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1. Introduction

For real and positive values of x, the Euler gamma function Γ and its logarithmic derivative
ψ, the so-called psi function, are defined by

Γ(x) =
∫+∞

0
tx−1e−tdt, ψ(x) =

Γ′(x)
Γ(x)

, (1.1)

respectively. For extensions of these functions to complex variables and for basic properties,
see [1].

Recently, the gamma function has been the subject of intensive research, many
remarkable inequalities for Γ can be found in literature [2–21]. In particular, the ratio
(Γ(s)/Γ(r))(s > r > 0) have attracted the attention of many mathematicians and physicists.
Gautschi [22] first proved that

n1−s <
Γ(n + 1)
Γ(n + s)

< exp
[
(1 − s)ψ(n + 1)

]
(1.2)

for 0 < s < 1 and n = 1, 2, 3 . . . .
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A strengthened upper bound was given by Erber [23]:

Γ(n + 1)
Γ(n + s)

<
4(n + s)(n + 1)1−s

4n + (s + 1)2
. (1.3)

In [24], Kec̆kić and Vasić established the following double inequality for b > a > 0:

bb−1

aa−1
ea−b <

Γ(b)
Γ(a)

<
bb−(1/2)

aa−(1/2)
ea−b. (1.4)

In [25], Kershaw obtained

exp
[
(1 − s)ψ

(
x + s1/2

)]
<

Γ(x + 1)
Γ(x + s)

< exp
[
(1 − s)ψ

(
x +

1
2
(s + 1)

)]
,

(
x +

1
2
s

)1−s
<

Γ(x + 1)
Γ(x + s)

<

[
x − 1

2
+
(
s +

1
4

)1/2
]1−s (1.5)

for x > 0 and 0 < s < 1.
The generalized logarithmic mean Lp(a, b) of order p of two positive numbers a and b

with a/= b is defined by

Lp(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
bp+1 − ap+1

(p + 1)(b − a)

]1/p
, p /= − 1, p /= 0,

b − a
log b − loga

, p = −1,

1
e

(
bb

aa

)1/(b−a)
, p = 0.

(1.6)

It is well known that Lp(a, b) is strictly increasing with respect to p for fixed a and b.

If we denote A(a, b) = L1(a, b) = (a + b)/2, I(a, b) = L0(a, b) = (1/e)(bb/aa)1/(b−a), L(a, b) =
L−1(a, b) = (b − a)/(log b − loga), and G(a, b) = L−2(a, b) =

√
ab the arithmetic mean, identric

mean, logarithmic mean, and geometric mean of a and b with a/= b, respectively, then

min{a, b} < G(a, b) < L(a, b) < I(a, b) < A(a, b) < max{a, b}. (1.7)

In 1996, Merkle [26] established

A
(
ψ(a), ψ(b)

)
<

logΓ(b) − logΓ(a)
b − a < ψ(A(a, b)) (1.8)

for a, b > 0 with a/= b.
It is the aim of this paper to present the new upper and lower bounds of inequality

(1.8) in terms of I and L.



Journal of Inequalities and Applications 3

2. Lemmas

In order to establish our main result we need several lemmas, which we present in this
section.

Lemma 2.1 (see [27, page 2670]). If x > 0, then

ψ ′(x) >
1
x
+

1
2x2

. (2.1)

Lemma 2.2 (see [28]). Let f ∈ C[a, b] be a strictly increasing function. If 1/f−1 is strictly convex
(or concave, resp.), then

1
b − a

∫b
a

f(t)dt > (or <, resp.)f(L(a, b)). (2.2)

Here, f−1 is the inverse of f .

Lemma 2.3. If x > 0, then

0 < 2ψ ′(x) + xψ ′′(x) <
1
x
. (2.3)

Proof. It is well known that log Γ(x) = −γx +
∑∞

k=1[x/k − log(1 + (x/k))] − logx, where γ =
0.577 215 . . . is the Euler constant. Then, we have

ψ ′(x) =
∞∑
k=0

1

(k + x)2
(2.4)

ψ ′′(x) = −2
∞∑
k=0

1

(k + x)3
. (2.5)
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From (2.4) and (2.5), we get

2ψ ′(x) + xψ ′′(x) =
∞∑
k=1

2k

(k + x)3
> 0,

2ψ ′(x) + xψ ′′(x) =
∞∑
k=1

2k

(k + x)3

<
∞∑
k=1

2k
(k − 1 + x)(k + x)(k + 1 + x)

=
∞∑
k=1

[
k

(k − 1 + x)(k + x)
− k

(k + x)(k + 1 + x)

]

=
∞∑
k=1

1
(k − 1 + x)(k + x)

=
∞∑
k=1

(
1

k − 1 + x
− 1
k + x

)

=
1
x
.

(2.6)

Lemma 2.4. Suppose that b > a > 0 and f : [a, b] → R is a twice differentiable function. If
f ′(x) > 0 and 2f ′(x) + xf ′′(x) > (or <, resp.) 0 for x ∈ [a, b], then there exists the inverse function
f−1 of f and 1/f−1 is strictly convex (or concave, resp.).

Proof. The existence of f−1 can be derived from f ′(x) > 0 directly. Next, let y = f(x), then
simple computation yields

f ′(x)
(
f−1(y))′ = 1,

f ′′(x)
[(
f−1(y))′]2 + f ′(x)

(
f−1(y))′′ = 0,

(
1

f−1(y)
)′′

=
2
[(
f−1(y))′]2
(
f−1(y))3 −

(
f−1(y))′′(
f−1(y))2 .

(2.7)

From (2.7) and x = f−1(y), we get

(
1

f−1(y)
)′′

=
2f ′(x) + xf ′′(x)

x3
(
f ′(x)

)3 . (2.8)

Therefore, the strict convexity (or concavity, resp.) of 1/f−1 follows from (2.8) and the
assumed condition 2f ′(x) + xf ′′(x) > (or <, resp.) 0.
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3. Main Result

Theorem 3.1. For all a, b > 0 with a/= b, one has

ψ(L(a, b)) <
log Γ(b) − logΓ(a)

b − a < ψ(L(a, b)) + log
I(a, b)
L(a, b)

. (3.1)

Proof. Without loss of generality, we assume that b > a > 0. From (2.4) and Lemma 2.3,
together with Lemma 2.4, we clearly see that ψ is strictly increasing and 1/ψ−1 is strictly
convex on [a, b]. Then, Lemma 2.2 leads to

1
b − a

∫b
a

ψ(t)dt > ψ(L(a, b)). (3.2)

Therefore, the left-side inequality in (3.1) follows from (3.2).
Next, for x ∈ [a, b], let g(x) = ψ(x) − logx. Then, Lemmas 2.1 and 2.3 lead to

g ′(x) = ψ ′(x) − 1
x
>

1
2x2

> 0, (3.3)

2g ′(x) + xg ′′(x) = 2ψ ′(x) + xψ ′′(x) − 1
x
< 0. (3.4)

From (3.3) and (3.4), together with Lemma 2.4, we clearly see that g(x) is strictly
increasing and 1/g−1 is strictly concave on [a, b]. Then, Lemma 2.2 implies

1
b − a

∫b
a

(
ψ(t) − log t

)
dt < ψ(L(a, b)) − logL(a, b). (3.5)

Therefore, the right-side inequality in (3.1) follows from (3.5).
To compare the bounds in Theorem 3.1 with that in (1.8), we have the following two

remarks.

Remark 3.2. The lower bound in Theorem 3.1 is greater than that in (1.8), that is, ψ(L(a, b)) >
A(ψ(a), ψ(b)) for a, b > 0 with a/= b. In fact, for any b > a > 0 and x ∈ [a, b], Lemmas 2.1 and
2.3 lead to

ψ ′(x) + xψ ′′(x) < − 1
2x2

< 0. (3.6)

From (3.6) and [29], we know that ψ(x) is a strictly geometric-arithmetic concave
function on [a, b], hence, we get

ψ(G(a, b)) > A
(
ψ(a), ψ(b)

)
. (3.7)

Since ψ is strictly increasing and G(a, b) < L(a, b), so we have

ψ(L(a, b)) > ψ(G(a, b)). (3.8)
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Inequalities (3.7) and (3.8) show that ψ(L(a, b)) > A(ψ(a), ψ(b)) for a, b > 0 with a/= b.

Remark 3.3. The upper bound in Theorem 3.1 is less than that in (1.8), that is, ψ(L(a, b)) +
log I(a, b) − logL(a, b) < ψ(A(a, b)). In fact, for any b > a > 0 and x ∈ [a, b], (3.3) and
L(a, b) < I(a, b) imply

ψ(L(a, b)) − logL(a, b) < ψ(I(a, b)) − log I(a, b). (3.9)

On the other hand, the monotonicity of ψ and I(a, b) < A(a, b) leads to

ψ(I(a, b)) < ψ(A(a, b)). (3.10)

From (3.9) and (3.10), we get

ψ(L(a, b)) + log I(a, b) − logL(a, b) < ψ(A(a, b)). (3.11)
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