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1. Introduction

The investigation of stability of nonlinear difference equations with delays has attracted a
lot of attention from many researchers such as Agarwal et al. [1–3], Baı̆nov and Simeonov
[4], Bay and Phat [5], Cooke and Ivanov [6], Gopalsamy [7], Liz et al. [8–10], Niamsup et
al. [11, 12], Mohamad and Gopalsamy [13], Pinto and Trofimchuk [14], and references sited
therein. In [15], Halanay proved an asymptotic formula for the solutions of a differential
inequality involving the “maximum” functional and applied it in the stability theory of linear
systems with delay. Such an inequality was called Halanay inequality in several works. Some
generalizations as well as new applications can be found, for instance, in Agarwal et al. [2],
Gopalsamy [7], Liz et al. [8–10], Niamsup et al. [11, 12], Mohamad and Gopalsamy [13],
and Pinto and Trofimchuk [14]. In particular, in [2, 6, 10, 12, 13], the authors considered
discrete Halanay-type inequalities to study some discrete version of functional differential
equations.

In the following results of Liz et al. [10], authors showed that some discrete versions
of these (maximum) inequalities can be applied to study the global asymptotic stability of a
family of difference equations.
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Theorem A. Assume that (u, v) satisfies the system of inequalities

Δun ≤ −Aun + Bũn + Cvn +Dv̂n, n ≥ 0,

vn ≤ Eun + Fũn, n ≥ 0,
(1.1)

whereΔun = un+1 −un, ũn = max{un, . . . , un−r}, v̂n = max{vn−1, . . . , vn−r}, and r > 0 is a natural
number. If B,C,D, E, F ≥ 0, FD + B > 0, E + F > 0 and

B + (E + F)(C +D) < A ≤ 1, (1.2)

then there exist constants K1 ≥ 0, K2 ≥ 0, and λ0 ∈ (0, 1) such that

un ≤ K1λ
n
0 , vn ≤ K2λ

n
0 , n ≥ 0. (1.3)

Moreover, λ0 can be chosen as the smallest root in the interval (0, 1) of equation h(λ) = 0, where

h(λ) = λ2r+1 − (1 −A + CE)λ2r − (B + FC + ED)λr − FD. (1.4)

By a simple use of Theorem A, authors also demonstrated the validity of the following
statement, namely, Theorem B.

Theorem B. Assume that f satisfies the following inequalities:

∣

∣f
(

n, xn, . . . , xn−r
)∣

∣ ≤ ∥

∥

(

xn, . . . , xn−r
)∥

∥

∞, ∀(xn, . . . , xn−r
) ∈ R

r+1,
∣

∣f
(

n, xn, . . . , xn−r
) − xn

∣

∣ ≤ r
∥

∥

(

Δxn−1, . . . ,Δxn−r
)∥

∥

∞, ∀(xn, . . . , xn−r
) ∈ R

r+1.
(1.5)

If either

(a) 0 ≤ a ≤ 1 − b, and 0 < br < 1, or

(b) a < 0, and 0 < br < (a + b)(−a + b)−1

holds, then there exist K > 0 and λ0 ∈ (0, 1) such that for every solution {xn} of

Δxn = −axn − bf
(

n, xn, xn−1, . . . , xn−r
)

, a > 0, (1.6)

one has

∣

∣xn

∣

∣ ≤ (

max
{∣

∣xi

∣

∣

})

λn0 , n ≥ 0, (1.7)

where λ0 can be calculated in the form established in Theorem A. As a consequence, the trivial solution
of (1.6) is globally asymptotically stable.

The main aim of the present paper is to establish some new nonlinear retarded
Halanay-type inequalities, which extend Theorem A, along with the derivation of new global
stability conditions for nonlinear difference equations.
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2. Halanay-Type Discrete Inequalities

Let R denote the set of all real numbers, R
+ the set of positive real numbers, R

0 the set of
nonnegative real numbers, Z the set of integers, Z+ the set of positive integers, and Z

−r = {z ∈
Z : z ≥ −r}. Consider the following nonlinear difference equation:

Δxn = f
(

n, xn, xn−1, . . . , xn−r
)

, n ∈ Z
+, (2.1)

where Δxn = xn+1 − xn, and f : N × R
r+1 → R. Equation (2.1) is a generalized difference

equation (see [3, Section 21] and [11]). The initial value problem for this equation requires
the knowledge of the initial data {x−r , x−r+1, . . . , x0}. This vector is called the initial string
in [6]. For every initial string, there exists a unique solution {xn}n≥Z−r of (2.1) that can be
calculated using the explicit recurrence formula

xn+1 = xn + f
(

n, xn, xn−1, . . . , xn−r
)

, n ∈ Z
0. (2.2)

In this section, we introduce new discrete inequalities which will be used to derive global
stability conditions in the next section.

Theorem 2.1. Let ai, bi, ci, di, ei, fi ∈ R
+
0 ,

∑r
i=0 die > 0, hi ∈ Z

0 (i = 0, . . . , r), 0 = h0 < h1 <
· · · < hr ; hr ∈ Z

+, and

b + (c + d)(e + f) < a ≤ 1, (2.3)

where a =
∑r

i=0 ai, b =
∑r

i=0 bi, c =
∑r

i=0 ci, d =
∑r

i=0 di, e =
∑r

i=0 ei, and f =
∑r

i=0 fi. Also, let
{un, vn}n∈Z−hr be a sequence of nonnegative real numbers satisfying the system of inequalities

Δun ≤
r
∑

i=0

( − aiun + biu
p

n−hi
+ civn + divn−hi

)

, n ∈ Z
0,

vn ≤
r
∑

i=0

(

eiun + fiu
p

n−hi

)

, n ∈ Z
0,

(2.4)

where p ≥ 0 is a constant. Then there exist constants K1 ≥ 0, K2 ≥ 0, and λ0 ∈ (0, 1) such that

un ≤ K1λ
n
0 , vn ≤ K2λ

n
0 , n ∈ Z

0, (2.5)

where K1 = max0≤i≤r{u−hi , α
−1v−hi}, and K2 = αK1 with α = e +

∑r
i=0 fiλ

−n+(n−hi)p
0 . Moreover, λ0

can be chosen as the smallest root in the interval (0, 1) of equation g(λ) = 0, where

g(λ) = λ − (1 − a + ce) −
r
∑

i=0

(

bi + cfi
)

λ(n−hi)p−n

−
r
∑

i=0

dieλ
−hi −

r
∑

i=0

(

di

r
∑

j=0

fjλ
(n−hj−hi)p−n

) (2.6)

with n ∈ Z
0.
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Proof. Let {xn, yn}n∈Z−hr be a sequence of nonnegative real numbers satisfying the system of
inequalities

xn = (1 − a)nx0 +
n−1
∑

j=0

(1 − a)n−j−1

×
r
∑

i=0

( − aixj + bix
p

j−hi
+ ciyj + diyj−hi

)

,

yn =
r
∑

i=0

(

eixn + fix
p

n−hi

)

,

(2.7)

where n ∈ Z
0. Since (1 − a) ≥ 0, it is easy to prove by induction that if un ≤ xn and vn ≤ yn for

n = −hr, . . . , 0, then un ≤ xn and vn ≤ yn for all n ∈ Z
0.

On the other hand, the system (2.7) is equivalent to

Δxn =
r
∑

i=0

( − aixn + bix
p

n−hi
+ ciyn + diyn−hi

)

,

yn =
r
∑

i=0

(

eixn + fix
p

n−hi

)

,

(2.8)

where n ∈ Z
0. Next we prove, under the assumptions of the theorem, that there exists a

solution {xn, yn}n∈Z−hr to system (2.8) in the form xn = λn0 , yn = αλn0 with α > 0, λ0 ∈ (0, 1).
Indeed, such {xn, yn}n∈Z−hr is a solution of (2.8) if and only if

λn+10 = (1 − a)λn0 +
r
∑

i=0

(

biλ
(n−hi)p
0 + ciαλ

n
0 + di

(

αλn−hi

0

)

)

, n ∈ Z
0,

αλn0 =
r
∑

i=0

(

eiλ
n
0 + fiλ

(n−hi)p
0

)

, n ∈ Z
0.

(2.9)

This is equivalent to the existence of a solution λ0 ∈ (0, 1) of equation g(λ) = 0,where g is the
polynomial defined by (2.6).

Now, g(0) = limλ→ 0+ g(λ) = −∞ < 0 in view of
∑r

i=0 die > 0. On the other hand,
g(1) = a− b− (c+d)(e+ f) > 0 in view of (2.3). As a consequence, there exists λ0 ∈ (0, 1) such
that g(λ0) = 0. Hence, (λ0, α) is a solution of (2.9)with α = e +

∑r
i=0 fiλ

−n+(n−hi)p
0 > 0.

For this value of λ0, the pair {Kλn0 , Kαλn0} is a solution of (2.8) for every K ≥ 0. Thus,
choosingK = max0≤i≤r{u−hi , α

−1v−hi},we have that un ≤ Kλn0 = xn, and vn ≤ Kαλn0 = yn for all
n = −hr, . . . , 0.

Hence, using the first part of the proof, we can conclude that un ≤ xn, and vn ≤ yn for
all n ∈ Z0.

By the similar argument used in Theorem 2.1, we obtain the following result.
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Theorem 2.2. Let a, b, c, d, e, f ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r, 0 = h0 < h1 < · · · < hr ; r ≥ 1, and

b + c(e + f) + d(e + f)r+1 < a ≤ 1 (2.10)

with ce > 0. Also, let {un, vn}n∈Z−hr be a sequence of nonnegative real numbers satisfying the system
of inequalities

Δun ≤ −aun +
r

∏

i=0

bun−hi + cvn +
r

∏

i=0

dvn−hi , n ∈ Z
0,

vn ≤ eun +
r

∏

i=0

fun−hi , n ∈ Z
0.

(2.11)

Then there exist constants K1 ≥ 0, K2 ≥ 0, and λ0 ∈ (0, 1) such that

un ≤ K1λ
n
0 , vn ≤ K2λ

n
0 , n ∈ Z

0, (2.12)

where K1 = max0≤i≤r{u−hi , ρ
−1v−hi}, and K2 = ρK1 with ρ = e + f

∏r
i=0λ

−hi

0 . Moreover, λ0 can be
chosen as the smallest root in the interval (0, 1) of equation F(λ) = 0, where

F(λ) = λ − (1 − a + ce) − [

b + cf + d
(

e + fλrn−h
)r+1]

λrn−h (2.13)

with n ∈ Z
0, h =

∑r
i=0 hi.

Proof. Let {xn, yn}n∈Z−hr be a sequence of nonnegative real numbers satisfying the system of
inequalities

Δxn = −axn + b
r

∏

i=0

xn−hi + cyn + d
r

∏

i=0

yn−hi , n ∈ Z
0,

yn = exn + f
r

∏

i=0

xn−hi , n ∈ Z
0.

(2.14)

Since (1 − a) ≥ 0, it is easy to prove by induction that if un ≤ xn and vn ≤ yn for n = −hr, . . . , 0,
then un ≤ xn and vn ≤ yn for all n ∈ Z

0.
Next we prove that, under the assumptions of the theorem, there exists a solution

{xn, yn}n∈Z−hr to system (2.14) in the form xn = λn, yn = ρλn with ρ > 0, λ ∈ (0, 1). Indeed,
such {xn, yn}n∈Z−hr is a solution of (2.14) if and only if

λn+1 = (1 − a)λn + b
r

∏

i=0

λn−hi + cρλn + d
r

∏

i=0

ρλn−hi , n ∈ Z
0,

ρλn = eλn + f
r

∏

i=0

λn−hi , n ∈ Z
0.

(2.15)
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This is equivalent to the existence of a solution λ ∈ (0, 1) of equation F(λ) = 0, where F is the
polynomial defined in (2.13).

Now, in view of ce > 0, we have F(0) = −1 + a − ac < 0 in case rn > h, F(0) =
−1 + a − ac − [b + cf + d(e + f)r+1] < 0 in case rn = h, and F(0) = limλ→ 0+ F(λ) = −∞ < 0 in
case rn < h.

On the other hand, F(1) = a − b − c(e + f) − d(e + f)r+1 > 0 in view of (2.10). As a
consequence, there exists λ0 ∈ (0, 1) such that F(λ0) = 0. Hence, (λ0, ρ) is a solution of (2.15)
with ρ = e + f

∏r
i=0λ

−hi

0 > 0.
For this value of λ0, the pair {Kλn0 , Kρλn0} is a solution of (2.14) for every K ≥ 0. Thus,

choosingK = max0≤i≤r{u−hi , ρ
−1v−hi},we have un ≤ Kλn0 , and vn ≤ Kρλn0 for all n = −hr, . . . , 0.

These imply un ≤ xn, and vn ≤ yn for all n = −hr, . . . , 0.Hence, using the first part of the proof,
we can conclude that un ≤ xn, and vn ≤ yn for all n ∈ Z0.

Remark 2.3. In [10], a discrete Halanay-type inequality was given as in Theorem A, where the
inequalities were replaced by

Δun ≤ −aun + bũn + cvn + dv̂n, n ≥ 0,

vn ≤ eun + fũn, n ≥ 0,
(2.16)

where Δun = un+1 − un, ũn = max{un, . . . , un−r}, v̂n = max{vn−1, . . . , vn−r}, and r ≥ 1 is a
natural number. Note that if a sequence {un}n∈Z−r of positive real numbers satisfies (2.16),
then it also satisfies (2.4). On the other hand, let p = r = 1, hi = i; a =

∑1
i=0 ai = 1, b = b0 =

b1 = 1/7, c = c0 = c1 = 0, d = d0 = d1 = 1/7, e = e0 = e1 = 1/7, and f = f0 = f1 = 1/7. Then
we might easily show that the sequence {1/2n}n∈Z−1 satisfies (2.4) but not (2.16). Indeed,

Δun =
1

2n+1
− 1
2n

= − 1
2n+1

,

< − 1
2n

+
1
7

(

1
2n

+
1

2n−1

)

+
1
7

(

1
2n

5
7
+

1
2n−1

5
7

)

= −13
49

1
2n

,

(2.17)

with
∑1

i=0 bi + (
∑1

i=0 ci +
∑1

i=0 di)(
∑1

i=0 ei +
∑1

i=0 fi) <
∑1

i=0 ai = 1. On the other hand,

Δun = − 1
2n+1

> − 1
2n

+
1
7
max

{

1
2n

,
1

2n−1

}

+
1
7

(

1
7

1
2n−1

+
1
7
max

{

1
2n−1

})

= −31
49

1
2n

.

(2.18)

Therefore, in the case of positive sequences, the discrete inequality (2.4) is less conservative
than the discrete Halanay-type inequality given by (2.16).
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3. Global Stability of Difference Equations

In order to show the applicability of the previous result, in this section we consider the
generalized difference equation

Δxn = −axn − bf
(

n, xn, xn−h1 , . . . , xn−hr

)

, (3.1)

where n, hi ∈ Z
+, i = 1, . . . , r, and b > 0.

Although, for every initial string {x−hr , x−hr+1, . . . , x0}, the solution {xn} of (3.1) can
be explicitly calculated by a recurrence formula similar to (2.2), it is in general difficult to
investigate the asymptotic behavior of the solutions using that formula. The next result gives
an asymptotic estimate by a simple use of the discrete Halanay inequality.

Theorem 3.1. For all (n, xn, xn−h1 , . . . , xn−hr ) ∈ Z
0 × R

r+1, assume that f satisfies the following
inequalities:

∣

∣f
(

n, xn, xn−h1 , . . . , xn−hr

)∣

∣ ≤
r
∑

j=0

βj
∣

∣xn−hj

∣

∣

p
, (3.2)

∣

∣f
(

n, xn, xn−h1 , . . . , xn−hr

) − xn

∣

∣ ≤
r
∑

j=0

γj
∣

∣Δxn−hj

∣

∣, (3.3)

where βj , γj , p ∈ R
+
0 ,

∑r
i=0 γi|a| > 0, hj ∈ Z

0 (j = 0, . . . , r − 1), and hr ∈ Z
+ with 0 = h0 < h1 <

· · · < hr. If either

(a) 0 ≤ a ≤ 1 − b, 0 < bγ < 1, and 0 < β ≤ 1, or

(b) a < 0 and 0 < bγ < (a + b)(−a + bβ)−1

hold, then there exists a constant λ0 ∈ (0, 1) for every solution {xn} of (3.1) such that

∣

∣xn

∣

∣ ≤
(

max
−hr≤i≤0

{∣

∣xi

∣

∣, α−1
1

∣

∣Δxi

∣

∣

}

)

λn0 , n ∈ Z
0, (3.4)

where α1 = |a| + b
∑r

i=0 βiλ
−n+(n−hi)p
0 , β =

∑r
i=0 βi, γ =

∑r
i=0 γi, and λ0 can be chosen as the smallest

root in the interval (0, 1) of equation g1(λ) = 0, where

g1(λ) = λ − (1 − a − b) −
r
∑

i=0

b|a|γiλ−hi −
r
∑

i=0

bγi

(

r
∑

j=0

bβjλ
(n−hj−hi)p−n

)

(3.5)

with n ∈ Z
0.

As a consequence, the trivial solution of (3.1) is globally asymptotically stable.

Proof. Let {xn} be a solution of (3.1). Equation (3.1) can be written in the form

Δxn = −(a + b)xn − b
[

f
(

n, xn, xn−h1 , . . . , xn−hr

) − xn

]

. (3.6)
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Hence, we know that

xn =
[

1 − (a + b)
]n
x0 +

n−1
∑

i=0

[

1 − (a + b)
]n−i−1(−b)[f(i, xi, xi−h1 , . . . , xi−hr

) − xi

]

, (3.7)

where n ∈ Z
0. Thus, using inequality (3.3), we obtain

∣

∣xn

∣

∣ ≤ [

1 − (a + b)
]n∣
∣x0

∣

∣ +
n−1
∑

i=0

r
∑

j=0

[

1 − (a + b)
]n−i−1

bγj
∣

∣Δxi−hj

∣

∣. (3.8)

Denote un = |xn| for n = −hr, . . . , 0, and

un =
[

1 − (a + b)
]n∣
∣x0

∣

∣ +
n−1
∑

i=0

r
∑

j=0

[

1 − (a + b)
]n−i−1

bγj
∣

∣Δxi−hj

∣

∣ (3.9)

for n ∈ Z
+. Then we have |xn| ≤ un and, from inequality (3.9), we obtain

Δun = −(a + b)un +
r
∑

j=0

bγj
∣

∣Δxn−hj

∣

∣ (3.10)

for n ∈ Z
+. On the other hand, using hypothesis (3.2) in (3.1), we have

∣

∣Δxn

∣

∣ ≤ | − a|∣∣xn

∣

∣ + b
r
∑

j=0

βj
∣

∣xn−hj

∣

∣

p

≤ |a|un + b
r
∑

j=0

βju
p

n−hj
.

(3.11)

Denote vn = |Δxn|. We can apply Theorem 2.1 to the system of inequalities (3.10) and (3.11)
with

∑r
i=0 ai = a + b, bi = 0, ci = 0, di = bγj ,

∑r
i=0 ei = |a|, and fi = bβj . Consequently,

Theorem 2.1 ensures the validity of the following inequality:

∣

∣xn

∣

∣ ≤
(

max
−hr≤i≤0

{∣

∣xi

∣

∣, α−1
1

∣

∣Δxi

∣

∣

}

)

λn0 , n ∈ Z
0, (3.12)

where λ0 and α1 are chosen as in Theorem 3.1. This completes the proof of the theorem.

Next, we obtain new conditions for the asymptotic stability of (3.1) using inequality
(3.13) instead of (3.3).
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Corollary 3.2. For all (n, xn, xn−h1 , . . . , xn−hr ) ∈ Z
0 × R

r+1, assume that f satisfies inequality (3.2)
and the following condition:

∣

∣f
(

n, xn, xn−h1 , . . . , xn−hr

) − xn

∣

∣ ≤
r
∑

j=0

(

γj
∣

∣xn−hj

∣

∣

p + δj
∣

∣Δxn

∣

∣ + ηj
∣

∣Δxn−hj

∣

∣

)

, (3.13)

where γj , δj , ηj , p ∈ R
+
0 ,

∑r
j=0 ηj |a| > 0, hj ∈ Z

0 (j = 0, . . . , r − 1), and hr ∈ Z
+ with 0 = h0 < h1 <

· · · < hr. If

bγ + b(δ + η)(|a| + bβ) < a + b ≤ 1 (3.14)

holds, where β =
∑r

i=0 βi, γ =
∑r

i=0 γi, δ =
∑r

i=0 δi, and η =
∑r

i=0 ηi, then there exists a constant
λ0 ∈ (0, 1) for every solution {xn} of (3.1) such that

∣

∣xn

∣

∣ ≤
(

max
−hr≤i≤0

{∣

∣xi

∣

∣, α−1
1

∣

∣Δxi

∣

∣

}

)

λn0 , n ∈ Z
0, (3.15)

where α1 = |a| + b
∑r

i=0 βiλ
−n+(n−hi)p
0 , and λ0 can be chosen as the smallest root in the interval (0, 1) of

equation g2(λ) = 0, where

g2(λ) = λ − (

1 − a − b + b|a|δ) −
r
∑

i=0

b
(

γi + bδβi
)

λ(n−hi)p−n

−
r
∑

i=0

b|a|ηiλ−hi −
r
∑

i=0

bηi

(

r
∑

j=0

bβjλ
(n−hj−hi)p−n

) (3.16)

with n ∈ Z
0.

As a consequence, the trivial solution of (3.1) is globally asymptotically stable.

Similarly, using Theorem 2.2 instead of Theorem 2.1, we obtain the following result.

Theorem 3.3. For all (n, xn, xn−h1 , . . . , xn−hr ) ∈ Z
0 × R

r+1, assume that f satisfies the following
inequalities:

∣

∣f
(

n, xn, xn−h1 , . . . , xn−hr

)∣

∣ ≤ β
r

∏

j=0

∣

∣xn−hj

∣

∣,

∣

∣f
(

n, xn, xn−h1 , . . . , xn−hr

) − xn

∣

∣ ≤ γ
r

∏

j=0

∣

∣xn−hj

∣

∣ + δ
∣

∣Δxn

∣

∣ + η
r

∏

j=0

∣

∣Δxn−hj

∣

∣,

(3.17)

where β, γ, δ, η ∈ R
+
0 , hj ∈ Z

0, j = 0, . . . , r − 1, and hr ∈ Z
+ with 0 = h0 < h1 < · · · < hr. If |a|δ > 0

and

bγ + bδ
(|a| + bβ

)

+ bη
(|a| + bβ

)r+1
< a + b ≤ 1, (3.18)
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then there exists a constant λ0 ∈ (0, 1) for every solution {xn} of (3.1) such that

∣

∣xn

∣

∣ ≤
(

max
−hr≤i≤0

{∣∣xi

∣

∣, ρ−11
∣

∣Δxi

∣

∣}
)

λn0 , n ∈ Z
0, (3.19)

where ρ1 = |a|+ bβ
∏r

i=0λ
hi

0 , and λ0 can be chosen as the smallest root in the interval (0, 1) of equation
F1(λ) = 0, where

F1(λ) = λ − (

1 − (a + b) + |a|bδ) − b
[

γ + bβδ + η
(|a| + bβλrn−h

)r+1]
λrn−h (3.20)

with n ∈ Z
0, h =

∑r
i=0 hi.

As a consequence, the trivial solution of (3.1) is globally asymptotically stable.

Remark 3.4. Equation (3.1) covers a variety of difference equations. For instance, we can
consider the following difference equation:

Δxn = −axn − bf
(

xn−k
)

, b > 0. (3.21)

Next, we study the asymptotic behavior of the solutions of (3.21). We can apply Theorem 3.1,
Corollary 3.2, or Theorem 3.3 to obtain some relations between coefficients a and b that ensure
the global asymptotic stability of the zero solution.Moreover, from Theorem 3.1we know that
if there exists β, γ ∈ R

+ such that |f(x)| ≤ β|x|p, |f(x) − x| ≤ γ |Δx| for all x, and if either

(a) 0 < a ≤ 1 − b, 0 < bγ < 1, and 0 < β ≤ 1, or

(b) a < 0 and 0 < bγ < (a + b)(−a + bβ)−1

hold, then all solutions of (3.21) converge to zero.
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