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1. Introduction and Preliminaries

It is well known that vector variational inequalities were initially studied by Giannessi [1]
and ever since have been widely studied in infinite-dimensional spaces see, for example, [2–
8] and the references therein.

Very recently, Huang et al. [9] considered a class of vector complementarity problems
with moving cones. They established existence results of a solution for this class of vector
complementarity problems under an inclusive type condition. They also obtained some
equivalence results among a vector complementarity problem, a vector variational inequality
problem, a vector optimization problem, a weak minimal element problem, and a vector
unilateral optimization problem in ordered Banach spaces. Their results generalized the main
results in [4].

The purpose of this paper is to introduce and discuss a class of generalized vector
complementarity problems with moving cones which is a variable ordering relation. We
derive existence of a solution for this class of generalized vector complementarity problems
under an inclusive type condition. This inclusive condition requires that any two of the
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family of closed and convex cones satisfy an inclusion relation so long as their corresponding
variables satisfy certain conditions. We also obtain some equivalence results among a
generalized vector complementarity problem, a generalized vector variational inequality
problem, a generalized vector optimization problem, a generalized weak minimal element
problem, and a generalized vector unilateral optimization problem under somemonotonicity
conditions and some inclusive type conditions in ordered Banach spaces. The theorems
presented in this paper improve, extend, and develop some earlier and very recent results
in the literature including [4, 9].

Let X be a Banach space, and A a subset of X. The topological interior of a subset A in
X is denoted by intA. A nonempty subset P in X is called a convex cone if P + P ⊂ P , and
λP ⊂ P for any λ > 0. The relations ≤P and /≤P in X are defined as x≤Py if y − x ∈ P and x/≤Py
if y−x /∈ P , for any x, y ∈ X. Similarly, we can define the relations ≤intP and /≤intP if we replace
the set P by intP . P is called a pointed cone if P is a cone and P ∩ (−P) = {0}.

Let L(X,Y ) be the space of all continuous linear mappings from X to Y . We denote the
value of l ∈ L(X,Y ) at x ∈ X by (l, x).

Let X, Y be two Banach spaces, and P : K → 2Y a set-valued mapping such that, for
each x ∈ K, P(x) is a proper closed convex and pointed cone with apex at the origin and
intP(x)/= ∅, and T : X → L(X,Y ). Very recently, Huang et al. [9] introduced the following
three kinds of vector complementarity problems.

(Weak) vector complementarity problem (VCP): finding x ∈ K such that

〈Tx, x〉/≥intP(x)0,
〈
Tx, y

〉
/≤intP(x)0, ∀y ∈ K. (1.1)

Positive vector complementarity problem (PVCP): finding x ∈ K such that

〈Tx, x〉/≥intP(x)0,
〈
Tx, y

〉≥P(x)0, ∀y ∈ K. (1.2)

Strong vector complementarity problem (SVCP): finding x ∈ K such that

〈Tx, x〉 = 0,
〈
Tx, y

〉≥P(x)0, ∀y ∈ K. (1.3)

We remark that if P(x) = P for all x ∈ K, where P is a closed, pointed, and convex
cone in Y with nonempty interior intP(x), then (VCP), (PVCP) and (SVCP) reduce to the
problems considered in Chen and Yang [4]. In [9], they actually only studied the first two
kinds complementarity problems. For the existence results of (SVCP), we refer the reader to
our recent results [Submitted, On the F-implicit vector complementarity problem].

Motivated and inspired by the above three kinds of vector complementarity problems,
in this paper we introduce three kinds of generalized vector complementarity problems. Let
X, Y be two Banach spaces, and P : K → 2Y a set-valued mapping such that, for each x ∈ K,
P(x) is a proper closed convex and pointed cone with apex at the origin and intP(x)/= ∅,
let A : L(X,Y ) → L(X,Y ) be a single-valued mapping, and T : X → 2L(X,Y ) a set-valued
mapping, where 2L(X,Y ) is a collection of all nonempty subsets of L(X,Y ). We consider the
following three kinds of generalized vector complementarity problems.
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(Weak) generalized vector complementarity problem (GVCP): finding x ∈ K and u ∈ Tx
such that

〈Au, x〉/≥intP(x)0,
〈
Au, y

〉
/≤intP(x)0, ∀y ∈ K. (1.4)

Generalized positive vector complementarity problem (GPVCP): finding x ∈ K and u ∈ Tx
such that

〈Au, x〉/>intP(x)0, 〈Au, y〉≥P(x)0, ∀y ∈ K. (1.5)

Generalized strong vector complementarity problem (GSVCP): finding x ∈ K and u ∈ Tx
such that

〈Au, x〉 = 0,
〈
Au, y

〉≥P(x)0, ∀y ∈ K. (1.6)

We remark that if A = I the identity mapping of L(X,Y ), and T : K = X → 2L(X,Y ) is
a single-valued mapping, then three kinds of generalized vector complementarity problems
reduce to three kinds of vector complementarity problems in Huang et al. [9], respectively.

2. Existence of a Solution for GVCP

Huang et al. [9] established some equivalence results between the positive vector
complementarity problem and the vector extremum problem and also sufficient conditions
for the existence of a solution of the vector extremum problem. In this section, we extend their
results to the cases involving the set-valued mappings.

Let X be an arbitrary real Hausdorff topological vector spaces, and Y a Banach space.
L(X,Y ) denotes the space of all continuous linear mappings from X to Y . Let K be a
nonempty set of X, and P : K → 2Y a set-valued mapping such that, for each x ∈ K, P(x) is
a proper closed convex and pointed cone with apex at the origin and intP(x)/= ∅. Let A be a
subset of Y . For each x ∈ K, a point z ∈ A is called a minimal point of A with respect to the
cone P(x) ifA∩(z−P(x)) = {z}; MinP(x)A is the set of all minimal points ofAwith respect to
the cone P(x); a point z ∈ A is called a weakly minimal point ofAwith respect to the cone P(x)
if A ∩ (z − intP(x)) = ∅; MinP(x)

w A is the set of all weakly minimal points of Awith respect to
the cone P(x), we refer the reader to [10] for more detail.

Let A : L(X,Y ) → L(X,Y ) be a single-valued mapping and let T : X → 2L(X,Y ) be
a set-valued mapping. Now, we consider the following generalized vector complementarity
problem (GVCP). Find x ∈ K and u ∈ Tx such that

〈Au, x〉/≥intP(x)0,
〈
Au, y

〉
/≤intP(x)0, ∀y ∈ K. (2.1)

A feasible set of (GVCP) is

F =
{
(x, u) ∈ K × TK : u ∈ Tx,

〈
Au, y

〉
/≤intP(x)0, ∀y ∈ K

}
. (2.2)
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We consider the following generalized vector optimization problem (GVOP):

MinP〈Au, x〉 subject to (x, u) ∈ F. (2.3)

A point (x, u) ∈ F is called a weakly minimal solution of (GVOP) with respect to the cone
P(x), if 〈Au, x〉 is a weakly minimal point of (GVOP) with respect to the cone P(x), that is,
〈Au, x〉 ∈ MinP(x)

w {〈Au, x〉 : (x, u) ∈ F}. We denote the set of all weakly minimal solutions of
(GVOP)with respect to the cone P(x) byΩP(x)

w and the set of all weakly minimal solutions of
(GVOP) by Ωw, that is,

Ωw =
⋃

x∈K
ΩP(x)

w . (2.4)

Theorem 2.1. IfΩw /= ∅ and, for some x ∈ K, there exists (x, u) ∈ ΩP(x)
w such that 〈Au, x〉/≥intP(x)0,

then the generalized vector complementarity problem (GVCP) is solvable.

Proof. Let (x, u) ∈ ΩP(x)
w and 〈Au, x〉/≥intP(x)0. Then x ∈ K, u ∈ Tx, and

〈Au, x〉/≥intP(x)0, 〈Au, y〉/≤intP(x)0, ∀y ∈ K. (2.5)

It follows that x is a solution of (GVCP). This completes the proof.

We remark that if A = I the identity mapping of L(X,Y ) and T is a single-valued
mapping from K = X to L(X,Y ), then Theorem 2.1 coincides with Theorem 2.1 in Huang et
al. [9].

Definition 2.2. Let T : K → 2L(X,Y ), P : K → 2Y be two set-valued mappings with intP(x)/= ∅
for every x ∈ K, A : L(X,Y ) → L(X,Y ) a single-valued mapping, and F a subset of K × TK.
We say that P is inclusive with respect to F if for any (x, u), (y, v) ∈ F,

〈Au, x〉≤intP(y)
〈
Av, y

〉
implies that P(x) ⊂ P

(
y
)
. (2.6)

It is easy to see that, if P(x) = P for all x ∈ K, where P is a closed, pointed, and convex cone
in Y , then P is inclusive with respect to F.

Example 2.3. Let X = Y = R2, K = [0, 1] × [0, 1], A = I be the identity mapping of L(X,Y ).
For each x = (x1, x2) ∈ K, define

P(x) =
{
(z1, z2) ∈ R2 : 0 ≤ z2 ≤ (1 + x1)z1

}
, (2.7)

and, for each x ∈ K,

T(x) =

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣
3 +

2
1 + x1

0

0 3 +
2

1 + x2

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
⊂ L(X,Y ). (2.8)
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Also, define

〈u, x〉 =
(
3x1 +

2x1

1 + x1
, 3x2 +

2x2

1 + x2

)
, ∀(x, u) ∈ F. (2.9)

Then it is easy to see that P is inclusive with respect to F. Indeed, for any (x, u), (y, v) ∈ Fwith
x = (x1, x2), y = (y1, y2), u = Tx, and v = Ty, if 〈u, x〉≤intP(y)〈v, y〉, then 〈v, y〉 − 〈u, x〉 ∈
intP(y) and so x1 < y1. Therefore, P(x) ⊂ P(y) and P is inclusive with respect to F.

Theorem 2.4. Suppose that P is inclusive with respect to F. If there exist at most a finite number of
solutions for (GVCP), then (GVCP) is solvable if and only if Ωw /= ∅, and there exists (x, u) ∈ ΩP(x)

w

such that 〈Au, x〉/≥intP(x)0.

Proof. Let η1 be a solution of (GVCP). Then there exists u1 ∈ Tη1 such that

〈Au1, η1〉/≥intP(η1)0,
〈
Au1, y

〉
/≤intP(η1)0, ∀y ∈ K. (2.10)

If (η1, u1) ∈ ΩP(η1)
w , then

〈
Au1, η1

〉
/≥intP(η1)0, (2.11)

and hence the conclusion holds. If (η1, u1)/∈ΩP(η1)
w , by the definition of a weakly minimal

solution, there exists (η2, u2) ∈ F such that

〈
Au2, y

〉
/≤intP(η2)0, ∀y ∈ K,

〈
Au2, η2

〉≤intP(η1)
〈
Au1, η1

〉
/≥intP(η1)0.

(2.12)

This implies that

〈
Au2, η2

〉
/≥intP(η1)0. (2.13)

Since 〈Au2, η2〉≤intP(η1)〈Au1, η1〉, and P is inclusive with respect to F, it follows that P(η2) ⊂
P(η1) and this implies that

〈
Au2, η2

〉
/≥intP(η2)0. (2.14)

Thus, η2 is a solution of (GVCP) and η2 /=η1. Continuing this process, there exists (ηn, un) ∈ F

such that ηn is a solution of (GVCP) and (ηn, un) ∈ ΩP(ηn)
w , since (GVCP) has at most a finite

number of solutions. Thus, 〈Aun, ηn〉 ∈ MinP(ηn)
w {〈Au, ηn〉 : (ηn, u) ∈ F} and

〈
Aun, ηn

〉
/≥intP(ηn)0. (2.15)

Combining this result and Theorem 2.1, we have the conclusion of the theorem.
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Remark 2.5. (1) If A = I the identity mapping of L(X,Y ), T is a single-valued mapping from
X to L(X,Y ), and P(x) = P for all x ∈ X, where P is a closed, pointed, and convex cone in
Y , then P(x) satisfies the inclusive condition with respect to F and Theorem 2.4 reduces to
Theorem 3.2 of Chen and Yang [4].

(2) If A = I the identity mapping of L(X,Y ) and T is a single-valued mapping from
K = X to L(X,Y ), then Theorem 2.4 coincides with Theorem 2.2 of Huang et al. [9].

We next consider the generalized positive vector complementarity problem (GPVCP).
Finding x ∈ K and u ∈ Tx such that

〈Au, x〉/≥intP(x)0,
〈
Au, y

〉≥P(x)0, ∀y ∈ K. (2.16)

Let

G =
{
(x, u) ∈ K × TK : u ∈ Tx,

〈
Au, y

〉≥P(x)0, ∀y ∈ K
}
. (2.17)

Consider the following generalized vector optimization problem (GVOP)0 to be

MinP〈Au, x〉 subject to (x, u) ∈ G. (2.18)

We denote the set of all minimal points of (GVOP)0 with respect to the cone P(x) by ΓP(x),
that is, ΓP(x) = MinP(x){〈Au, x〉 : (x, u) ∈ G}, and denote the set of all minimal points of
(GVOP)0 by

Γ =
⋃

x∈K
ΓP(x). (2.19)

Using a similar argument of Theorem 2.1, we have the following results of solvability
for (GPVCP).

Theorem 2.6. If Γ/= ∅ and there exists (x, u) ∈ ΓP(x) such that 〈Au, x〉/≥intP(x)0, then (GPVCP) is
solvable.

Theorem 2.7. Suppose that P is inclusive with respect to G. If there exist at most a finite number of
solutions of (GPVCP), then (GPVCP) is solvable if and only if Γ/= ∅, and there exists (x, u) ∈ ΓP(x)

such that 〈Au, x〉/≥intP(x)0.

One remarks that If A = I the identity mapping of L(X,Y ) and T is a single-valued
mapping from K = X to L(X,Y ), then Theorems 2.6 and 2.7 coincide with Theorems 2.3 and
2.4 of Huang et al. [9], respectively.

3. Equivalences between Generalized Vector Complementarity

3.1. Problems and Generalized Weak Minimal Element Problems

LetX, Y be two Banach spaces, and P : K → 2Y a set-valued mapping such that, for each x ∈
K, P(x) is a proper closed convex and pointed cone with apex at the origin and intP(x)/= ∅,
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let A : L(X,Y ) → L(X,Y ) be a single-valued mapping, and T : X → 2L(X,Y ) a set-valued
mapping, where 2L(X,Y ) is a collection of all nonempty subsets of L(X,Y ), and f : X → Y a
given operator.

Define the feasible set associated with T and A

F̃ =
{
x ∈ K : there is u ∈ Tx such that

〈
Au, y

〉
/≤intP(x)0, ∀y ∈ K

}
. (3.1)

We now consider the following five problems.

(i) The generalized vector optimization problem (GVOP)l: for a given l ∈ L(X,Y ),
finding x ∈ F̃ such that

l(x) ∈ MinP(x)
w l

(
F̃
)
. (3.2)

(ii) The generalized weak minimal element problem (GWMEP): finding x ∈ F̃ such
that x ∈ MinK

wF̃.

(iii) The generalized vector complementarity problem (GVCP): finding x ∈ F̃ such that
〈Au, x〉/≥intP(x)0 where u ∈ Tx is associated with x in the definition of F̃.

(iv) The generalized vector variational inequality problem (GVVIP): finding x ∈ K and
u ∈ Tx such that

〈
Au, y − x

〉
/≤intP(x)0, ∀y ∈ K. (3.3)

(v) The generalized vector unilateral optimization problem (GVUOP): finding x ∈ K

such that f(x) ∈ MinP(x)
w f(K).

We remark that if A = I the identity mapping of L(X,Y ) and T is a single-
valued mapping from X to L(X,Y ), then the (GVOP)l, (GWMEP), (GVCP), (GVVIP), and
(GVUOP) reduce to Huang, et al.’s problems (VOP)l, (WMEP), (VCP), (VVIP), and (VUOP),
respectively; see [9] for more details.

Definition 3.1 (see [4]). A linear operator l : X → Y is called weakly positive if, for any
x, y ∈ X, x/≥intCy implies that l(x)/≥intP(x)l(y).

Definition 3.2. Let X and Y be two Banach spaces and l a linear operator from X to Y . If
the image of any bounded set in X is a self-sequentially compact set in Y , then l is called
completely continuous.

A mapping f : X → Y is said to be convex if

f
(
λx + (1 − λ)y

)≤P(x)λf(x) + (1 − λ)f
(
y
)

(3.4)

for all x, y ∈ X and 0 ≤ λ ≤ 1.
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Definition 3.3. Let A : L(X,Y ) → L(X,Y ) and f : X → Y be two mappings. f is said to be
A-subdifferentiable at x0 ∈ X if there exists u0 ∈ L(X,Y ) such that

f(x) − f(x0)≥P(x0)〈Au0, x − x0〉, ∀x ∈ X. (3.5)

If f isA-subdifferentiable at x0 ∈ X, then we define theA-subdifferential of f at x0 as follows:

∂Af(x0) :=
{
u ∈ L(X,Y ) : f(x) − f(x0)≥P(x0)〈Au, x − x0〉, ∀x ∈ X

}
. (3.6)

If f is A-subdifferentiable at each x ∈ X, then we say that f is A-subdifferentiable on X.

Remark 3.4. We note that as the mentions in [9], ifX and Y are two Banach spaces, a mapping
f : X → Y is Fréchet differentiable at x0 ∈ X if there exists a linear bounded operatorDf(x0)
such that

lim
x→ 0

∥∥f(x0 + x) − f(x0) −
〈
Df(x0), x

〉∥∥

‖x‖ = 0, (3.7)

where Df(x0) is said to be the Fréchet derivative of f at x0. The mapping f is said to be
Fréchet differentiable on X if f is Fréchet differentiable at each point of X. If f : X → Y is
convex and Fréchet differentiable on X, then

f
(
y
) − f(x)≥P(x)

〈
Df(x), y − x

〉
, ∀x, y ∈ X. (3.8)

If f is Fréchet differentiable at x0 ∈ X, then f is I-subdifferentiable at x0 ∈ X and
Df(x0) ∈ ∂If(x0).

If f is A-subdifferentiable on X, then for each x, y ∈ X we have

f
(
y
) − f(x)≥P(x)

〈
Au, y − x

〉
, ∀u ∈ ∂Af(x). (3.9)

Definition 3.5. Let X be a Banach space,K ⊂ X a proper closed convex and pointed cone with
apex at the origin and intK/= ∅. The norm ‖ · ‖ in X is called strictly monotonically increasing
on K [9] if, for each y ∈ K,

x ∈ ({
y
} − intK

) ∩K only implies ‖x‖ <
∥∥y

∥∥. (3.10)

For the example of the strictly monotonically increasing property, we refer the reader to [9,
Example 3.1].

Theorem 3.6. Let X, Y be two Banach spaces, K ⊂ X a proper closed convex and pointed cone with
apex at the origin and intK/= ∅, and P : K → 2Y a set-valued mapping with closed, convex, and
pointed cones values such that intP(x)/= ∅ for all x ∈ K. Suppose that

(1) T = ∂Af is the A-subdifferential of a convex operator f : X → Y ;

(2) l is a weakly positive linear operator;
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(3) there exists x ∈ F̃ such that Au is one to one and completely continuous, where u ∈ Tx is
associated with x in the definition of F̃;

(4) X is a topological dual space of a real normed space and the norm ‖ · ‖ in X is strictly
monotonically increasing on K.

If (GVVIP) is solvable, then (GVOP)l, (GWMEP), (GVCP), and (GVUOP) are also solvable.

Corollary 3.7 (see [9, Theorem 3.1]). Let X, Y be two Banach spaces, K ⊂ X a proper closed
convex and pointed cone with apex at the origin and intK/= ∅, and {P(x) : x ∈ X} that a family of
closed, pointed, and convex cones in Y such that intP(x)/= ∅ for all x ∈ X. Suppose that

(1) T = Df is the Fréchet derivative of a convex operator f : X → Y ;

(2) l is a weakly positive linear operator;

(3) there exists x ∈ F̃ such that Tx is one to one and completely continuous, where
F̃ = {x ∈ K : 〈Tx, y〉/≤intP(x)0, ∀y ∈ K};

(4) X is a topological dual space of a real normed space and the norm ‖ · ‖ in X is strictly
monotonically increasing on K.

If (VVIP) is solvable, then (VOP)l, (WMEP), (VCP), and (VUOP) are also solvable.

Proof. Since A = I the identity mapping of L(X,Y ) and T is a single-valued mapping from X
to L(X,Y ), we have

F̃ =
{
x ∈ K : there is u ∈ Tx such that

〈
Au, y

〉
/≤intP(x)0, ∀y ∈ K

}

=
{
x ∈ K : 〈Tx, y〉/≤intP(x)0, ∀y ∈ K

}
.

(3.11)

Utilizing Theorem 3.6, we immediately obtain the desired conclusion.

Remark 3.8. If P(x) = P for all x ∈ X, where P is a closed, pointed, and convex cone in Y , then
Corollary 3.7 coincides with Theorem 3.1 of Chen and Yang [4].

We need the following propositions to prove Theorem 3.6.

Proposition 3.9. Let A : L(X,Y ) → L(X,Y ) and f : X → Y be two mappings, and let T = ∂Af
be the A-subdifferential of f . Then x solves (GVUOP) which implies that x solves (GVVIP). If in
addition, f is a convex mapping, then conversely, x solves (GVVIP) which implies that x solves
(GVUOP).

Proof. Let x be a solution of (GVUOP). Then x ∈ K and f(x) ∈ MinP(x)
w f(K), that is,

f(x)/≥intP(x)f(y) for all y ∈ K. Since K is a convex cone,

f(x)/≥intP(x)f(x + t(w − x)), 0 < t < 1, w ∈ K. (3.12)

Also, since f is A-subdifferentiable on X, it follows that for all u ∈ Tx = ∂Af(x)

f(x)/≥intP(x)f(x + t(w − x))≥P(x)f(x) + 〈Au, t(w − x)〉, 0 < t < 1, w ∈ K. (3.13)
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This implies that

〈Au, t(w − x)〉/≤intP(x)0, 0 < t < 1, w ∈ K, (3.14)

and hence

〈Au,w − x〉/≤intP(x)0, ∀w ∈ K. (3.15)

Thus, x solves (GVVIP).
Conversely, let x solve (GVVIP). Then there exists û ∈ Tx = ∂Af(x) such that

〈Aû,w − x〉/≤intP(x)0, ∀w ∈ K. (3.16)

Since f is A-subdifferentiable on X, we have for all u ∈ Tx = ∂Af(x)

f(w) − f(x)≥P(x)〈Au,w − x〉, ∀w ∈ K, (3.17)

and hence

f(w) − f(x)≥P(x)〈Aû,w − x〉/≤intP(x)0, ∀w ∈ K. (3.18)

This implies that

f(w)/≤intP(x)f(x), ∀w ∈ K. (3.19)

Consequently, x solves (GVUOP). This completes the proof.

Proposition 3.10. If x solves (GVVIP), then x also solves (GVCP). Conversely, if 〈Au, x〉≤P(x)0,
for all x ∈ K, u ∈ Tx, then x solves (GVCP) which implies that x solves (GVVIP).

Proof. Let x be a solution of (GVVIP). Then there exists u ∈ Tx such that

〈
Au, y − x

〉
/≤intP(x)0, ∀y ∈ K. (3.20)

Letting y = 0, we get 〈Au, x〉/≥intP(x)0. For y = w + x with any w ∈ K, we have

〈Au,w〉/≤intP(x)0, ∀w ∈ K. (3.21)

Thus, x is a solution of the (GVCP).
Conversely, let x solve the (GVCP). Then there exists u ∈ Tx such that

〈Au, x〉≤P(x)0/≥intP(x)
〈
Au, y

〉
, ∀y ∈ K. (3.22)
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This implies

〈Au, x〉/≥intP(x)
〈
Au, y

〉
, ∀y ∈ K, (3.23)

and so

〈Au, y − x〉/≥intP(x)0, ∀y ∈ K. (3.24)

This completes the proof.

Proposition 3.11. Let l be a weakly positive linear operator. Then x solves (GWMEP) which implies
that x solves (GVOP)l.

Proof. Let x be a solution of (GWMEP). Then x ∈ F̃ and x ∈ MinK
wF̃, that is, for any z ∈ F̃,

x/≥intKz. Since l is a weakly positive linear operator, it follows that l(x)/≥intP(x)l(z) and so

l(x) ∈ MinP(x)
w l

(
F̃
)
, (3.25)

hence x solves (GVOP)l. This completes the proof.

Definition 3.12 (see [9]). Let X be a Banach space,K ⊂ X a proper closed convex and pointed
cone with apex at the origin and intK/= ∅, E a nonempty subset of X.

(1) If, for some x ∈ X, Ex = ({x} −K) ∩ E/= ∅, then Ex is called a section of the set E.

(2) E is called weakly closed if {xn} ⊂ E, x ∈ X, 〈x∗, xn〉 → 〈x∗, x〉 for all x∗ ∈ X∗,
then x ∈ E.

(3) E is called bounded below if there exists a point p in X such that E ⊂ p +K.

Lemma 3.13 (see [11]). Let X be a Banach space, K ⊂ X a proper closed convex and pointed cone
with apex at the origin and intK/= ∅, E a nonempty subset of X and X the topological dual space of
a real normed space (Z, ‖ · ‖Z). Suppose there exists x ∈ X such that the section Ex is weakly closed
and bounded below and the norm ‖ · ‖ in X is strictly monotonically increasing, then the set E has at
least one weakly minimal point.

Lemma 3.14. If (GVVIP) is solvable, then the feasible set F̃ is nonempty.

Proof. Let x be a solution of (GVVIP). Then there exists u ∈ Tx such that

〈
Au, y − x

〉
/≤intP(x)0, ∀y ∈ K. (3.26)

Taking y = z + x with any z ∈ K, we know that y ∈ C and

〈Au, z〉/≤intP(x)0, ∀z ∈ K. (3.27)

Thus, x ∈ F̃. This completes the proof.
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Let X be a Banach space,K ⊂ X a proper closed convex and pointed cone with apex at
the origin and intK/= ∅. For any x, y ∈ X, [x, y] = (x+K)∩ (y−K) is called an order interval.

Lemma 3.15 (see [4]). Let X be a Banach space, K ⊂ X a proper closed convex and pointed cone
with apex at the origin and intK/= ∅. If the norm ‖ · ‖ in X is strictly monotonically increasing, then
the order intervals in X are bounded.

Proposition 3.16. Suppose that (GVVIP) is solvable and

(1) there exists x in F̃ such that Au is one to one and completely continuous, where u ∈ Tx is
associated with x in the definition of F̃;

(2) X is the topological dual space of a real normed space (Z, ‖ · ‖Z) and the norm ‖ · ‖ in X is
strictly monotonically increasing.

Then (GWMEP) has at least one solution.

Proof. By the assumption and Lemma 3.14, F̃/= ∅. Let x ∈ F̃ be a point such that Au is one to
one and completely continuous, where u ∈ Tx is associated with x in the definition of F̃, and
let {yn} ⊂ F̃ with yn → y (weakly). Since

F̃x = ({x} − C) ∩ F̃ ⊂ ({x} − C) ∩ C = [0, x], (3.28)

by Lemma 3.15, [0, x] is bounded and so is F̃x. Since Au is completely continuous, 〈Au, F̃x〉
is a self-sequentially compact set and so {〈Au, yn〉} ⊂ 〈Au, F̃x〉 implies that there exists a
subsequence {〈Au, ynk〉} which converges to z ∈ 〈Au, F̃x〉. We get a point y0 ∈ F̃x such that

〈
Au, ynk

〉 −→ 〈
Au, y0

〉 (
strongly

)
. (3.29)

On the other hand, since yn → y (weakly) and Au is completely continuous,

〈Au, yn〉 −→ 〈
Au, y

〉 (
strongly

)
. (3.30)

By the uniqueness of the limit, we get 〈Au, y〉 = 〈Au, y0〉. Since Au is one to one, y = y0, and
so y ∈ F̃x. Since F̃x is weakly closed, it follows from Lemma 3.13 that F̃ has a weakly minimal
point p such that p/≥intP(p)x for all x ∈ F̃. Therefore, (GWMEP) has at least one solution. This
completes the proof.

Definition 3.17. Let X, Y be two Banach spaces, K ⊂ X a proper closed convex and pointed
cone with apex at the origin and intK/= ∅, and P : K → 2Y a set-valued mapping with closed,
convex and pointed cones values such that intP(x)/= ∅ for all x ∈ K. Let A : L(X,Y ) →
L(X,Y ) be a single-valued mapping and T : X → 2L(X,Y ) a set-valued mapping. T is called
A-positive if

〈Au, y〉≥P(x)0, ∀x, y ∈ K, u ∈ Tx. (3.31)
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We now consider the generalized positive vector complementarity problem (GPVCP).
Finding x ∈ K and u ∈ Tx such that

〈Au, x〉/≥intP(x)0,
〈
Au, y

〉≥P(x)0, ∀y ∈ K. (3.32)

The feasible set related to (GPVCP) is defined as

F̃0 =
{
x ∈ K : there is u ∈ Tx such that

〈
Au, y

〉≥P(x)0, ∀y ∈ K
}
. (3.33)

Let us consider the following problems.
The generalized vector optimization problem (GVOP)l0: finding x ∈ F̃0 such that l(x) ∈

MinP
wl(F̃0).

The generalized weak minimal element problem (GWMEP)0: finding x ∈ F̃0 such that
x ∈ MinK

wF̃0.
The generalized positive vector complementarity problem (GPVCP): finding x ∈ F̃0

such that

〈Au, x〉/≥intP(x)0, (3.34)

where u ∈ Tx is associated with x in the definition of F̃0.
The generalized vector variational inequality problem (GVVIP): finding x ∈ K and

u ∈ Tx such that

〈
Au, y − x

〉
/≤intP(x)0, ∀y ∈ K. (3.35)

The generalized vector unilateral optimization problem (GVUOP): for a given
mapping f : X → Y , finding x ∈ K such that f(x) ∈ MinP

wf(K).

Definition 3.18. A set-valued mapping T : X → 2L(X,Y ) is said to be A-strictly monotone
where A : L(X,Y ) → L(X,Y ) is single-valued, if

〈
Au −Av, x − y

〉≥intP(x)0, ∀x, y ∈ X, x /=y, u ∈ Tx, v ∈ Ty. (3.36)

Definition 3.19 (see [9]). We say that P(x) satisfies an inclusive condition if, for any x, y ∈ X,

x≤intCy only implies that P(x) ⊂ P
(
y
)
. (3.37)

It is easy to see that, if P(x) = P for all x ∈ X, where P is a closed, pointed, and convex cone
in Y , then P(x) satisfies the inclusive condition.



14 Journal of Inequalities and Applications

Example 3.20. Let X = (−∞,+∞), C = [0,+∞), Y = R2, and

P(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
(z1, z2) ∈ R2 : 0 ≤ z2 ≤ 2z1

}
, x ∈ (−∞, 2),

{
(z1, z2) ∈ R2 : 0 ≤ z2 ≤ xz1

}
, x ∈ [2, 5),

{
(z1, z2) ∈ R2 : 0 ≤ z2 ≤ 5z1

}
, x ∈ [5,+∞)

(3.38)

for all x ∈ X. Then it is easy to check that P(x) satisfies the inclusive condition.

Proposition 3.21. Let T be A-strictly monotone and x a solution of (GPVCP). If P satisfies the
inclusive condition, then x is a weakly minimal point of F̃0 (i.e., x solves (GWMEP)0).

Proof. It is easy to see that x ∈ F̃0 ⊂ K. If x ∈ bd(K) (where bd(K) denotes the boundary of
K), then x solves (GWMEP)0. Otherwise, there exists x′ ∈ F̃0 such that x≥intKx

′ and so

x = x − x′ + x′ ∈ intK +K ⊂ intK, (3.39)

which is a contradiction. If x ∈ intK, by the A-strict monotonicity of T ,

〈
Au, x − y

〉≥intP(x)
〈
Av, x − y

〉
, ∀y ∈ F̃0, y /=x, v ∈ Ty. (3.40)

Suppose x≥intKy. Since T is A-positive, 〈Av, x − y〉≥P(y)0 and

〈
Au, x − y

〉≥intP(x)
〈
Av, x − y

〉≥P(y)0. (3.41)

By the assumption, we get P(y) ⊂ P(x) and so

〈
Au, x − y

〉 ∈ 〈
Av, x − y

〉
+ intP(x) ⊂ P

(
y
)
+ intP(x) ⊂ P(x) + intP(x) = intP(x). (3.42)

It follows that

〈
Au, x − y

〉≥intP(x)0, (3.43)

and thus

0/≤intP(x)〈Au, x〉≥P(x)
〈
Au, y

〉
+ k (3.44)

for some k ∈ intP(x). This implies

〈
Au, y

〉
+ k/≥intP(x)0. (3.45)

Since k ∈ intP(x) and x ∈ F̃0,

〈
Au, y

〉
+ k ∈ P(x) + intP(x) ⊂ intP(x), (3.46)
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and so

〈
Au, y

〉
+ k≥intP(x)0, (3.47)

which leads to a contradiction. Therefore, x≥intKy does not hold, that is, x/≥intKy for all y ∈ F̃0.
It follows that x solves (GWMEP)0. This completes the proof.

Proposition 3.22. If x solves (GPVCP), then x also solves (GVVIP).

Proof. Suppose that x solves (GPVCP). Then x ∈ K and there exists u ∈ Tx such that

〈Au, x〉/≥intP(x)0,
〈
Au, y

〉≥P(x)0, ∀y ∈ K. (3.48)

If 〈Au, y − x〉≤intP(x)0, then

〈Au, x〉 = −〈Au, y − x
〉
+
〈
Au, y

〉 ∈ intP(x) + P(x) ⊂ intP(x), (3.49)

and so

〈Au, x〉≥intP(x)0, (3.50)

which is a contradiction. It follows that

〈
Au, y − x

〉
/≤intP(x)0, (3.51)

and x solves (GVVIP). This completes the proof.

Similarly, we can obtain other equivalence conditions. We have the following theorem.

Theorem 3.23. LetX, Y be two Banach spaces,K ⊂ X a proper closed convex and pointed cone with
apex at the origin and intK/= ∅, and {P(x) : x ∈ X} a family of closed, pointed, and convex cones in
Y such that intP(x)/= ∅ for all x ∈ X. Suppose that P satisfies the inclusive condition and

(1) T = ∂Af is the A-subdifferential of the convex operator f : X → Y ;

(2) l is a weakly positive linear operator;

(3) T is A-strictly monotone.

If (GPVCP) is solvable, then (GVOP)l0, (GWMEP)0, (GPVCP), (GVVIP), and (GVUOP)
have at least a common solution.

Corollary 3.24 (see [9, Theorem 3.2]). Let X, Y be two Banach spaces, K ⊂ X a proper closed
convex and pointed cone with apex at the origin and intK/= ∅, and {P(x) : x ∈ X} a family of closed,
pointed, and convex cones in Y such that intP(x)/= ∅ for all x ∈ X. Suppose that P satisfies the
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inclusive condition and

(1) T = Df is the Fréchet derivative of the convex operator f : X → Y ;

(2) l is a weakly positive linear operator;

(3) T is strictly monotone.

If (PVCP) is solvable, then (VOP)l0, (WMEP)0, (PVCP), (VVIP), and (VUOP) have at least
a common solution.

Proof. Note that A = I the identity mapping of L(X,Y ) and T is a single-valued mapping
from X to L(X,Y ). From Theorem 3.23, we immediately obtain the desired conclusion.

Remark 3.25. If P(x) = P for all x ∈ X, where P is a closed, pointed, and convex cone in Y ,
then Corollary 3.24 coincides with Theorem 4.1 of Chen and Yang [4].
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