreover, three equivalent
reverses of the new general forms are deduced as well. The constant factors in these
inequalities are all the best possible.

At first, two known results are introduced.
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(1) If s > 1, (r, s) is a pair of conjugate exponents, then the Beta function is defined as
follows (cf. [2, Theorem342]),

∫∞

0

ln u

u − 1
u1/s−1du =

[
π

sin(π/s)

]2
=
[

B

(
1
s
,
1
r

)]2
=
[

B

(
1
r
,
1
s

)]2
. (1.9)

(2) (Euler-Maclaurin’s summation formula). Set f ∈ C3[0,∞), if (−1)if (i)(x) >
0, f (i)(∞) = 0 (i = 0, 1, 2, 3), then (cf. [19, Lemma1])

∞∑

n=0

f(n) <
∫∞

0
f(x)dx +

1
2
f(0) − 1

12
f ′(0), (1.10)

∞∑

n=0

f(n) >
∫∞

0
f(x)dx +

1
2
f(0). (1.11)

2. Lemmas

Lemma 2.1. Set (r, s) as a pair of conjugate exponents, s > 1, α > 0, 0 < λ ≤ 1, and define

g(u) : =

⎧
⎪⎨

⎪⎩

lnu
u − 1

, u ∈ (0, 1) ∪ (1,∞),

1, u = 1,
(2.1)

fs(x) : = hm,λ
(

x,
1
s

)

:= g

((
x + α
m + α

)λ
)[(

x + α
m + α

)λ
]1/s−1/λ

, x ∈ (−α,∞), m ∈N0. (2.2)

Then, one has the following:

(1) the function fs(x) satisfies the conditions of (1.10) and (1.11). This means

(−1)if (i)
s (x) > 0 (x > −α), f

(i)
s (∞) = 0 (i = 0, 1, 2, 3), (2.3)

(2)

kλ(s) :=
1

λ(m + α)

∫∞

−α
fs(x)dx =

[
B(1/s, 1/r)

λ

]2
=
[

π

λ sin(π/s)

]2
. (2.4)

Proof. (1) For α > 0, x > −α, m ∈ N0, 0 < λ ≤ 1 and s > 1, set z(x) = g(((x + α)/(m + α))λ),

t(x) = [((x + α)/(m + α))λ]
1/s−1/λ

= ((x + α)/(m + α))λ/s−1 and u = ((x + α)/(m + α))λ. These
show that z(x) = g(u) and fs(x) = z(x)t(x) = g(u)t(x) when u > 0. With the settings,
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(−1)ig(i)(u) > 0, g(i)(∞) = 0 (u > 0, i = 0, 1, 2, 3) (cf. [16, Lemma2.2]), one has z(x) > 0,
t(x) > 0,

z′(x) = g ′(u)
λ

m + α

(
x + α
m + α

)λ−1
< 0,

z′′(x) = g ′′(u)

[
λ

m + α

(
x + α
m + α

)λ−1]2
+ g ′(u)

λ(λ − 1)

(m + α)2

(
x + α
m + α

)λ−2
> 0,

z′′′(x) = g ′′′(u)

[
λ

m + α

(
x + α
m + α

)λ−1]3
+ 3g ′′(u)

λ2(λ − 1)

(m + α)3

(
x + α
m + α

)2λ−3

+ g ′(u)
λ(λ − 1)(λ − 2)

(m + α)3

(
x + α
m + α

)λ−3
< 0,

t′(x) =
λ/s − 1
m + α

(
x + α
m + α

)λ/s−2
< 0,

t′′(x) =
(λ/s − 1)(λ/s − 2)

(m + α)2

(
x + α
m + α

)λ/s−3
> 0,

t′′′(x) =
(λ/s − 1)(λ/s − 2)(λ/s − 3)

(m + α)3

(
x + α
m + α

)λ/s−4
< 0.

(2.5)

These are followed by

fs(x) = z(x)t(x) > 0, fs(∞) = 0,

f ′
s(x) = z

′(x)t(x) + z(x)t′(x) < 0, f ′
s(∞) = 0,

(2.6)

f ′′
s (x) = z

′′(x)t(x) + 2z′(x)t′(x) + z(x)t′′(x) > 0, f ′′
s (∞) = 0,

f ′′′
s (x) = z

′′′(x)t(x) + 3z′′(x)t′(x) + 3z′(x)t′′(x) + z(x)t′′′(x) < 0, f ′′′
s (∞) = 0.

(2.7)

Then inequality (2.3) holds.
(2) For x > −α,m ∈N0 and λ > 0, s > 1, set u = ((x + α)/(m + α))λ, then one has

1
λ(m + α)

∫∞

−α
fs(x)dx =

1
λ

∫∞

−α

ln ((x + α)/(m + α))λ

((x + α)/(m + α))λ − 1

[(
x + α
m + α

)λ
]1/s−1/λ

d

(
x + α
m + α

)

=
1
λ2

∫∞

0

ln u

u − 1
u1/s−1du.

(2.8)

By (1.9), then (2.4) holds. Lemma 2.1 is proved.
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Lemma 2.2. Set (r, s) as a pair of conjugate exponents, s > 1, α ≥ 1/2, 0 < λ ≤ 1 and define

ωλ(m, s) :=
∞∑

n=0

ln((n + α)/(m + α))

(n + α)λ − (m + α)λ
· (m + α)λ/r

(n + α)1−λ/s
(m ∈N0), (2.9)

then, one has

0 < ωλ(m, s) < kλ(s), (2.10)

0 < ωλ(n, r) < kλ(r) = kλ(s) (n ∈N0), (2.11)

where kλ(s) is defined by (2.4).

Proof. By (2.9) and (2.2), it is evident that

0 < ωλ(m, s) =
1

λ(m + α)

∞∑

n=0

ln ((n + α)/(m + α))λ

((n + α)/(m + α))λ − 1

[(
n + α
m + α

)λ
]1/s−1/λ

=
1

λ(m + α)

∞∑

n=0

hm,λ

(

n,
1
s

)

=
1

λ(m + α)

∞∑

n=0

fs(n).

(2.12)

In view of (2.3), (1.10), and (2.4), one has

ωλ(m, s) <
1

λ(m + α)

[∫∞

0
fs(x)dx +

1
2
fs(0) − 1

12
f ′
s(0)
]

=
1

λ(m + α)

{∫∞

−α
fs(x)dx −

[∫0

−α
fs(x)dx − 1

2
fs(0) +

1
12
f ′
s(0)

]}

= kλ(s) − 1
λ(m + α)

R(s,m),

(2.13)

where R(s,m) :=
∫0
−αfs(x)dx − (1/2)fs(0) + (1/12)f ′

s(0) (m ∈N0). With (2.6), it follows that

fs(0) = z(0)t(0) = g

((
α

m + α

)λ
)(

α

m + α

)λ/s−1
, (2.14)

f ′
s(0) = z

′(0)t(0) + z(0)t′(0)

=
λ − s
sα

g

((
α

m + α

)λ
)(

α

m + α

)λ/s−1
+
λ

α
g ′
((

α

m + α

)λ
)(

α

m + α

)λ/s+λ−1
.

(2.15)
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Set u = ((x + α)/(m + α))λ, with the partial integration, by the strictly monotonic increase of
g ′(u)(g ′′(u) > 0) and s = r/(r − 1), it gives

∫0

−α
f(x)dx

= (m + α)
∫0

−α

ln ((x + α)/(m + α))λ

((x + α)/(m + α))λ − 1

[(
x + α
m + α

)λ
]1/s−1/λ

d
x + α
m + α

=
m + α
λ

∫ (α/(m+α))λ

0
g(u)u1/s−1du

=
s(m + α)

λ

∫ (α/(m+α))λ

0
g(u)du1/s

=
s(m + α)

λ
g

((
α

m + α

)λ
)(

α

m + α

)λ/s
− s(m + α)

λ

∫ (α/(m+α))λ

0
u1/sg ′(u)du

>
sα

λ
g

((
α

m + α

)λ
)(

α

m + α

)λ/s−1
− r(m + α)
λ(r − 1)

g ′
((

α

m + α

)λ
)∫ (α/(m+α))λ

0
u1−1/rdu

=
sα

λ
g

((
α

m + α

)λ
)(

α

m + α

)λ/s−1
− r2(m + α)
λ(r− 1)(2r− 1)

g ′
((

α

m + α

)λ
)[(

α

m + α

)λ
]2−1/r

=
sα

λ
g

((
α

m + α

)λ
)(

α

m + α

)λ/s−1
− r2α

λ(r − 1)(2r − 1)
g ′
((

α

m + α

)λ
)(

α

m + α

)λ/s+λ−1
.

(2.16)

In view of (2.13)–(2.16), one has

R(s,m) >
(
sα

λ
− 1
2
+
λ − s
12sα

)

g

((
α

m + α

)λ
)(

α

m + α

)λ/s−1

−
[

r2α

λ(r − 1)(2r − 1)
− λ

12α

]

g ′
((

α

m + α

)λ
)(

α

m + α

)λ/s+λ−1
.

(2.17)

If α ≥ 1/2, s > 1(r > 1), 0 < λ ≤ 1, g(u) > 0, −g ′(u) > 0, one has

sα

λ
− 1
2
+
λ − s
12sα

=
12s2α2 − 6sαλ + λ(λ − s)

12sαλ
=

6sα(2sα − λ) − λ(s − λ)
12sαλ

≥ 6sα(s − λ) − λ(s − λ)
12sαλ

=
(6sα − λ)(s − λ)

12sαλ
> 0,

r2α

λ(r − 1)(2r − 1)
− λ

12α
=

12r2α2 − λ2(r − 1)(2r − 1)
12λα(r − 1)(2r − 1)

=
2r2
(
6α2 − λ2) + λ2(3r − 1)
12λα(r − 1)(2r − 1)

> 0.

(2.18)
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This means that R(s,m) > 0. By (2.13) and (2.4), the inequalities (2.10) and (2.11) hold.
Lemma 2.2 is proved.

Lemma 2.3. Set (r, s) as a pair of conjugate exponents, s > 1, α ≥ 1/2, 0 < λ ≤ 1, and ωλ(m, s),
kλ(s) are defined by (2.9), (2.4), respectively, then,

(1) ωλ(m, s) > kλ(s)
[
1 − ηλ(m)

]
, (2.19)

(2) 0 < ηλ(m) < θλ(r) < 1

(

θλ(r) :=
1

kλ(s)λ2

∫1

0

lnu
u − 1

u−1/rdu

)

, (2.20)

(3) ηλ(m) = O

((
1

m + α

)λ/2s
)

(m −→ ∞), (2.21)

where ηλ(m) := (1/kλ(s)λ(m + α))[
∫0
−αfs(x)dx − (1/2)fs(0)], fs(x) is defined by (2.2).

Proof. By (2.12), (1.11), and (2.4),

ωλ(m, s) =
1

λ(m + α)

∞∑

n=0

fs(n) >
1

λ(m + α)

[∫∞

0
fs(x)dx +

1
2
fs(0)

]

=
1

λ(m + α)

[∫∞

−α
fs(x)dx −

∫0

−α
fs(x)dx +

1
2
fs(0)

]

= kλ(s)

{

1 − 1
kλ(s)λ(m + α)

[∫0

−α
fs(x)dx − 1

2
fs(0)

]}

= kλ(s)
[
1 − ηλ(m)

]
.

(2.22)

This implies that (2.19) holds.
From the monotonic decrease of the function fs(x) (see (2.3)), fs(0) > 0 and α ≥ 1/2,

one has ηλ(m) > (1/kλ(s)λ(m + α))[αfs(0) − (1/2)fs(0)] ≥ 0. On the other hand, if fs(0) > 0
and by the computation as in (2.16),

ηλ(m) =
1

kλ(s)λ(m + α)

[∫0

−α
fs(x)dx − 1

2
fs(0)

]

<
1

kλ(s)λ(m + α)

∫0

−α
fs(x)dx =

1
kλ(s)λ2

∫ (α/(m+α))λ

0

ln u

u − 1
u1/s−1du ≤ θλ(r) < 1.

(2.23)

Equation (2.20) is valid.
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Since limu→ 0+(ln u/(u − 1))u1/2s = 0 (s > 1), there exists a constant L > 0, such that
|(ln u/(u − 1))u1/2s| ≤ L (u ∈ (0, (α/(m + α))λ)). Then,

0 < ηλ(m) <
L

kλ(s)λ2

∫ (α/(m+α))λ

0
u1/2s−1du =

2sL
kλ(s)λ2

(
α

m + α

)λ/2s
. (2.24)

This means that ηλ(m) = O((1/(m + α))λ/2s) (m → ∞), the proof is finished.

Lemma 2.4. Set (p, q) and (r, s) as two pairs of conjugate exponents, p > 1, r > 1, α > 0, λ > 0,

0 < ε < pλ/2r, ãm := (m+α)λ/r−ε/p−1, b̃n := (n+α)λ/s−ε/q−1, and kλ(s) is defined by (2.4). Defining

I1 := ε

{ ∞∑

m=0
(m + α)p(1−λ/r)−1ãpm

}1/p{ ∞∑

n=0
(n + α)q(1−λ/s)−1b̃qn

}1/q

,

I2 := ε
∫∫∞

1−α

(x + α)λ/r−ε/p−1
(
y + α

)λ/s−ε/q−1ln
(
(x + α)/

(
y + α

))

(x + α)λ − (y + α
)λ dx dy,

(2.25)

then

(1) 0 < I1 <
ε

α1+ε
+

1
αε
, (2.26)

(2) I2 ≥ kλ(s) + o(1) (ε −→ 0+). (2.27)

Proof. (1) By α > 0 and ε > 0, one has

0 < I1 = ε

[ ∞∑

m=0
(m + α)−1−ε

]1/p[ ∞∑

n=0
(n + α)−1−ε

]1/q

= ε

[
1
α1+ε

+
∞∑

n=1

1

(n + α)1+ε

]

< ε

[
1
α1+ε

+
∫∞

0

1

(x + α)1+ε
dx

]

= ε
[

1
α1+ε

− 1
ε
(x + α)−ε

∣
∣
∣
∣

∞

0

]

,

(2.28)

which implies that inequality (2.26) holds.
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(2) By y ≥ 1 − α, letting 0 < ε < pλ/2r, one has (y + α)−1−ε ≤ (y + α)−1. And setting
u = ((x + α)/(y + α))λ, with limu→ 0+(ln u/(u − 1))u1/2r = 0 (r > 1), |(ln u/(u − 1))u1/2r | ≤
L1 (u ∈ (0, 1), L1 > 0), one has

I2 =
ε

λ2

∫∞

1−α

(
y + α

)−1−ε
[∫∞

(1/(y+α))λ
ln u

u − 1
u1/r−ε/pλ−1du

]

dy

=
ε

λ2

∫∞

1−α

(
y + α

)−1−ε
⎡

⎣

∫∞

0

ln u

u − 1
u1/r−ε/pλ−1du −

∫(1/(y+α))λ

0

ln u

u − 1
u1/r−ε/pλ−1du

⎤

⎦dy

=
B2(1/r − ε/pλ, 1/s + ε/pλ)

λ2
− ε

λ2

∫∞

1−α

(
y + α

)−1−ε
⎡

⎣

∫(1/(y+α))λ

0

ln u

u − 1
u1/r−ε/pλ−1du

⎤

⎦dy

≥ B2(1/r − ε/pλ, 1/s + ε/pλ)

λ2
− εL1

λ2

∫∞

1−α

(
y + α

)−1
⎡

⎣

∫(1/(y+α))λ

0
u1/2r−ε/pλ−1du

⎤

⎦dy

=

[
B
(
1/r − ε/pλ, 1/s + ε/pλ)

λ

]2

− εL1

λ2
(
1/2r − ε/pλ)

∫∞

1−α

(
y + α

)−λ(1/2r−ε/pλ)−1dy

=

[
B
(
1/r − ε/pλ, 1/s + ε/pλ)

λ

]2

+
εL1

λ3
(
1/2r − ε/pλ)2

.

(2.29)

Set ε → 0+, then the inequality (2.27) holds. Lemma 2.4 is proved.

3. Main Results

Firstly, the following notations are given.
(1) Set p > 0, p /= 1, r > 1, (p, q) and (r, s) are two pairs of conjugate exponents. Let

φ(x) := (x + α)p(1−λ/r)−1,

ϕ(x) := (x + α)q(1−λ/s)−1,

ψ(x) :=
[
ϕ(x)

]1−p = (x + α)pλ/s−1, (x ∈ [0,∞)).

(3.1)

(2) Set p > 1, (p, q) is a pair of conjugate exponents. Let

�
p

φ :=

⎧
⎨

⎩
a; a = {an}∞n=0, ‖a‖p,φ :=

{ ∞∑

n=0

φ(n)|an|p
}1/p

<∞
⎫
⎬

⎭
. (3.2)
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It is a real space of sequences, where

‖a‖p,φ =

{ ∞∑

n=0

φ(n)|an|p
}1/p

(3.3)

is a norm of sequence a with the weight function φ. Similarly, it can define the real spaces
of sequences: �qϕ, �

p
ψ and the norm of sequence b with the weight function ϕ: ‖b‖q,ϕ as well.

(For 0 < p < 1 or q < 0, the marks ‖a‖p,φ and ‖b‖q,ϕ as two formal norms are still used in
Theorem 3.3.)

(3) Set p > 1, (p, q) is a pair of conjugate exponents. Define a Hilbert-type linear
operator T , for all a ∈ �p

φ
, one has

(Ta)(n) := Cn :=
∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ
am (n ∈N0). (3.4)

(4) For a ∈ �p
φ
, b ∈ �qϕ, define the formal inner product of Ta and b as

(Ta, b) :=
∞∑

n=0

( ∞∑

m=0

ln((m + α)/(n + α))am
(m + α)λ − (n + α)λ

)

bn =
∞∑

n=0

∞∑

m=0

ln((m + α)/(n + α))ambn
(m + α)λ − (n + α)λ

, (3.5)

Then one will have some results in the following theorem.

Theorem 3.1. Suppose that (p, q) and (r, s) are two pairs of conjugate exponents and p > 1, r > 1,
1/2 ≤ α ≤ 1, 0 < λ ≤ 1, an ≥ 0. Then for ∀a ∈ �p

φ
, one has

(1)

Ta = C = {Cn}∞n=0 ∈ �pψ. (3.6)

It means that T : �pφ → �
p
ψ .

(2) T is a bounded linear operator and

‖T‖p,ψ := sup
a∈�p

φ
(a/= θ)

‖Ta‖p,ψ
‖a‖p,φ

= kλ(s), (3.7)

where Cn, T are defined by (3.4), ‖Ta‖p,ψ = ‖C‖p,ψ is defined as by (3.3), and kλ(s) is a constant
defined by (2.4).
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Proof. If p > 1, by using Hölder’s inequality (cf. [20]) and the result (2.11), for n ∈ N0, it is
obvious that Cn ≥ 0 and

C
p
n =

{ ∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ

[
(m + α)(1−λ/r)/q

(n + α)(1−λ/s)/p
am

][
(n + α)(1−λ/s)/p

(m + α)(1−λ/r)/q

]}p

≤
{ ∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ
(m + α)(p−1)1−λ/r

(n + α)1−λ/s
a
p
m

}

×
{ ∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ
(n + α)(q−1)1−λ/s

(m + α)1−λ/r

}p−1

=

{ ∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ
(m + α)(p−1)1−λ/r

(n + α)1−λ/s
a
p
m

}
{
ωλ(n, r)ϕ(n)

}p−1

≤ kp−1
λ (s)

{ ∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ
(m + α)(p−1)1−λ/r

(n + α)1−λ/s
a
p
m

}
{
ϕp−1(n)

}
.

(3.8)

And if ψ(n) = ϕ1−p(n), by (2.9) and (2.10), it follows that

‖Ta‖pp,ψ =
∞∑

n=0

ψ(n)Cp
n

≤ kp−1λ (s)

{ ∞∑

m=0

∞∑

n=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ
(m + α)(p−1)1−λ/r

(n + α)1−λ/s
a
p
m

}

= kp−1λ (s)
∞∑

m=0

ωλ(m, s)φ(m)apm ≤ kpλ(s)‖a‖
p

p,φ <∞.

(3.9)

This means that C = {Cn}∞n=0 ∈ �pψ and ‖T‖p,ψ ≤ kλ(s).
If there exists a constant K < kλ(s), such that ‖T‖p,ψ ≤ K, then for 0 < ε < pλ/2r, by

the definition (3.5), and by using Hölder’s inequality and the result (2.26), one has

ε
(
Tã, b̃

)
≤ ε‖T‖p,ψ‖ã‖p,φ

∥
∥
∥b̃
∥
∥
∥
q,ϕ

≤ KI1 < K
(

ε

α1+ε
+

1
αε

)

, (3.10)

where ã = {ãm}∞m=0 ∈ �pφ, b̃ = {b̃n}
∞
n=0 ∈ �qϕ and ãm, b̃n are defined as in Lemma 2.4.

On the other hand, from the strictly monotonic decrease of the function g(u) =
ln u/(u − 1) and the exponents λ/r − ε/p − 1 < 0, λ/s − ε/q − 1 < 0 and 1 − α ≥ 0, and
by α > 0, λ > 0, in view of (2.27), one has

ε
(
Tã, b̃

)
≥ ε
∫∫∞

1−α

(x + α)λ/r−ε/p−1
(
y + α

)λ/s−ε/q−1 ln
(
(x + α)/

(
y + α

))

(x + α)λ − (y + α
)λ dx dy

= I2 ≥ kλ(s) + o(1) (ε −→ 0+).

(3.11)
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In view of (3.10) and (3.11), one has kλ(s) + o(1) < K(ε/α1+ε + 1/αε). Setting ε → 0+, one has
kλ(s) ≤ K. This means that K = kλ(s), that is, ‖T‖p,ψ = kλ(s). Theorem 3.1 is proved.

Theorem 3.2. Suppose that (p, q) and (r, s) are two pairs of conjugate exponents, r > 1, p > 1,
1/2 ≤ α ≤ 1, 0 < λ ≤ 1, an, bn ≥ 0 (n ∈N0). Then one has the following.

(1) If a ∈ �p
φ
, b ∈ �qϕ, and ‖a‖p,φ > 0, ‖b‖q,ϕ > 0, then

(Ta, b) < kλ(s)‖a‖p,φ‖b‖q,ϕ. (3.12)

(2) If a ∈ �p
φ
and ‖a‖p,φ > 0, then

‖Ta‖p,ψ < kλ(s)‖a‖p,φ, (3.13)

where the mark ‖Ta‖p,ψ is defind as in Theorem 3.1. The inequality (3.13) is equivalent to (3.12), and
the constant factor kλ(s) = [(1/λ)B(1/s, 1/r)]2 = kλ(r) is the best possible.

Proof. In view of (3.9) and 0 < ‖a‖p,φ <∞, one has

‖Ta‖pp,ψ < kpλ(s)‖a‖
p

p,φ. (3.14)

And by p > 1, (3.13) holds.
By using Hölder’s inequality and (3.13), one has

(Ta, b) =
∞∑

n=0

∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ

[
(m + α)(1−λ/r)/q

(n + α)(1−λ/s)/p
am

][
(n + α)(1−λ/s)/p

(m + α)(1−λ/r)/q
bn

]

≤ ‖Ta‖p,ψ‖b‖q,ϕ < kλ(s)‖a‖p,φ‖b‖q,ϕ.
(3.15)

The inequality (3.12) is obtained.
From (3.12) and ‖a‖p,φ > 0, there exists k0 ∈ N, such that

∑K
m=0φ(m)apm > 0 and

bn(K) = ψ(n)[
∑K

m=0(ln((m + α)/(n + α))am)/((m + α)λ − (n + α)λ)]
p−1

> 0 when K > k0. By a
combination as in (3.15) and by 1/2 ≤ α ≤ 1, 0 < λ ≤ 1, and with (2.10) and (2.11), then,

0 <
K∑

n=0

ϕ(n)bqn(K) =
K∑

n=0

ψ(n)

[
K∑

m=0

ln((m + α)/(n + α))am
(m + α)λ − (n + α)λ

]p

=
K∑

n=0

K∑

m=0

ln((m + α)/(n + α))ambn(K)

(m + α)λ − (n + α)λ
< kλ(s)

[
K∑

n=0

φ(n)apn

]1/p[ K∑

n=0

ϕ(n)bqn(K)

]1/q

<∞.

(3.16)

By p > 1 and q > 1, it follows that

0 <
K∑

n=0

ϕ(n)bqn(K) < kpλ(s)
∞∑

n=0

φ(n)apn <∞. (3.17)
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Letting K → ∞ in (3.17), this means 0 <
∑∞

n=0ϕ(n)b
q
n(∞) < ∞, that is, b = {bn(∞)}∞n=0 ∈ �

q
ϕ

and ‖b‖q,ϕ > 0. Therefore the inequality (3.16) keeps the form of the strict inequality when
K → ∞. So does (3.17). In view of

∑∞
n=0ϕ(n)b

q
n(∞) = ‖Ta‖pp,ψ , the inequality (3.13) holds,

and (3.12) is equivalent to (3.13). By ‖T‖p,ψ = kλ(s), it is obvious that the constant factor
kλ(s) = kλ(r) is the best possible. This completes the proof of Theorem 3.2.

Theorem 3.3. Set (p, q) and (r, s) as two pairs of conjugate exponents, 0 < p < 1(q < 0), r > 1,
1/2 ≤ α ≤ 1, 0 < λ ≤ 1, an, bn ≥ 0. Let

H(a, b) =
∞∑

n=0

∞∑

m=0

ln((m + α)/(n + α))ambn
(m + α)λ − (n + α)λ

. (3.18)

Then the reverse inequalities can be established as follows.
(1) If 0 < ‖a‖p,φ <∞ and 0 < ‖b‖q,ϕ <∞, then

H(a, b) > kλ(s)

{ ∞∑

m=0

[
1 − ηλ(m)

]
φ(m)apm

}1/p

‖b‖q,ϕ. (3.19)

(2) If 0 < ‖a‖p,φ <∞, then

∞∑

n=0

ψ(n)

[ ∞∑

m=0

ln((m + α)/(n + α))am
(m + α)λ − (n + α)λ

]p

> k
p

λ(s)
∞∑

m=0

[
1 − ηλ(m)

]
φ(m)apm. (3.20)

(3) If 0 < ‖b‖q,ϕ <∞, then

∞∑

m=0

[
φ−1(m)

1 − ηλ(m)

]q−1[ ∞∑

n=0

ln((m + α)/(n + α))bn
(m + α)λ − (n + α)λ

]q

< k
q

λ(s)‖b‖
q
q,ϕ, (3.21)

where the marks ‖a‖p,φ and ‖b‖q,ϕ (0 < p < 1) as two formal norms are still defined like in (3.3)
and the factor ηλ(m) in (3.19)–(3.21) is defined in Lemma 2.3. The inequalities (3.20) and (3.21) are
equivalent to (3.19). The constant factors kλ(s), k

p

λ
(s) and kq

λ
(s) in (3.19), (3.20), and (3.21) are all

the best possible.

Proof. By 0 < p < 1 (q < 0), with the reverse Hölder’s inequality, one has the following.
(1) By the combination as in (3.15) for (3.18), then one has

H(a, b) ≥
{ ∞∑

m=0

ωλ(m, s)φ(m)apm

}1/p{ ∞∑

n=0

ωλ(n, r)ϕ(n)b
q
n

}1/q

. (3.22)

If 1/2 ≤ α ≤ 1, 0 < λ ≤ 1, the expressions (2.19) and (2.11) are established for ωλ(m, s) and
ωλ(n, r), respectively. And by q < 0, (3.19) holds.
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Setting a constant K̃ ≥ kλ(r), (3.19) is still valid if we replace kλ(r) by K̃, then for
0 < ε < −qλ/r, by (3.19) and (2.21), one will have

H
(
ã, b̃
)
> K̃

{ ∞∑

m=0

[
1 − ηλ(m)

]
φ(m)ãpm

}1/p

‖b‖q,ϕ

= K̃

{ ∞∑

m=0

1 − ηλ(m)

(m + α)1+ε

}1/p{ ∞∑

n=0

1

(n + α)1+ε

}1/q

= K̃
∞∑

n=0

1

(n + α)1+ε

⎧
⎨

⎩
1 −

[∑∞
m=0O

(
1/(m + α)1+ε+λ/2s

)]

[∑∞
m=01/(m + α)1+ε

]

⎫
⎬

⎭

1/p

,

(3.23)

where ã = {ãm}∞m=0, b̃ = {b̃n}
∞
n=0, ãm = (m + α)λ/r−ε/p−1, b̃n = (n + α)λ/s−ε/q−1 and it is apparent

that 0 < ‖ã‖p,φ <∞, 0 < ‖b̃‖q,ϕ <∞.
On the other hand, by (3.18), (2.2), (2.12), and (2.10),

H
(
ã, b̃
)
=

∞∑

m=0

∞∑

n=0

ln((n + α)/(m + α))(m + α)λ/r−ε/p−1(n + α)λ/s−ε/q−1

(n + α)λ − (m + α)λ

=
∞∑

m=0
(m + α)−1−ε

[
1

λ(m + α)

∞∑

n=0

ln ((n + α)/(m + α))λ((n + α)/(m + α))λ/s−ε/q−1

((n + α)/(m + α))λ − 1

]

=
∞∑

m=0
(m + α)−1−ε

[
1

λ(m + α)

∞∑

n=0

hm

(

n,
1
s
− ε

qλ

)]

<
B2(1/s − ε/qλ, 1/r + ε/qλ)

λ2

∞∑

n=0

1

(n + α)1+ε
.

(3.24)

In view of (3.23) and (3.24), one has

K̃

⎧
⎨

⎩
1 −

[∑∞
m=0O

(
1/(m + α)1+ε+λ/2s

)]

[∑∞
m=01/(m + α)1+ε

]

⎫
⎬

⎭

1/p

<
B2(1/s − ε/qλ, 1/r + ε/qλ)

λ2
. (3.25)

Setting ε → 0+, one has K̃ ≤ kλ(s), which means K̃ = kλ(s). The constant factor kλ(s) in (3.19)
is the best possible.
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(2) By 0 < ‖a‖p,φ < ∞, one has
∑∞

n=0ψ(n)[
∑∞

m=0(ln((m + α)/(n + α))am)/((m + α)λ−
(n + α)λ)]

p
> 0. Setting bn := ψ(n)[

∑∞
m=0(ln((m + α)/(n + α))am)/((m + α)λ − (n + α)λ)]

p−1
,

making the calculations as in (3.8) and (3.9), one has 0 < ‖b‖qq,ϕ < ∞. By using (3.19) in the
following:

‖b‖qq,ϕ =
∞∑

n=0

ϕ(n)bqn =
∞∑

n=0

ψ(n)

[ ∞∑

m=0

ln((m + α)/(n + α))am
(m + α)λ − (n + α)λ

]p

= H(a, b) > kλ(s)

{ ∞∑

m=0

[
1 − ηλ(m)

]
φ(m)apm

}1/p

‖b‖q,ϕ,

(3.26)

one has

∞∑

n=0

ψ(n)

[ ∞∑

m=0

ln((m + α)/(n + α))am
(m + α)λ − (n + α)λ

]p

> k
p

λ(s)
∞∑

m=0

[
1 − ηλ(m)

]
φ(m)apm. (3.27)

Therefore, (3.20) holds.
On the other hand, if (3.20) is valid, by 0 < p < 1 (q < 0) and by using the reverse

Hölder’s inequality, it has

H�(a, b) =
∞∑

n=0

[

(n + α)λ/s−1/p
∞∑

m=0

ln((m + α)/(n + α))am
(m + α)λ − (n + α)λ

]
[
(n + α)1/p−λ/sbn

]

≥
{ ∞∑

n=0

ψ(n)

[ ∞∑

m=0

ln((m + α)/(n + α))am
(m + α)λ − (n + α)λ

]p}1/p{ ∞∑

n=0
(n + α)q(1−λ/s)−1bqn

}1/q

> kλ(s)

[ ∞∑

m=0

[
1 − ηλ(m)

]
φ(m)apm

]1/p

‖b‖q,ϕ.

(3.28)

Then (3.19) holds. It means that (3.20) is equivalent to (3.19).
(3) By 0 < ‖b‖q,ϕ <∞, it is obvious that there exist n0 ∈ N, such that

K∑

m=0

[
φ−1(m)

1 − ηλ(m)

]q−1
⎡

⎢
⎣

K∑

n=0

ln((m + α)/(n + α))bn
(
(m + α)λ − (n + α)λ

)

⎤

⎥
⎦

q

> 0,

{
K∑

n=0

ϕ(n)bqn

}

> 0 when K > n0.

(3.29)
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Setting am(K) = [(φ−1(m)/(1− ηλ(m)))
∑K

n=0(ln((m+ α)/(n+ α))bn)/((m+ α)λ−(n+ α)λ)]q−1(>
0), one has 0 <

∑K
m=0φ(m)apm(K) <∞. By (3.19),

K∑

m=0

[
1 − ηλ(m)

]
φ(m)apm(K)

=
K∑

m=0

[
φ−1(m)

1 − ηλ(m)

]q−1[ K∑

n=0

ln((m + α)/(n + α))bn
(m + α)λ − (n + α)λ

]q

=
K∑

m=0

K∑

n=0

ln((m + α)/(n + α))bnam(K)

(m + α)λ − (n + α)λ

> kλ(s)

{
K∑

m=0

[
1 − ηλ(m)

]
φ(m)apm(K)

}1/p{ K∑

n=0

ϕ(n)bqn

}1/q

.

(3.30)

Further one has

{
K∑

m=0

[
1 − ηλ(m)

]
φ(m)apm(K)

}1/q

> kλ(s)

{
K∑

n=0

ϕ(n)bqn

}1/q

> 0. (3.31)

By q < 0, one has

0 <
K∑

m=0

[
1 − ηλ(m)

]
φ(m)apm(K) < kqλ(s)

K∑

n=0

ϕ(n)bqn < k
q

λ(s)
∞∑

n=0

ϕ(n)bqn <∞. (3.32)

Setting K → ∞ in (3.32), via (2.20), one has

0 <
∞∑

m=0

φ(m)apm(∞) <
1

1 − θλ(r)
∞∑

m=0

[
1 − ηλ(m)

]
φ(m)apm(∞) <∞. (3.33)

It means that 0 < ‖a‖p,φ < ∞(a := {am(∞)}∞m=0). The conditions for (3.19) are satisfied.
Equation (3.30) keeps a strict form when K → ∞. So does (3.31). By q < 0, the inequality
(3.21) holds.
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Also, from (3.21), by q < 0 and by using the reverse Hölder’s inequality,

H(a, b) =
∞∑

m=0

{[
1 − ηλ(m)
φ−1(m)

]1/p
am

}⎧
⎨

⎩

[
φ−1(m)

1 − ηλ(m)

]1/p ∞∑

n=0

ln((m + α)/(n + α))bn
(m + α)λ − (n + α)λ

⎫
⎬

⎭

≥
{ ∞∑

m=0

[
1− ηλ(m)

]
φ(m)apm

}1/p
⎧
⎨

⎩

∞∑

m=0

[
φ−1(m)
1− ηλ(m)

]q−1[ ∞∑

n=0

ln((m + α)/(n + α))bn
(m + α)λ−(n + α)λ

]q
⎫
⎬

⎭

1/q

> kλ(s)

{ ∞∑

m=0

[
1 − ηλ(m)

]
φ(m)apm

}1/p

‖b‖q,ϕ.

(3.34)

Therefore, (3.19) holds. Equation (3.21) is equivalent to (3.19).
If the constant factor kp

λ
(s) (or kq

λ
(s)) in (3.20) (or in (3.21)) is not the best possible,

by (3.28) (or by (3.34)), then it leads to a contradiction in which the constant factor kλ(s) in
(3.19) is not the best possible. Theorem 3.3 is proved.

Remark 3.4. Set r = q, s = p, λ = 1, the inequalities (3.12) and (3.13) can be reduced to (1.7)
and (1.8), respectively. So (3.12) (or (3.13)) is an extension of (1.7) (or (1.8)).
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