Research Article

An Improved Hardy-Rellich Inequality with Optimal Constant

Ying-Xiong Xiao¹ and Qiao-Hua Yang²

¹ School of Mathematics and Statistics, Xiaogan University, Xiaogan, Hubei 432000, China
 ² School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Correspondence should be addressed to Ying-Xiong Xiao, xyx21cn@163.com

Received 25 May 2009; Accepted 11 September 2009

Recommended by Siegfried Carl

We show that a Hardy-Rellich inequality with optimal constants on a bounded domain can be refined by adding remainder terms. The procedure is based on decomposition into spherical harmonics.

Copyright © 2009 Y.-X. Xiao and Q.-H. Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Hardy inequality in \mathbb{R}^N reads, for all $u \in C_0^{\infty}(\mathbb{R}^N)$ and $N \ge 3$,

$$\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx \ge \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{u^{2}}{|x|^{2}} dx,$$
(1.1)

and $(N-2)^2/4$ is the best constant in (1.1) and is never achieved. A similar inequality with the same best constant holds if \mathbb{R}^N is replaced by an arbitrary domain $\Omega \subset \mathbb{R}^N$ and Ω contains the origin. Moreover, Brezis and Vázquez [1] have improved it by establishing that for $u \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} |\nabla u|^2 dx \ge \frac{(N-2)^2}{4} \int_{\Omega} \frac{u^2}{|x|^2} dx + \Lambda(-\Delta,2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} u^2 dx, \tag{1.2}$$

where ω_N and $|\Omega|$ denote the volume of the unit ball B_1 and Ω , respectively, and $\Lambda(-\Delta, 2)$ is the first eigenvalue of the Dirichlet Laplacian of the unit disc in \mathbb{R}^2 . In case Ω is a ball centered at zero, the constant $\Lambda(-\Delta, 2)$ in (1.2) is sharp.

Similar improved inequalities have been recently proved if instead of (1.1) one considers the corresponding L^p Hardy inequalities. In all these cases a correction term is added on the right-hand side (see, e.g., [2–4]).

On the other hand, the classical Rellich inequality states that, for $N \ge 5$,

$$\int_{\mathbb{R}^N} |\Delta u|^2 dx \ge \left(\frac{N(N-4)}{4}\right)^2 \int_{\mathbb{R}^N} \frac{u^2}{|x|^4} dx, \quad u \in C_0^\infty\left(\mathbb{R}^N\right), \tag{1.3}$$

and $(N(N-4)/4)^2$ is the best constant in (1.3) and is never achieved (see [5]). And, more recently, Tertikas and Zographopoulos [6] obtained a stronger version of Rellich's inequality. That is, for all $u \in C_0^{\infty}(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^{N}} |\Delta u|^{2} dx \ge \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|\nabla u|^{2}}{|x|^{2}} dx, \quad N \ge 5.$$
(1.4)

Both inequalities are valid when \mathbb{R}^N is replaced by a bounded domain $\Omega \subset \mathbb{R}^N$ containing the origin and the corresponding constants are known to be optimal. Recently, Gazzola et al. [4] have improved (1.3) by establishing that for $\Omega \subset B_R(0)$ and $u \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} |\Delta u|^2 dx \ge \left(\frac{N(N-4)}{4}\right)^2 \int_{\Omega} \frac{u^2}{|x|^4} dx + \frac{N(N-4)}{2} \Lambda(-\Delta,2) R^{-2} \int_{\Omega} \frac{u^2}{|x|^2} dx + \Lambda\left((-\Delta)^2, 4\right) R^{-4} \int_{\Omega} u^2 dx,$$
(1.5)

where

$$\Lambda\left((-\Delta)^{2},4\right) = \inf_{u \in W^{2,2}(B_{1}^{(4)}) \setminus \{0\}} \frac{\int_{B_{1}^{(4)}} (\Delta u)^{2} dx}{\int_{B_{1}^{(4)}} u^{2} dx},$$
(1.6)

and $B_1^{(4)}$ is the unit ball in \mathbb{R}^4 . Our main concern in this note is to improve (1.4). In fact we have the following theorem.

Theorem 1.1. *There holds, for* $N \ge 5$ *and* $u \in C_0^{\infty}(\Omega)$ *,*

$$\int_{\Omega} |\Delta u|^2 dx \ge \frac{N^2}{4} \int_{\Omega} \frac{|\nabla u|^2}{|x|^2} dx + \Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} |\nabla u|^2 dx.$$
(1.7)

Inequality (1.7) is optimal in case Ω is a ball centered at zero.

Combining Theorem 1.1 with (1.2), we have the following.

Corollary 1.2. *There holds, for* $N \ge 5$ *and* $u \in C_0^{\infty}(\Omega)$ *,*

$$\int_{\Omega} |\Delta u|^2 dx \ge \frac{N^2}{4} \int_{\Omega} \frac{|\nabla u|^2}{|x|^2} dx + \frac{(N-2)^2}{4} \Lambda(-\Delta,2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} \frac{u^2}{|x|^2} dx + \Lambda(-\Delta,2)^2 \left(\frac{\omega_N}{|\Omega|}\right)^{4/N} \int_{\Omega} u^2 dx.$$

$$(1.8)$$

Next we consider analogous inequality (1.5). The main result is the following theorem.

Theorem 1.3. Let $N \ge 8$ and let $\Omega \subset \mathbb{R}^N$ be such that $\Omega \subset B_R(0)$. Then for every $u \in C_0^{\infty}(\Omega)$ one has

$$\int_{\Omega} |\Delta u|^2 dx \ge \frac{N^2}{4} \int_{\Omega} \frac{|\nabla u|^2}{|x|^2} dx + \frac{N(N-8)}{4} \Lambda(-\Delta,2) R^{-2} \int_{\Omega} \frac{u^2}{|x|^2} dx + \Lambda((-\Delta)^2, 4) R^{-4} \int_{\Omega} u^2 dx.$$
(1.9)

Remark 1.4. Since

$$\int_{\Omega} \frac{|\nabla u|^2}{|x|^2} dx \ge \frac{(N-4)^2}{4} \int_{\Omega} \frac{u^2}{|x|^4} dx + \Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} \frac{u^2}{|x|^2} dx, \quad N \ge 5,$$
(1.10)

inequality (1.5) is implied by (1.9) in case of $N \ge 8$.

2. The Proofs

To prove the main results, we first need the following preliminary result.

Lemma 2.1. Let $N \ge 5$ and $u \in C_0^{\infty}(\mathbb{R}^N)$. Set r = |x|. If u(x) is a radial function, that is, u(x) = u(r), then

$$\int_{\mathbb{R}^{N}} |\Delta u|^{2} dx - \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|\nabla u|^{2}}{|x|^{2}} dx = \int_{\mathbb{R}^{N}} |\nabla u_{r}|^{2} dx - \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{u_{r}^{2}}{|x|^{2}} dx.$$
(2.1)

Proof. Observe that if u(x) = u(r), then

$$|\nabla u| = |u_r|, \qquad \Delta u = \frac{d^2 u}{dr^2} + \frac{N-1}{r} \cdot \frac{du}{dr}.$$
(2.2)

Therefore, we have

$$\begin{split} \int_{\mathbb{R}^{N}} |\Delta u|^{2} dx &= \int_{\mathbb{R}^{N}} \left| u_{rr} + \frac{N-1}{r} u_{r} \right|^{2} dx \\ &= \int_{\mathbb{R}^{N}} u_{rr}^{2} dx + (N-1)^{2} \int_{\mathbb{R}^{N}} \frac{u_{r}^{2}}{r^{2}} dx + 2(N-1) \int_{\mathbb{R}^{N}} \frac{u_{rr} u_{r}}{r} dx \\ &= \int_{\mathbb{R}^{N}} u_{rr}^{2} dx + (N-1)^{2} \int_{\mathbb{R}^{N}} \frac{u_{r}^{2}}{r^{2}} dx + (N-1) \int_{\mathbb{R}^{N}} \frac{1}{r} \cdot \frac{d(u_{r}^{2})}{dr} dx. \end{split}$$
(2.3)

Though integration by parts, when $n \ge 3$,

$$\int_{\mathbb{R}^{N}} \frac{1}{r} \cdot \frac{d(u_{r}^{2})}{dr} dx = \int_{S^{N-1}} d\sigma \int_{0}^{\infty} r^{N-2} \cdot \frac{d(u_{r}^{2})}{dr} dr = -(N-2) \int_{\mathbb{R}^{N}} \frac{u_{r}^{2}}{r^{2}} dx,$$
(2.4)

and hence

$$\int_{\mathbb{R}^{N}} |\Delta u|^{2} dx - \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|\nabla u|^{2}}{|x|^{2}} dx = \int_{\mathbb{R}^{N}} u_{rr}^{2} dx - \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{u_{r}^{2}}{r^{2}} dx$$

$$= \int_{\mathbb{R}^{N}} |\nabla u_{r}|^{2} dx - \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{u_{r}^{2}}{|x|^{2}} dx.$$
(2.5)

By Lemma 2.1 and inequality (1.2), we have, when restricted to radial functions,

$$\int_{\Omega} |\Delta u|^2 dx - \frac{N^2}{4} \int_{\Omega} \frac{|\nabla u|^2}{|x|^2} dx \ge \Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} |\nabla u|^2 dx.$$
(2.6)

Our next step is to prove the following. If u(x) is not a radial function, inequality (2.6) also holds.

Let $u \in C_0^{\infty}(\Omega)$. If we extend u as zero outside Ω , we may consider $u \in C_0^{\infty}(\mathbb{R}^N)$. Decomposing u into spherical harmonics we get

$$u = \sum_{k=0}^{\infty} u_k := \sum_{k=0}^{\infty} f_k(r) \phi_k(\sigma),$$
 (2.7)

where $\phi_k(\sigma)$ are the orthonormal eigenfunctions of the Laplace-Beltrami operator with responding eigenvalues

$$c_k = k(N+k-2), \quad k \ge 0.$$
 (2.8)

The functions $f_k(r)$ belong to $C_0^{\infty}(\Omega)$, satisfying $f_k(r) = O(r^k)$ and $f'_k(r) = O(r^{k-1})$ as $r \to 0$. In particular, $\phi_0(\sigma) = 1$ and $u_0(r) = (1/|\partial B_r|) \int_{\partial B_r} u \, d\sigma$, for any r > 0. Then, for any $k \in \mathbb{N}$, we have

$$\Delta u_k = \left(\Delta f_k(r) - \frac{c_k}{r^2} f_k(r)\right) \phi_k(\sigma).$$
(2.9)

So

$$\int_{\mathbb{R}^{N}} |\Delta u_{k}|^{2} dx = \int_{\mathbb{R}^{N}} \left(\Delta f_{k}(r) - \frac{c_{k}}{r^{2}} f_{k}(r) \right)^{2} dx,$$

$$\int_{\mathbb{R}^{N}} |\nabla u_{k}|^{2} dx = \int_{\mathbb{R}^{N}} \left(|\nabla f_{k}(r)|^{2} + \frac{c_{k}}{r^{2}} f_{k}^{2}(r) \right) dx.$$
(2.10)

In addition,

$$\int_{\mathbb{R}^{N}} |\Delta u|^{2} dx = \sum_{k=0}^{\infty} \int_{\mathbb{R}^{N}} |\Delta u_{k}|^{2} dx = \sum_{k=0}^{\infty} \int_{\mathbb{R}^{N}} \left(\Delta f_{k}(r) - \frac{c_{k}}{r^{2}} f_{k}(r) \right)^{2} dx,$$

$$\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx = \sum_{k=0}^{\infty} \int_{\mathbb{R}^{N}} |\nabla u_{k}|^{2} dx = \sum_{k=0}^{\infty} \int_{\mathbb{R}^{N}} \left(\left| \nabla f_{k}(r) \right|^{2} + \frac{c_{k}}{r^{2}} f_{k}^{2}(r) \right) dx.$$

$$(2.11)$$

Using equality (2.10), we have that (see, e.g., [6, page 452])

$$\int_{\mathbb{R}^{N}} |\Delta u_{k}|^{2} dx = \int_{\mathbb{R}^{N}} (f_{k}'')^{2} dx + (N - 1 + 2c_{k}) \int_{\mathbb{R}^{N}} r^{-2} (f_{k}')^{2} dx + c_{k} [c_{k} + 2(N - 4)] \int_{\mathbb{R}^{N}} r^{-4} f_{k}^{2} dx, \qquad (2.12)$$
$$\int_{\mathbb{R}^{N}} \frac{|\nabla u_{k}|^{2}}{|x|^{2}} dx = \int_{\mathbb{R}^{N}} \frac{|\nabla f_{k}(r)|^{2}}{r^{2}} dx + c_{k} \int_{\mathbb{R}^{N}} \frac{f_{k}^{2}(r)}{r^{4}} dx.$$

Therefore, we have that, by (2.12),

$$\begin{split} \int_{\mathbb{R}^{N}} |\Delta u_{k}|^{2} dx &= \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|\nabla u_{k}|^{2}}{|x|^{2}} dx \\ &= \int_{\mathbb{R}^{N}} (f_{k}'')^{2} dx - \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{(f_{k}')^{2}}{r^{2}} dx \\ &+ c_{k} \left[2 \int_{\mathbb{R}^{N}} \frac{(f_{k}')^{2}}{r^{2}} dx + \left(c_{k} - \frac{N^{2} - 8N + 32}{4} \right) \int_{\mathbb{R}^{N}} \frac{(f_{k})^{2}}{r^{4}} dx \right]. \end{split}$$
(2.13)

Lemma 2.2. There holds, for $N \ge 4$ and $k \ge 1$,

$$2\int_{\Omega} \frac{(f_k')^2}{r^2} dx + \left(c_k - \frac{N^2 - 8N + 32}{4}\right) \int_{\Omega} \frac{(f_k)^2}{r^4} dx \ge 2\Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} \frac{(f_k)^2}{r^2} dx.$$
(2.14)

Proof. Set $g_k = f_k/r$. Then g_k satisfies $g_k(r) = O(r^{k-1})$ and $g'_k(r) = O(r^{k-2})$ as $r \to 0$. Moreover, since $f_k(r)$ belong to $C_0^{\infty}(\Omega)$, we have that

$$\int_{\Omega} (g'_k)^2 dx = \int_{\Omega} \frac{(f'_k)^2}{r^2} dx - 2 \int_{\Omega} \frac{f'_k f_k}{r^3} dx + \int_{\Omega} \frac{f^2_k}{r^4} dx$$
$$= \int_{\Omega} \frac{(f'_k)^2}{r^2} dx + (N-3) \int_{\Omega} \frac{f^2_k}{r^4} dx$$
$$= \int_{\Omega} \frac{(f'_k)^2}{r^2} dx + (N-3) \int_{\Omega} \frac{g^2_k}{r^2} dx.$$
(2.15)

Here we use the fact when $N \ge 4$ and $k \ge 1$,

$$2\int_{\Omega} \frac{f'_k f_k}{r^3} dx = \int_{S^{N-1}} d\sigma \int_0^\infty r^{N-4} \cdot \frac{d(f_k^2)}{dr} dr = -(N-4) \int_{\Omega} \frac{f_k^2}{r^4} dx.$$
(2.16)

Using inequalities (1.2) and (2.15), we have that, for $N \ge 4$ and $k \ge 1$,

$$2\int_{\Omega} \frac{(f'_{k})^{2}}{r^{2}} dx + \left(c_{k} - \frac{N^{2} - 8N + 32}{4}\right) \int_{\Omega} \frac{(f_{k})^{2}}{r^{4}} dx$$

$$= 2\int_{\Omega} (g'_{k})^{2} dx + \left(c_{k} - \frac{N^{2} + 8}{4}\right) \int_{\Omega} \frac{g_{k}^{2}}{r^{2}} dx$$

$$\geq \frac{(N - 2)^{2}}{2} \int_{\Omega} \frac{g_{k}^{2}}{r^{2}} dx + 2\Lambda(-\Delta, 2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \int_{\Omega} g_{k}^{2} dx + \left(c_{k} - \frac{N^{2} + 8}{4}\right) \int_{\Omega} \frac{g_{k}^{2}}{r^{2}} dx$$

$$= \frac{N^{2} - 8N + 4c_{k}}{4} \int_{\Omega} \frac{g_{k}^{2}}{r^{2}} dx + 2\Lambda(-\Delta, 2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \int_{\Omega} g_{k}^{2} dx$$

$$\geq \frac{N^{2} - 8N + 4c_{1}}{4} \int_{\Omega} \frac{g_{k}^{2}}{r^{2}} dx + 2\Lambda(-\Delta, 2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \int_{\Omega} g_{k}^{2} dx$$

$$= \frac{N^2 - 4N - 4}{4} \int_{\Omega} \frac{g_k^2}{r^2} dx + 2\Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} g_k^2 dx$$

$$\geq 2\Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} g_k^2 dx$$

$$= 2\Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} \frac{(f_k)^2}{r^2} dx.$$
(2.17)

An immediate consequence of the inequalities (2.13) and Lemma 2.2 is the following result. For $k \ge 1$,

$$\int_{\mathbb{R}^{N}} |\Delta u_{k}|^{2} dx - \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|\nabla u_{k}|^{2}}{|x|^{2}} dx$$

$$\geq \int_{\mathbb{R}^{N}} (f_{k}'')^{2} dx - \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{(f_{k}')^{2}}{r^{2}} dx + 2c_{k}\Lambda(-\Delta,2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \int_{\Omega} \frac{(f_{k})^{2}}{r^{2}} dx.$$
(2.18)

Using inequalities (2.18) and Lemma 2.1, we have that, since $f_k(r) \in C_0^{\infty}(\Omega)$, for $k \ge 1$,

$$\begin{split} \int_{\mathbb{R}^{N}} |\Delta u_{k}|^{2} dx &- \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|\nabla u_{k}|^{2}}{|x|^{2}} dx \\ &\geq \Lambda(-\Delta,2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \int_{\mathbb{R}^{N}} (f_{k}') dx + 2c_{k}\Lambda(-\Delta,2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \int_{\Omega} \frac{(f_{k})^{2}}{r^{2}} dx \\ &\geq \Lambda(-\Delta,2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \left(\int_{\mathbb{R}^{N}} (f_{k}') dx + c_{k} \int_{\Omega} \frac{(f_{k})^{2}}{r^{2}} dx\right) \\ &= \Lambda(-\Delta,2) \left(\frac{\omega_{N}}{|\Omega|}\right)^{2/N} \int_{\mathbb{R}^{N}} |\nabla u_{k}|^{2} dx. \end{split}$$
(2.19)

Inequality (2.19) implies that, if u(x) is not a radial function, then

$$\int_{\Omega} |\Delta u|^2 dx - \frac{N^2}{4} \int_{\Omega} \frac{|\nabla u|^2}{|x|^2} dx \ge \Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} |\nabla u|^2 dx.$$
(2.20)

Proof of Theorem 1.1. Using inequality (2.6) and (2.20), we have that, for $N \ge 5$ and $u \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} |\Delta u|^2 dx \ge \frac{N^2}{4} \int_{\Omega} \frac{|\nabla u|^2}{|x|^2} dx + \Lambda(-\Delta, 2) \left(\frac{\omega_N}{|\Omega|}\right)^{2/N} \int_{\Omega} |\nabla u|^2 dx.$$
(2.21)

In case Ω is a ball centered at zero, a simple scaling allows to consider the case $\Omega = B_1$. Set

$$H = \inf_{u \in C_0^{\infty}(B_1) \setminus \{0\}} \frac{\int_{B_1} |\Delta u|^2 dx - (N^2/4) \int_{B_1} (|\nabla u|^2/|x|^2) dx}{\int_{B_1} |\nabla u|^2 dx}.$$
 (2.22)

Using Lemma 2.1 and inequality (1.2), we have that $H \leq H_{\text{radial}} = \Lambda(-\Delta, 2)$. On the other hand, we have, by inequality (2.21), $H \geq \Lambda(-\Delta, 2)$. Thus $H = \Lambda(-\Delta, 2)$. The proof is complete.

Proof of Theorem 1.3. A scaling argument shows that we may assume R = 1 and $\Omega = B_1 = B$.

Step 1. Assume *u* is radial, r = |x| and $v(r) = |x|^{(N-4)/2}u(r)$, then (see [6, Lemma 2.3])

$$\int_{B} |\Delta u|^{2} dx - \frac{N^{2}}{4} \int_{B} \frac{|\nabla u|^{2}}{|x|^{2}} dx = \int_{B} \frac{|\Delta v|^{2}}{|x|^{N-4}} dx + \left(\frac{N(N-8)}{4} - N(N-4)\right) \int_{B} \frac{v_{r}^{2}}{|x|^{N-2}} dx,$$
(2.23)

and (see [6, (6.4)])

$$\int_{B} \frac{|\Delta v|^2}{|x|^{N-4}} dx = \int_{B} \frac{v_{rr}^2}{|x|^{N-4}} dx + (N-1)(N-3) \int_{B} \frac{v_r^2}{|x|^{N-2}} dx.$$
(2.24)

Therefore

$$\int_{B} |\Delta u|^{2} dx - \frac{N^{2}}{4} \int_{B} \frac{|\nabla u|^{2}}{|x|^{2}} dx = \int_{B} \frac{v_{rr}^{2}}{|x|^{N-4}} dx + 3 \int_{B} \frac{v_{r}^{2}}{|x|^{N-2}} dx + \frac{N(N-8)}{4} \int_{B} \frac{v_{r}^{2}}{|x|^{N-2}} dx.$$
(2.25)

Since v is radial,

$$\int_{B} \frac{v_{r}^{2}}{|x|^{N-2}} dx \geq \Lambda(-\Delta, 2) \int_{B} \frac{v^{2}}{|x|^{N-2}} dx;$$

$$\int_{B} \frac{v_{rr}^{2}}{|x|^{N-4}} dx + 3 \int_{B} \frac{v_{r}^{2}}{|x|^{N-2}} dx = \frac{\Sigma_{N}}{\Sigma_{4}} \int_{B^{(4)}} v_{rr}^{2} dx + 3 \frac{\Sigma_{N}}{\Sigma_{4}} \int_{B^{(4)}} \frac{v_{r}^{2}}{|x|^{2}} dx$$

$$= \frac{\Sigma_{N}}{\Sigma_{4}} \int_{B^{(4)}} |\Delta_{\mathrm{rad},4}v|^{2} dx$$

$$\geq \frac{\Sigma_{N}}{\Sigma_{4}} \Lambda\left((-\Delta)^{2}, 4\right) \int_{B^{(4)}} v^{2} dx$$

$$= \Lambda\left((-\Delta)^{2}, 4\right) \int_{B} \frac{v^{2}}{|x|^{N-4}} dx,$$
(2.26)

where Σ_k denote the surface area of the unit sphere in \mathbb{R}^k , $B^{(4)}$ is the unit ball in \mathbb{R}^4 , and

$$\Delta_{\rm rad,4} = \frac{\partial^2}{\partial r^2} + \frac{3}{r} \frac{\partial}{\partial r}$$
(2.27)

is the radial Laplacian in $\mathbb{R}^4.$

Therefore, for $N \ge 8$,

$$\int_{B} |\Delta u|^{2} dx - \frac{N^{2}}{4} \int_{B} \frac{|\nabla u|^{2}}{|x|^{2}} dx$$

$$\geq \Lambda(-\Delta, 2) \int_{B} \frac{v^{2}}{|x|^{N-2}} dx + \frac{N(N-8)}{4} \Lambda\left((-\Delta)^{2}, 4\right) \int_{B} \frac{v^{2}}{|x|^{N-4}} dx \qquad (2.28)$$

$$= \Lambda(-\Delta, 2) \int_{B} \frac{u^{2}}{|x|^{2}} dx + \frac{N(N-8)}{4} \Lambda\left((-\Delta)^{2}, 4\right) \int_{B} u^{2} dx.$$

Step 2. For $u \in C_0^{\infty}(B)$, set

$$u = \sum_{k=0}^{\infty} u_k := \sum_{k=0}^{\infty} f_k(r) \phi_k(\sigma).$$
 (2.29)

We get, by (2.18),

$$\int_{B} |\Delta u_{k}|^{2} dx - \frac{N^{2}}{4} \int_{B} \frac{|\nabla u_{k}|^{2}}{|x|^{2}} dx \ge \int_{B} (f_{k}'')^{2} dx - \frac{(N-2)^{2}}{4} \int_{B} \frac{(f_{k}')^{2}}{r^{2}} dx$$

$$= \int_{B} |\Delta f_{k}|^{2} dx - \frac{N^{2}}{4} \int_{B} \frac{|\nabla f_{k}|^{2}}{|x|^{2}} dx.$$
(2.30)

In getting the last equality, we used Lemma 2.1.

Using inequality (1.9) for radial functions from step 1,

$$\begin{split} &\int_{B} |\Delta u_{k}|^{2} dx - \frac{N^{2}}{4} \int_{B} \frac{|\nabla u_{k}|^{2}}{|x|^{2}} dx \\ &\geq \Lambda(-\Delta, 2) \int_{B} \frac{f_{k}^{2}}{|x|^{2}} dx + \frac{N(N-8)}{4} \Lambda\left((-\Delta)^{2}, 4\right) \int_{B} f_{k}^{2} dx \qquad (2.31) \\ &= \Lambda(-\Delta, 2) \int_{B} \frac{u_{k}^{2}}{|x|^{2}} dx + \frac{N(N-8)}{4} \Lambda\left((-\Delta)^{2}, 4\right) \int_{B} u_{k}^{2} dx, \end{split}$$

one obtains, by (2.11),

$$\int_{B} |\Delta u|^{2} dx - \frac{N^{2}}{4} \int_{B} \frac{|\nabla u|^{2}}{|x|^{2}} dx \ge \Lambda(-\Delta, 2) \int_{B} \frac{u^{2}}{|x|^{2}} dx + \frac{N(N-8)}{4} \Lambda\left((-\Delta)^{2}, 4\right) \int_{B} u^{2} dx \qquad (2.32)$$

which demonstrates inequality (1.9).

Acknowledgment

This work was supported by National Science Foundation of China under Grant no. 10571044.

References

- H. Brezis and J. L. Vázquez, "Blow-up solutions of some nonlinear elliptic problems," *Revista Matemática de la Universidad Complutense de Madrid*, vol. 10, no. 2, pp. 443–469, 1997.
- [2] Adimurthi, N. Chaudhuri, and M. Ramaswamy, "An improved Hardy-Sobolev inequality and its application," *Proceedings of the American Mathematical Society*, vol. 130, no. 2, pp. 489–505, 2002.
- [3] S. Filippas and A. Tertikas, "Optimizing improved Hardy inequalities," *Journal of Functional Analysis*, vol. 192, no. 1, pp. 186–233, 2002.
- [4] F. Gazzola, H.-C. Grunau, and E. Mitidieri, "Hardy inequalities with optimal constants and remainder terms," *Transactions of the American Mathematical Society*, vol. 356, no. 6, pp. 2149–2168, 2004.
- [5] E. B. Davies and A. M. Hinz, "Explicit constants for Rellich inequalities in $L_p(\Omega)$," Mathematische Zeitschrift, vol. 227, no. 3, pp. 511–523, 1998.
- [6] A. Tertikas and N. B. Zographopoulos, "Best constants in the Hardy-Rellich inequalities and related improvements," Advances in Mathematics, vol. 209, no. 2, pp. 407–459, 2007.