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1. Introduction

The theory of variational inequality was born in the 1970s, driven by the solution given by
G. Fichera to the Signorini problem on the elastic equilibrium of a body under unilateral
constraints and by Stampacchia’s work on defining the capacitory potential associated to a
nonsymmetric bilinear form.

It is possible to attach to this theory a preliminary role in establishing a close
relationship between theory and applications in a wide range of problems in mechanics,
engineering, mathematical programming, control, and optimization [1–4]. In this paper,
a dynamic competitive economic equilibrium problem by using a variational formulation
is studied. It was Walras [5] who, in 1874, laid the foundations for the study of the
general equilibrium theory, providing a succession of models, each taking into account more
aspects of a real economy. The rigorous mathematical formulation of the general equilibrium
problem, with possibly nonsmooth but convex data, was elaborated by Arrow and Debreu
[6] in the 1954. In 1985, Border in [7] elaborated a variational inequality formulation of a
Walrasian price equilibrium. By means of the variational formulation, Dafermos in [8] and
Zhao in [9] proved some qualitative results for the solutions to the Walrasian problem in
the static case. Moreover, Nagurney and Zhao [10] (see also Zhao [9], Dafermos and Zhao
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[11]) considered the static Walrasian price equilibrium problem as a network equilibrium
problem over an abstract network with very simple structure that consists of a single
origin-destination pair of nodes and single links joining the two nodes. Furthermore, the
characterization ofWalrasian price equilibrium vectors as solutions of a variational inequality
induces efficient algorithms for their computation (for further details see also Nagurney’s
book [12, Chapter 9], and its complete bibliography).

In [13] it was proven how, by introducing the Lagrange multipliers, a general
economic equilibrium with utility function can be represented by a variational inequality
problem. In recent years, some papers have been devoted to the study of the influence of time
on the equilibrium problems in terms of variational inequality problems in suitable Lebesgue
space [14–22]. We refer the interested reader to the book [23] where a variety of problems
arising from economics, finance, or transportation science are formulated in Lebesgue spaces.
In this paper, we have focused on the generalization of the dynamic case of the competitive
economic equilibrium problem studied, in the static case, in [24–26].

The paper is organized as follows. In Section 2 we introduce the evolution in time of
the competitive economic equilibrium problem in which the data depend on time t ∈ [0, T]
and we show how the governing equilibrium conditions can be formulated in terms of
an evolutionary quasivariational inequality. By means of this characterization, in Section 3,
we are able to give an existence result for the equilibrium solutions by using a two-step
procedure. Firstly, we give the existence and uniqueness to the equilibrium consumption and
for this equilibrium we achieve a regularity result. Then we are able to prove the existence of
the competitive prices.

2. Walrasian Pure Exchange Model

During a period of time [0, T], T > 0, we consider a marketplace consisting of l different
goods indexed by j = 1, . . . , l, l > 1, and n agents indexed by a = 1, . . . , n.

Each agent a = 1, 2, . . . , n is endowed at least with a positive quantity of commodity:

∀a = 1, . . . , n ∃j : eja(t) > 0 a.e. [0, T], (2.1)

and we denote by

ea(t) =
(
e1a(t), e

2
a(t), . . . , e

l
a(t)

)
(2.2)

the endowment vector relative to the agent a at the time t. The consumption relative to the
agent a at the time t is

xa(t) =
(
x1
a(t), x

2
a(t), . . . , x

l
a(t)

)
, (2.3)

where xj
a(t) is the nonnegative consumption relative to the commodity j. Furthermore,

x(t) ≡ (x1(t), x2(t), . . . , xn(t))T (2.4)
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represents the consumption of the market at the time t ∈ [0, T]. We associate to each
commodity j, j = 1, 2, . . . , l, at the time t ∈ [0, T], a nonnegative price pj(t) and we denote
by

p(t) =
(
p1(t), p2(t), . . . , pl(t)

)
(2.5)

the price vector at the time t. We assume that the free disposal of commodities is assumed, that
is, the a priori exclusion of negative prices. We choose the vectors ea, xa, and p in the Hilbert
space L2([0, T],Rl) = L and x in L2([0, T],Rn×l).

In this economy, only pure exchanges are assumed: the only activity of each agent
is to trade (that is buy and sell) his own commodities with each other agent. At the time t,
agent’s preferences for consuming different goods are given by his utility function ua(t, xa(t))
defined on [0, T] × R

l. In this market, the aim of each agent is to maximize their utility, in the
period of time [0, T], by performing pure exchanges of the given goods. There are natural
constraints that the consumers must satisfy: the wealth of a consumer, in the period [0, T], is
his endowment, and the total amount of commodities that a consumer can buy in the period
[0, T] is at most equal to the total amount of commodities that the consumer sells off during
the whole period [0, T]. This means that, for all a = 1, . . . , n and for all p ∈ P , one has the
following maximization problem:

Ua(xa) = max
xa∈Ma(p)

∫T

0
ua(t, xa(t))dt, (2.6)

where

Ma

(
p
)
=
{
xa ∈ L : xj

a(t) ≥ 0, ∀j = 1, . . . , l, a.e. [0, T],
〈
p, xa − ea

〉
L ≤ 0

}
,

p ∈ P =

⎧
⎨
⎩p ∈ L : pj(t) ≥ 0, ∀j = 1, . . . , l,

l∑
j=1

pj(t) = 1 a.e. [0, T]

⎫
⎬
⎭.

(2.7)

For each a = 1, . . . , n and p ∈ P ,Ma(p) is a closed and convex set of L.
We assume that the utility function, for each agent a = 1, . . . , n, satisfies the following

assumptions:

(U1) ua(t, ·) is concave a.e. [0, T],
(U2) ua(t, ·) ∈ C1(Rl

+) a.e. [0, T],

(U3) for all p ∈ P : for all xa ∈ Ma(p),∇ua(t, xa(t))/= 0 a.e. [0, T]; moreover for all
xa ∈ Ma(p) such that xs

a(t) = 0 in E, for all E ⊆ [0, T], m(E) > 0, it results
∂ua(t, xa(t))/∂xs

a > 0 in E.

If there is xa, the solution to maximization problem (2.6), we pose xa = xa(p) and
z(p) =

∑n
a=1(xa(p) − ea).

Then the definition of the dynamic competitive equilibrium problem for a pure
exchange economy takes the following form.
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Definition 2.1. Let p ∈ P and x(p) ∈ M(p) =
∏n

a=1Ma(p). The pair (p, x(p)) ∈ P × M(p) is a
dynamic competitive equilibrium if and only if for all a = 1, . . . , n,

Ua(xa) = max
xa∈Ma(p)

∫T

0
ua(t, xa(t))dt, (2.8)

and for all j = 1, 2, . . . , l and a.e. [0, T]:

z
(
p
)
(t) =

n∑
a=1

((
x
j
a

(
p
))

(t) − e
j
a(t)

)
≤ 0. (2.9)

Our purpose is to give the following characterization.

Theorem 2.2. The pair (p, x) ∈ P ×M(p) is a dynamic competitive equilibrium of a pure exchange
economic market with utility function if and only if it is a solution to the evolutionary quasivariational
inequality

Find
(
p, x

(
p
)) ∈ P ×M

(
p
)
such that

n∑
a=1

〈∇ua(xa), xa − xa〉L +
〈

n∑
a=1

(
xa

(
p
) − ea

)
, p − p

〉

L

≤ 0 ∀(p, x) ∈ P ×M
(
p
)
.

(2.10)

Proof. Firstly, we observe that the pair (p, x(p)) ∈ P × M(p) is a solution to evolutionary
quasivariational inequality (2.10) if and only if x(p) is a solution to evolutionary variational
inequality

〈∇ua

(
xa

(
p
))
, xa − xa(p)

〉
L ≤ 0, ∀xa ∈ Ma

(
p
)
, (2.11)

and p is a solution to evolutionary variational inequality

〈
n∑

a=1

(
xa

(
p
) − ea

)
, p − p

〉

L

≤ 0 ∀p ∈ P. (2.12)

Now, we will prove the theorem by means of the following steps.
(1) For all p ∈ P , xa ∈ Ma(p) is a solution to the problem (2.6) if and only if xa is a

solution to the variational problem

〈∇ua(xa), xa − xa〉L ≤ 0, ∀xa ∈ Ma

(
p
)
. (2.13)

In fact, let us assume that xa is a solution to problem (2.6); for all xa ∈ Ma(p) we can
define the functional

F(λ) =
∫T

0
ua(t, λxa(t) + (1 − λ)xa(t))dt, ∀λ ∈ [0, 1]. (2.14)
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For all λ ∈ [0, 1], it results in the following:

F(λ) ≤ max
xa∈Ma(p)

∫T

0
ua(t, xa(t))dt =

∫T

0
ua(t, xa(t))dt = F(1), (2.15)

then F(·) admits the maximum solution when λ = 1 and F ′(1) ≥ 0. Hence we can consider the
derivative of F(·)with respect to λ:

F ′(λ) =
∂

∂λ

∫T

0
ua(t, λxa(t) + (1 − λ)xa(t))dt

=
∫T

0

l∑
j=1

∂ua(t, λxa(t) + (1 − λ)xa(t))

∂x
j
a

(
x
j
a(t) − x

j
a(t)

)
dt,

(2.16)

and we obtain

F ′(1) =
∫T

0

l∑
j=1

∂ua(t, xa(t))

∂x
j
a

(
x
j
a(t) − x

j
a(t)

)
dt

= 〈∇ua(xa), xa − xa〉L ≥ 0 ∀xa ∈ Ma

(
p
)
,

(2.17)

namely, the variational inequality (2.13).
Conversely, let us assume that xa ∈ Ma(p) is a solution to variational problem (2.13).

Since ua(t, xa) is concave a.e. [0, T], the functional

Ua(xa) =
∫T

0
ua(t, xa(t))dt (2.18)

is concave, then for all xa ∈ Ma(p), the following estimate holds:

Ua(λxa + (1 − λ)xa) ≥ λUa(xa) + (1 − λ)Ua(xa), ∀λ ∈ [0, 1], (2.19)

namely, for all λ ∈ (0, 1]:

Ua(xa + λ(xa − xa)) − Ua(xa)
λ

≥ Ua(xa) − Ua(xa). (2.20)

When λ → 0+, the left-hand side of (2.20) converges to

[
∂

∂λ
Ua(xa + λ(xa − xa))

]

λ=0
=

l∑
j=1

∂Ua(xa)

∂x
j
a

(
x
j
a − x

j
a

)
= 〈∇ua(xa), xa − xa〉L; (2.21)
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so, from (2.20) and since xa is a solution to variational inequality (2.13), it follows that

0 ≥ 〈∇ua(xa), xa − xa〉L ≥ Ua(xa) − Ua(xa), ∀xa ∈ Ma

(
p
)
. (2.22)

Hence xa is a solution to the problem (2.6).
(2) The solution to variational inequality (2.13) belongs to the set

Γa
(
p
)
=
{
xa ∈ L : xj

a(t) ≥ 0 a.e. [0, T], j = 1, . . . , l,
〈
p, xa − ea

〉
L = 0

}
. (2.23)

In fact, first of all, let us show that there exists

x′
a ∈ C = {xa ∈ L : xa(t) ≥ 0 a.e. [0, T]} such that

∫T

0
ua

(
t, x′

a(t)
)
dt >

∫T

0
ua(t, xa(t))dt.

(2.24)

Ab absurdum, let us assume that for all xa ∈ C it results in

∫T

0
ua(t, xa(t))dt ≤

∫T

0
ua(t, xa(t))dt. (2.25)

Then xa is the maximal point of the problem (2.6) on C and from step (1):

〈∇ua(xa), xa − xa〉L ≤ 0, ∀xa ∈ C. (2.26)

By (2.26) it follows that xj
a(t) > 0 a.e. [0, T] for all j = 1, . . . , l. In fact, let us suppose that there

exist j∗ and E ⊆ [0, T] with m(E) > 0 such that xj∗
a (t) = 0 in E. Let us assume in (2.26) xa ∈ C

such that

x
j
a(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
j
a(t) in [0, T] \ E, j = 1, . . . , l,

x
j
a(t) in E, for j = 1, . . . , l, j /= j∗,

x
j∗
a (t) ≥ 0 in E for j = j∗, xj∗

a ∈ L2(E),

(2.27)

we get

∫

E

∂ua(t, xa(t))

∂x
j∗
a

x
j∗
a (t)dt ≤ 0, ∀xj∗

a ∈ L2(E), xj∗
a (t) ≥ 0 in E. (2.28)
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From (2.28) it derives that ∂ua(t, xa(t))/∂x
j∗
a ≤ 0 in E, that is, assumption (U3) is

contradicted. Hence from (2.26) it results in that xj
a(t) > 0 a.e. [0, T] for all j = 1, . . . , l.

Let us fix i = 1, . . . , l, since xi
a(t) > 0 a.e. [0, T],we can choose

x
j
a(t) =

⎧
⎨
⎩
xi
a(t) ± ε(t) in [0, T], for j = i,

x
j
a(t) in [0, T], for j = 1, . . . , l, j /= i,

(2.29)

where ε(t) ∈ L2([0, T]) and 0 < ε(t) ≤ xi
a(t) a.e. [0, T]. From (2.26) we get

∫T

0

l∑
j=1

∂ua(t, xa(t))

∂x
j
a

(
x
j
a(t) − x

j
a(t)

)
dt =

∫T

0

∂ua(t, xa(t))
∂xi

a

(±ε(t))dt ≤ 0, (2.30)

namely,

∫T

0

∂ua(t, xa(t))
∂xi

a

ε(t)dt = 0, ∀ε(t) : 0 < ε(t) ≤ xi
a(t). (2.31)

Hence,

∂ua(t, xa(t))

∂x
j
a

= 0 a.e. [0, T]. (2.32)

Condition (2.32) contradicts the assumption (U3) and the estimate (2.24) is proved.
Now, let us show that

〈
p, xa − ea

〉
L = 0. (2.33)

Ab absurdum, let us assume that 〈p, xa − ea〉L < 0 and choose δ > 0 and λ > 0 such that

δ +
〈
p, xa − ea

〉
L < 0, λ <

δ

‖x′
a − xa‖L

∥∥p∥∥L

. (2.34)

We have

〈
p, λx′

a + (1 − λ)xa − ea
〉
L = λ

〈
p, x′

a − xa

〉
L +

〈
p, xa − ea

〉
L

≤ λ
∥∥p∥∥L

∥∥x′
a − xa

∥∥
L +

〈
p, xa − ea

〉
L < δ +

〈
p, xa − ea

〉
L < 0,

(2.35)
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namely, λx′
a + (1 − λ)xa ∈ Ma(p). Furthermore, being ua(t, xa(t)) concave a.e. [0, T] and by

(2.24), we have

∫T

0
ua

(
t, λx′

a(t) + (1 − λ)xa(t)
)
dt >

∫T

0
ua(t, xa(t))dt ∀λ ∈ ]0, 1], (2.36)

that is, λx′
a + (1 − λ)xa is a solution to maximization problem (2.6) against the assumption

on xa.
Then for all a = 1, . . . , l, each solution to evolutionary variational inequality (2.13),

satisfies the following condition:

〈
p, xa − ea

〉
L = 0, ∀p ∈ P, (2.37)

that is, the well-known Walras law.
(3) It holds that p ∈ P satisfies condition (2.9) if and only if it is a solution to variational

inequality

〈
n∑

a=1

(
xa

(
p
) − ea

)
, p − p

〉

L

≤ 0 ∀p ∈ P. (2.38)

In fact, for the readers’ convenience we report the proof of Theorem 1 of [18]. We
observe that fromWalras’ law, the variational inequality (2.38) is equivalent to

〈
z(p), p

〉
L ≤ 0 ∀p ∈ P, (2.39)

where z(p) =
∑n

a=1(xa(p) − ea). Let p ∈ P be an equilibrium price vector, that is, it satisfies
(2.9). We have zj(p(t)) ≤ 0 a.e. [0, T] for each j = 1, 2, . . . , l and because p ∈ P , it results in
pj(t) ≥ 0 a.e. [0, T] for each j = 1, 2, . . . , l. Therefore, zj(p(t)) · pj(t) ≤ 0 a.e. [0, T] for each
j = 1, 2, . . . , l, namely, p is a solution to variational inequalities (2.39) and (2.38). Viceversa,
let p ∈ P be a solution to variational inequality (2.39) (or (2.38)). Suppose that there exist an
index i and a subset E ⊆ [0, T]withm(E) > 0 such that

zi
(
p(t)

)
> 0 ∀t ∈ E. (2.40)

Let us assume in (2.39), p ∈ P such that

pj(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pj(t) a.e. [0, T] \ E,
ε in E for j /= i, j = 1, . . . , l,

1 − (l − 1)ε in E for j = i,

(2.41)
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where

ε

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈
]
0,

1
l − 1

[
if
∫

E

l∑
j=1
j /= i

(
zj
(
p(t)

) − zi
(
p(t)

))
dt ≥ 0,

< min

⎧
⎨
⎩

1
l − 1

,

∫
Ez

i
(
p(t)

)
dt

∫
E

∑l
j=1,j /= i

(
zi
(
p(t)

) − zj
(
p(t)

))
dt

⎫
⎬
⎭

if
∫

E

l∑
j=1
j /= i

(
zj
(
p(t)

) − zi
(
p(t)

))
dt < 0.

(2.42)

We have

∫

[0,T]\E

l∑
j=1

zj
(
p(t)

) ·
(
pj(t)

)
dt +

∫

E

l∑
j=1
j /= i

zj
(
p(t)

) · ε dt +
∫

E

zi
(
p(t)

) · (1 − (l − 1)ε)dt

= ε

∫

E

l∑
j=1
j /= i

(
zj
(
p(t)

) − zi
(
p(t)

))
dt +

∫

E

zi
(
p(t)

)
dt ≤ 0.

(2.43)

If
∫
E

∑l
j=1,j /= i(z

j(p(t)) − zi(p(t))) ≥ 0, the above estimate does not hold.

If
∫
E

∑l
j=1,j /= i(z

j(p(t)) − zi(p(t)))dt < 0, by the choice of ε, it results in that the estimate
is false. Then (2.40) cannot occur and we get zj(p(t))dt ≤ 0 a.e. [0, T], for all j = 1, . . . , l.

3. Existence Results

In this section we are concerned with the problem of the existence of the dynamic competitive
equilibrium, by using the variational theory.

3.1. Existence and Regularity of the Equilibrium Consumption

Firstly, for all price p ∈ P and for all a = 1, . . . , n, let us consider evolutionary variational
inequality (2.13) that is equivalent to

〈−∇ua(xa), xa − xa〉L ≥ 0, ∀xa ∈ Ma

(
p
)
. (3.1)

We suppose that the operator −∇ua(xa) is an affine operator:

−∇ua(t, xa(t)) = Aa(t)xa(t) + Ba(t), (3.2)
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for each t ∈ [0, T], where Aa : [0, T] → R
l×l and B : [0, T] → R

l
+, with Aa a bounded and

positive defined matrix:

∃M > 0 : ‖Aa(t)‖ ≤ M a.e. [0, T],

∃ν > 0 : 〈Aa(t)xa(t), xa(t)〉 ≥ ν‖xa(t)‖2 ∀xa(t) ∈ Ma

(
t, p(t)

)
a.e. [0, T].

(3.3)

Since Aa(t) is a positive defined matrix for all p ∈ P , there exists a unique solution xa(p) to
evolutionary variational inequality (3.1). Then the excess demand function arises

z : P −→ L,

p −→ z
(
p
)
=

n∑
a=1

(
xa

(
p
) − ea

)
.

(3.4)

Now, our goal is to give a regularity result for the evolutionary variational inequality (3.1),
in particular, we prove that xa(·) is continuous on P . In order to achieve the continuity result,
we need to recall the concept of set convergence in the sense of Mosco (see, e.g., [27]).

Definition 3.1 (see [27]). Let (V, ‖ · ‖) be an Hilbert space K ⊂ V a closed, nonempty, convex
set. A sequence of nonempty, closed, convex sets Kn converges to K as n → +∞, that is,
Kn → K, if and only if

(M1) for anyH ∈ K, there exists a sequence {Hn}n∈N strongly converging toH in V such
that Hn lies in Kn for all n,

(M2) for any {Hkn}n∈N weakly converging to H in V , such that Hkn lies in Kkn for all n,
then the weak limit H belongs to K.

Definition 3.2 (see, e.g., [28]). A sequence of operatorsAn : Kn → V ′ converges to an operator
A : K → V ′ if

‖AnHn −AnFn‖∗ ≤ M‖Hn − Fn‖, ∀Hn, Fn ∈ Kn,

〈AnHn −AnFn,Hn − Fn〉 ≥ ν‖Hn − Fn‖2, ∀Hn, Fn ∈ Kn

(3.5)

hold with fixed constants M,ν > 0 and

(M3) the sequence {AnHn}n∈N
strongly converges to AH in V ′, for any sequence

{Hn}n∈N
⊂ Kn strongly converging toH ∈ K.

Now, we remember an abstract result due to Mosco on stability of solutions to a
variational inequality. More precisely, let A ∈ R

n×n and B ∈ R
n, findH ∈ K such that

〈AH + B, F −H〉 ≥ 0, ∀F ∈ K. (3.6)

Theorem 3.3 (see, e.g., [28]). Let Kn → K in sense of Mosco (M1)-(M2), An → A in the sense of
(M3), and Bn → B in V ′. Then the unique solutions Hn of

Hn ∈ Kn : 〈AnHn + Bn, Fn −Hn〉 ≥ 0, ∀Fn ∈ Kn, (3.7)
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converge strongly to the solution H of the limit problem (3.6), that is,

Hn −→ H in V. (3.8)

Theorem 3.4. For all {pn}n∈N
⊆ P strongly converging to p, then Ma(pn) → Ma(p) in Mosco’s

sense.

Let p ∈ P fixed and let {pn}n∈N
⊆ P be a sequence such that pn → p ∈ P . We prove that

Ma(pn) → Ma(p) in Mosco’s sense, that is, it is enough to show that (M1) and (M2) hold.
Let xa(p) ∈ Ma(p). We pose

xa

(
pn

)
= xa

(
p
) − ηn ∀n ∈ N, (3.9)

namely,

x
j
a

(
pn

)
(t) = x

j
a

(
p
)
(t) − η

j
n(t) a.e. [0, T], ∀j = 1, . . . , l, ∀n ∈ N, (3.10)

such that {ηn}n∈N
⊆ L2([0, T],Rl), ηn → 0, and

x
j
a

(
p
)
(t) − e

j
a(t) ≤ η

j
n(t) ≤ x

j
a

(
p
)
(t), a.e. [0, T], ∀j = 1, . . . , l, ∀n ∈ N. (3.11)

Let us verify that xa(pn) ∈ Ma(pn) for all n ∈ N.
From the right-hand side of (3.11) it results in what follows:

x
j
a

(
pn

)
(t) = x

j
a

(
p
)
(t) − η

j
n(t) ≥ 0 a.e. [0, T], ∀j = 1, . . . , l, ∀n ∈ N. (3.12)

Moreover, from the left-hand side of (3.11) for all j = 1, . . . , l and for all n ∈ N, it results in

x
j
a

(
pn

)
(t) − e

j
a(t) = x

j
a

(
p
)
(t) − η

j
n(t) − e

j
a(t) ≤ 0 a.e. [0, T], (3.13)

then, because pn ∈ P , pjn(t) ≥ 0 a.e. [0, T], from (3.13), we have

p
j
n(t)

(
x
j
a

(
pn

)
(t) − e

j
a(t)

)
≤ 0, a.e. [0, T], ∀j = 1, . . . , l; (3.14)

hence,

〈
pn, xa

(
pn

) − ea
〉
L =

∫T

0

l∑
j=1

p
j
n(t)

(
x
j
a

(
pn

)
(t) − e

j
a(t)

)
dt ≤ 0. (3.15)

For all n ∈ N, we have xa(pn) ∈ Ma(pn). Furthermore, by

∥∥xa(pn) − xa(p)
∥∥
L =

∥∥xa(p) − ηn − xa(p)
∥∥
L =

∥∥ηn
∥∥
L, (3.16)
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because ηn → 0, it follows that

xa

(
pn

) −→ xa

(
p
)
. (3.17)

Hence, (M1) holds.
We prove (M2). Let {xa(pkn)} a sequence such that xa(pkn) ∈ Ma(pkn) is weakly

convergent to xa(p). We prove that xa(p) ∈ Ma(p):

xa

(
pkn

)
⇀ xa

(
p
) ⇐⇒ ∀g ∈ L

〈
xa

(
pkn

)
, g

〉
L −→ 〈

xa(p), g
〉
L

⇐⇒ ∀g ∈ L

∫T

0

l∑
j=1

x
j
a

(
pkn

)
(t) · gj(t)dt −→

∫T

0

l∑
j=1

x
j
a

(
p
)
(t) · gj(t)dt.

(3.18)

By choosing gj(t) ≥ 0 for all j = 1, . . . , l a.e. [0, T], one has

∫T

0

l∑
j=1

x
j
a

(
pkn

)
(t) · gj(t)dt ≥ 0 =⇒

∫T

0

l∑
j=1

x
j
a

(
p
)
(t) · gj(t)dt ≥ 0. (3.19)

From (3.19), it follows that (xj
a(p))(t) ≥ 0 for all j = 1, . . . , l a.e. [0, T]; in fact if there exist j∗

and E ⊆ [0, T],m(E) > 0 such that (xj∗
a (p))(t) < 0 for all t ∈ E, by choosing g ∈ L such that

gj(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

gj(t) > 0 in E if j = j∗,

0 in [0, T] \ E ∀j,
0 in E if j /= j∗,

(3.20)

condition (3.19) is contradicted. Then x
j
a(p)(t) ≥ 0 for all j = 1, . . . , l a.e. [0, T].

Furthermore, from

xa

(
pkn

)
⇀ xa

(
p
)
, pn −→ p, (3.21)

it results in what follows:

〈
pkn , xa(pkn) − ea

〉
L −→ 〈

p, xa(p) − ea
〉
L. (3.22)

Since xa(pkn) ∈ Ma(pkn), one has

〈
pkn , xa(pkn) − ea

〉
L ≤ 0 ∀n ∈ N =⇒ 〈

p, xa(p) − ea
〉
L ≤ 0, (3.23)

hence xa(p) ∈ Ma(p). So condition (M2) holds.
Then we have proved that for all {pn} ⊆ P such that pn → p, it results in that Ma(pn)

converging to Ma(p) in Mosco’s sense.
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Theorem 3.5. Let (−∇ua(xa)) be an affine operator of form (3.40). Then xa(p) is continuous on P .

Proof. We have that An → A in the sense of (M3). In fact,

(a) for each n ∈ N and xa(pn), ya(pn) ∈ Ma(pn), since Aa is bounded in [0, T], there
exists K > 0 such that

∥∥Aa

(
xa

(
pn

) − ya

(
pn

))∥∥
L ≤ ‖Aa‖L ·

∥∥xa

(
pn

) − ya

(
pn

)∥∥
L

= K · ∥∥xa

(
pn

) − ya

(
pn

)∥∥
L;

(3.24)

(b) by positivity of the matrix Aa, for each n ∈ N and xa(pn), ya(pn) ∈ Ma(pn), there
exists ν > 0 such that

〈
Aa

(
xa

(
pn

)) −Aa

(
ya

(
pn

))
, xa

(
pn

) − ya

(
pn

)〉
L ≥ ν

∥∥xa

(
pn

) − ya

(
pn

)∥∥2
L; (3.25)

(c) for each sequence {xa(pn)}n∈N
, with xa(pn) ∈ Ma(pn), strongly converging to

xa(p) ∈ Ma(p), the sequence {Aa(xa(pn))} strongly converges toAa(xa(p)), in fact,

∥∥Aa

(
xa

(
pn

)) −Aa

(
xa

(
p
))∥∥

L =
∥∥Aa

(
xa

(
pn

) − xa

(
p
))∥∥

L

≤ ‖Aa‖L ·
∥∥xa

(
pn

) − xa(p)
∥∥
L;

(3.26)

because ‖xa(pn) − xa(p)‖L → 0, then ‖Aa(xa(pn)) −Aa(xa(p))‖L → 0.

By Theorem 3.3, the sequence {xa(pn)}, where, for all n ∈ N, xa(pn) is the unique solution of

〈
Aa

(
xa

(
pn

))
+ Ba, xa(pn) − xa

(
pn

)〉
L ≥ 0, ∀xa

(
pn

) ∈ Ma

(
pn

)
, (3.27)

converges strongly to the solution xa(p) of the limit problem (3.1), that is,

xa

(
pn

) −→ xa

(
p
)

in Ma

(
p
)
. (3.28)

Hence, we have proved that for all pn strongly converging to p, xa(pn) strongly converges to
xa(p), then xa(p) is continuous on P .

3.2. Existence of Competitive Prices and Existence of Equilibrium

Let us assume the following regularity condition:

lim
|h|→ 0

∫T

0

∥∥p(t + h) − p(t)
∥∥2
dt = 0 uniformly in p, (3.29)
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namely, for all ε > 0 ∃δ > 0 such that ‖p(t + h) − p(t)‖L < ε for all h ∈ R, |h| < δ and for
all p ∈ P . This is condition interpreted as the uniform integral continuity of price and for
example it is satisfied by all the functions:

p(t) ∈ ΠC,α =

{
p(t) ∈ L2

(
[0, T],Rl

)
:
∫T

0

∥∥p(t + h) − p(t)
∥∥2
dt ≤ C‖h‖2α

}
, (3.30)

where C is a positive constant and α ∈ ]0, 1] (see, e.g., [29]). Let us consider the evolutionary
variational inequality:

〈
n∑

a=1

(
ea − xa

(
p
))
, p − p

〉

L

≥ 0 ∀p ∈ P̃ , (3.31)

where

P̃ =

⎧
⎨
⎩p ∈ L2

(
R,Rl

)
: pj(t) ≥ 0 ∀j,

l∑
j=1

pj(t) = 1 a.e. [0, T],

lim
h→ 0

∫T

0

∥∥p(t + h) − p(t)
∥∥2
dt = 0 uniformly in p, p(t) = 0 if t /∈ [0, T]

}
.

(3.32)

In order to prove an existence result of solutions to (3.31), we recall the following.

Theorem 5.1 of [15]. Let E be a real topological vector space and let K ⊆ E be a convex and
nonempty. Let C : K → E∗ be such that for all y ∈ K,

ξ −→ 〈
C(ξ), y − ξ

〉
E is usc on K (hemicontinuity on K), (3.33)

and there exist A ⊆ K nonempty, compact and B ⊆ K compact such that for every H ∈ K \A, there
exists F ∈ B with 〈C(H), F −H〉E < 0, there exists x ∈ A such that

〈
C(x), y − x

〉
E ≥ 0 ∀y ∈ K. (3.34)

Theorem 3.6. Let F be a bounded set of L2(R). Let us suppose that

lim
h→ 0

∥∥p(t + h) − p(t)
∥∥2
L2 = 0 uniformly in p ∈ F, (3.35)

with p(t) = 0 if t /∈ [0, T]. Then F|[0,T] has compact closure in L2([0, T]).

Theorem 3.6 is the L2-version of Ascoli’s theorem, due to Riesz, Fréchet, and
Kolmogorov (see, e.g., [30]). Now, we can prove the following.

Theorem 3.7. Let us consider evolutionary variational inequality (3.31). There exists at least one p
solution to (3.31).
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Proof. Let us observe that since P̃ is a closed and bounded set, by Theorem 3.6, it follows that
P̃ is a compact set. Then, in Theorem 5.1 we can choose A = P̃ and B = ∅ and it results in that
the excess demand function

∑n
a=1(ea−xa(p)) is strongly hemicontinuous, that is, for all q ∈ P̃ ,

the function

p −→
〈

n∑
a=1

(
ea − xa

(
p
))
, q − p

〉

L

(3.36)

is strongly continuous. In fact, for all {pn}n∈N
such that pn → p, by Theorem 3.5, xa(pn) →

xa(p). So, for all q ∈ P̃,we have

n∑
a=1

(
ea − xa

(
pn

)) −→
n∑

a=1

(
ea − xa

(
p
))
, q − pn −→ q − p, (3.37)

hence

〈
n∑

a=1

(
ea − xa

(
pn

))
, q − pn

〉

L

−→
〈

n∑
a=1

(
ea − xa

(
p
))
, q − p

〉

L

; (3.38)

namely, for all q ∈ P̃ , the function

p −→
〈

n∑
a=1

(
ea − xa

(
p
))
, q − p

〉

L

(3.39)

is continuous. By [15, Theorem 5.1] the evolutionary variational inequality (3.31) admits a
solution.

Finally, we have following existence result of dynamic competitive equilibrium for a
pure exchange economy.

Theorem 3.8. Let the operator −∇ua(xa) an affine operator:

−∇ua(t, xa(t)) = Aa(t)xa(t) + Ba(t), (3.40)

for each t ∈ [0, T], where Aa : [0, T] → R
l×l
+ and B : [0, T] → R

l
+, with Aa a bounded and positive

defined matrix. Then there exists (x(p), p) ∈ M(p) × P̃ solution to evolutionary quasivariational
inequality

n∑
a=1

〈∇ua(t, xa), xa − xa〉L +
〈

n∑
a=1

(
xa

(
p
) − ea

)
, p − p

〉

L

≤ 0 ∀(x, p) ∈ P̃ ×M
(
p
)
,

(3.41)

namely, there exists at least a dynamic competitive equilibrium.
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