Research Article

Generalized Vector Complementarity Problems with Moving Cones

Lu-Chuan Ceng ${ }^{1}$ and Yen-Cherng Lin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
${ }^{2}$ Department of Occupational Safety and Health, China Medical University, Taichung 404, Taiwan
Correspondence should be addressed to Yen-Cherng Lin, yclin@mail.cmu.edu.tw

Received 3 October 2009; Accepted 30 November 2009
Recommended by Charles E. Chidume
We introduce and discuss a class of generalized vector complementarity problems with moving cones. We discuss the existence results for the generalized vector complementarity problem under inclusive type condition. We obtain equivalence results between the generalized vector complementarity problem, the generalized vector variational inequality problem, and other related problems. The theorems presented here improve, extend, and develop some earlier and very recent results in the literature.

Copyright © 2009 L.-C. Ceng and Y.-C. Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

It is well known that vector variational inequalities were initially studied by Giannessi [1] and ever since have been widely studied in infinite-dimensional spaces see, for example, [28] and the references therein.

Very recently, Huang et al. [9] considered a class of vector complementarity problems with moving cones. They established existence results of a solution for this class of vector complementarity problems under an inclusive type condition. They also obtained some equivalence results among a vector complementarity problem, a vector variational inequality problem, a vector optimization problem, a weak minimal element problem, and a vector unilateral optimization problem in ordered Banach spaces. Their results generalized the main results in [4].

The purpose of this paper is to introduce and discuss a class of generalized vector complementarity problems with moving cones which is a variable ordering relation. We derive existence of a solution for this class of generalized vector complementarity problems under an inclusive type condition. This inclusive condition requires that any two of the
family of closed and convex cones satisfy an inclusion relation so long as their corresponding variables satisfy certain conditions. We also obtain some equivalence results among a generalized vector complementarity problem, a generalized vector variational inequality problem, a generalized vector optimization problem, a generalized weak minimal element problem, and a generalized vector unilateral optimization problem under some monotonicity conditions and some inclusive type conditions in ordered Banach spaces. The theorems presented in this paper improve, extend, and develop some earlier and very recent results in the literature including $[4,9]$.

Let X be a Banach space, and A a subset of X. The topological interior of a subset A in X is denoted by $\operatorname{int} A$. A nonempty subset P in X is called a convex cone if $P+P \subset P$, and $\lambda P \subset P$ for any $\lambda>0$. The relations \leq_{P} and Δ_{P} in X are defined as $x \leq_{P} y$ if $y-x \in P$ and $x \leq_{P} y$ if $y-x \notin P$, for any $x, y \in X$. Similarly, we can define the relations $\leq_{\operatorname{int} p}$ and $Z_{\mathrm{int} P}$ if we replace the set P by int $P . P$ is called a pointed cone if P is a cone and $P \cap(-P)=\{0\}$.

Let $L(X, Y)$ be the space of all continuous linear mappings from X to Y. We denote the value of $l \in L(X, Y)$ at $x \in X$ by (l, x).

Let X, Y be two Banach spaces, and $P: K \rightarrow 2^{\Upsilon}$ a set-valued mapping such that, for each $x \in K, P(x)$ is a proper closed convex and pointed cone with apex at the origin and int $P(x) \neq \emptyset$, and $T: X \rightarrow L(X, Y)$. Very recently, Huang et al. [9] introduced the following three kinds of vector complementarity problems.
(Weak) vector complementarity problem (VCP): finding $x \in K$ such that

$$
\begin{equation*}
\langle T x, x\rangle \not ¥_{\text {int } P(x)} 0, \quad\langle T x, y\rangle \mathbb{Z}_{\text {int } P(x)} 0, \quad \forall y \in K . \tag{1.1}
\end{equation*}
$$

Positive vector complementarity problem (PVCP): finding $x \in K$ such that

$$
\begin{equation*}
\langle T x, x\rangle \not ¥_{\operatorname{int} P(x)} 0, \quad\langle T x, y\rangle \geq_{P(x)} 0, \quad \forall y \in K . \tag{1.2}
\end{equation*}
$$

Strong vector complementarity problem (SVCP): finding $x \in K$ such that

$$
\begin{equation*}
\langle T x, x\rangle=0, \quad\langle T x, y\rangle \geq_{P(x)} 0, \quad \forall y \in K \tag{1.3}
\end{equation*}
$$

We remark that if $P(x)=P$ for all $x \in K$, where P is a closed, pointed, and convex cone in Y with nonempty interior $\operatorname{int} P(x)$, then (VCP), (PVCP) and (SVCP) reduce to the problems considered in Chen and Yang [4]. In [9], they actually only studied the first two kinds complementarity problems. For the existence results of (SVCP), we refer the reader to our recent results [Submitted, On the F-implicit vector complementarity problem].

Motivated and inspired by the above three kinds of vector complementarity problems, in this paper we introduce three kinds of generalized vector complementarity problems. Let X, Y be two Banach spaces, and $P: K \rightarrow 2^{Y}$ a set-valued mapping such that, for each $x \in K$, $P(x)$ is a proper closed convex and pointed cone with apex at the origin and int $P(x) \neq \emptyset$, let $A: L(X, Y) \rightarrow L(X, Y)$ be a single-valued mapping, and $T: X \rightarrow 2^{L(X, Y)}$ a set-valued mapping, where $2^{L(X, Y)}$ is a collection of all nonempty subsets of $L(X, Y)$. We consider the following three kinds of generalized vector complementarity problems.
(Weak) generalized vector complementarity problem (GVCP): finding $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle ¥_{\text {int } P(x)} 0, \quad\langle A u, y\rangle \Xi_{\text {int } P(x)} 0, \quad \forall y \in K . \tag{1.4}
\end{equation*}
$$

Generalized positive vector complementarity problem (GPVCP): finding $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle \ngtr_{\text {int } P(x)} 0, \quad\langle A u, y\rangle \geq_{P(x)} 0, \quad \forall y \in K . \tag{1.5}
\end{equation*}
$$

Generalized strong vector complementarity problem (GSVCP): finding $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle=0, \quad\langle A u, y\rangle_{\geq_{P(x)} 0}, \quad \forall y \in K . \tag{1.6}
\end{equation*}
$$

We remark that if $A=I$ the identity mapping of $L(X, Y)$, and $T: K=X \rightarrow 2^{L(X, Y)}$ is a single-valued mapping, then three kinds of generalized vector complementarity problems reduce to three kinds of vector complementarity problems in Huang et al. [9], respectively.

2. Existence of a Solution for GVCP

Huang et al. [9] established some equivalence results between the positive vector complementarity problem and the vector extremum problem and also sufficient conditions for the existence of a solution of the vector extremum problem. In this section, we extend their results to the cases involving the set-valued mappings.

Let X be an arbitrary real Hausdorff topological vector spaces, and Y a Banach space. $L(X, Y)$ denotes the space of all continuous linear mappings from X to Y. Let K be a nonempty set of X, and $P: K \rightarrow 2^{Y}$ a set-valued mapping such that, for each $x \in K, P(x)$ is a proper closed convex and pointed cone with apex at the origin and $\operatorname{int} P(x) \neq \emptyset$. Let A be a subset of Y. For each $x \in K$, a point $z \in A$ is called a minimal point of A with respect to the cone $P(x)$ if $A \cap(z-P(x))=\{z\} ; \operatorname{Min}^{P(x)} A$ is the set of all minimal points of A with respect to the cone $P(x)$; a point $z \in A$ is called a weakly minimal point of A with respect to the cone $P(x)$ if $A \cap(z-\operatorname{int} P(x))=\emptyset ; \operatorname{Min}_{w}^{P(x)} A$ is the set of all weakly minimal points of A with respect to the cone $P(x)$, we refer the reader to [10] for more detail.

Let $A: L(X, Y) \rightarrow L(X, Y)$ be a single-valued mapping and let $T: X \rightarrow 2^{L(X, Y)}$ be a set-valued mapping. Now, we consider the following generalized vector complementarity problem (GVCP). Find $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle ¥_{\operatorname{int} P(x)} 0, \quad\langle A u, y\rangle \Xi_{\text {int } P(x)} 0, \quad \forall y \in K . \tag{2.1}
\end{equation*}
$$

A feasible set of (GVCP) is

$$
\begin{equation*}
\mathfrak{F}=\left\{(x, u) \in K \times T K: u \in T x,\langle A u, y\rangle \Sigma_{\operatorname{int} P(x)} 0, \forall y \in K\right\} . \tag{2.2}
\end{equation*}
$$

We consider the following generalized vector optimization problem (GVOP):

$$
\begin{equation*}
\operatorname{Min}_{P}\langle A u, x\rangle \quad \text { subject to }(x, u) \in \mathfrak{F} \tag{2.3}
\end{equation*}
$$

A point $(x, u) \in \mathfrak{F}$ is called a weakly minimal solution of (GVOP) with respect to the cone $P(x)$, if $\langle A u, x\rangle$ is a weakly minimal point of (GVOP) with respect to the cone $P(x)$, that is, $\langle A u, x\rangle \in \operatorname{Min}_{w}^{P(x)}\{\langle A u, x\rangle:(x, u) \in \mathfrak{F}\}$. We denote the set of all weakly minimal solutions of (GVOP) with respect to the cone $P(x)$ by $\Omega_{w}^{P(x)}$ and the set of all weakly minimal solutions of (GVOP) by Ω_{w}, that is,

$$
\begin{equation*}
\Omega_{w}=\bigcup_{x \in K} \Omega_{w}^{P(x)} \tag{2.4}
\end{equation*}
$$

Theorem 2.1. If $\Omega_{w} \neq \emptyset$ and, for some $x \in K$, there exists $(x, u) \in \Omega_{w}^{P(x)}$ such that $\langle A u, x\rangle \not \underbrace{}_{\text {int } P(x)} 0$, then the generalized vector complementarity problem (GVCP) is solvable.

Proof. Let $(x, u) \in \Omega_{w}^{P(x)}$ and $\langle A u, x\rangle \not ¥_{\text {int } P(x)} 0$. Then $x \in K, u \in T x$, and

$$
\begin{equation*}
\langle A u, x\rangle \not ¥_{\operatorname{int} P(x)} 0, \quad\langle A u, y\rangle \Xi_{\operatorname{int} P(x)} 0, \quad \forall y \in K . \tag{2.5}
\end{equation*}
$$

It follows that x is a solution of (GVCP). This completes the proof.
We remark that if $A=I$ the identity mapping of $L(X, Y)$ and T is a single-valued mapping from $K=X$ to $L(X, Y)$, then Theorem 2.1 coincides with Theorem 2.1 in Huang et al. [9].

Definition 2.2. Let $T: K \rightarrow 2^{L(X, Y)}, P: K \rightarrow 2^{\Upsilon}$ be two set-valued mappings with int $P(x) \neq \emptyset$ for every $x \in K, A: L(X, Y) \rightarrow L(X, Y)$ a single-valued mapping, and \mathfrak{F} a subset of $K \times T K$. We say that P is inclusive with respect to \mathfrak{F} if for any $(x, u),(y, v) \in \mathfrak{F}$,

$$
\begin{equation*}
\langle A u, x\rangle \leq_{\operatorname{int} P(y)}\langle A v, y\rangle \text { implies that } P(x) \subset P(y) \tag{2.6}
\end{equation*}
$$

It is easy to see that, if $P(x)=P$ for all $x \in K$, where P is a closed, pointed, and convex cone in Y, then P is inclusive with respect to \mathfrak{F}.

Example 2.3. Let $X=Y=R^{2}, K=[0,1] \times[0,1], A=I$ be the identity mapping of $L(X, Y)$. For each $x=\left(x_{1}, x_{2}\right) \in K$, define

$$
\begin{equation*}
P(x)=\left\{\left(z_{1}, z_{2}\right) \in R^{2}: 0 \leq z_{2} \leq\left(1+x_{1}\right) z_{1}\right\} \tag{2.7}
\end{equation*}
$$

and, for each $x \in K$,

$$
T(x)=\left\{\left[\begin{array}{cc}
3+\frac{2}{1+x_{1}} & 0 \tag{2.8}\\
0 & 3+\frac{2}{1+x_{2}}
\end{array}\right]\right\} \subset L(X, Y)
$$

Also, define

$$
\begin{equation*}
\langle u, x\rangle=\left(3 x_{1}+\frac{2 x_{1}}{1+x_{1}}, 3 x_{2}+\frac{2 x_{2}}{1+x_{2}}\right), \quad \forall(x, u) \in \mathfrak{F} . \tag{2.9}
\end{equation*}
$$

Then it is easy to see that P is inclusive with respect to \mathfrak{F}. Indeed, for any $(x, u),(y, v) \in \mathfrak{F}$ with $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), u=T x$, and $v=T y$, if $\langle u, x\rangle \leq_{\operatorname{int} P(y)}\langle v, y\rangle$, then $\langle v, y\rangle-\langle u, x\rangle \in$ $\operatorname{int} P(y)$ and so $x_{1}<y_{1}$. Therefore, $P(x) \subset P(y)$ and P is inclusive with respect to \mathfrak{F}.

Theorem 2.4. Suppose that P is inclusive with respect to \mathfrak{F}. If there exist at most a finite number of solutions for (GVCP), then (GVCP) is solvable if and only if $\Omega_{w} \neq \emptyset$, and there exists $(x, u) \in \Omega_{w}^{P(x)}$ such that $\langle A u, x\rangle ¥_{\text {int } P(x)} 0$.

Proof. Let η_{1} be a solution of (GVCP). Then there exists $u_{1} \in T \eta_{1}$ such that

$$
\begin{equation*}
\left\langle A u_{1}, \eta_{1}\right\rangle ¥_{\text {int } P\left(\eta_{1}\right)} 0, \quad\left\langle A u_{1}, y\right\rangle \mathbb{Z}_{\text {int } P\left(\eta_{1}\right)} 0, \quad \forall y \in K . \tag{2.10}
\end{equation*}
$$

If $\left(\eta_{1}, u_{1}\right) \in \Omega_{w}^{P\left(\eta_{1}\right)}$, then

$$
\begin{equation*}
\left\langle A u_{1}, \eta_{1}\right\rangle \pm_{\text {int } P\left(\eta_{1}\right)} 0, \tag{2.11}
\end{equation*}
$$

and hence the conclusion holds. If $\left(\eta_{1}, u_{1}\right) \notin \Omega_{w}^{P\left(\eta_{1}\right)}$, by the definition of a weakly minimal solution, there exists $\left(\eta_{2}, u_{2}\right) \in \mathfrak{F}$ such that

$$
\begin{gather*}
\left\langle A u_{2}, y\right\rangle \pm_{\text {int } P\left(\eta_{2}\right)} 0, \quad \forall y \in K, \\
\left.\left\langle A u_{2}, \eta_{2}\right\rangle \leq_{\text {int } P\left(\eta_{1}\right)}\left\langle A u_{1}, \eta_{1}\right\rangle \Psi_{\text {int } P\left(\eta_{1}\right)}\right) . \tag{2.12}
\end{gather*}
$$

This implies that

$$
\begin{equation*}
\left\langle A u_{2}, \eta_{2}\right\rangle \not ¥_{\text {int } P\left(\eta_{1}\right)} 0 . \tag{2.13}
\end{equation*}
$$

Since $\left\langle A u_{2}, \eta_{2}\right\rangle \leq_{\operatorname{int} P\left(\eta_{1}\right)}\left\langle A u_{1}, \eta_{1}\right\rangle$, and P is inclusive with respect to \mathfrak{F}, it follows that $P\left(\eta_{2}\right) \subset$ $P\left(\eta_{1}\right)$ and this implies that

$$
\begin{equation*}
\left\langle A u_{2}, \eta_{2}\right\rangle ¥_{\text {int } P\left(\eta_{2}\right)} 0 . \tag{2.14}
\end{equation*}
$$

Thus, η_{2} is a solution of (GVCP) and $\eta_{2} \neq \eta_{1}$. Continuing this process, there exists $\left(\eta_{n}, u_{n}\right) \in \mathfrak{F}$ such that η_{n} is a solution of (GVCP) and $\left(\eta_{n}, u_{n}\right) \in \Omega_{w}^{P\left(\eta_{n}\right)}$, since (GVCP) has at most a finite number of solutions. Thus, $\left\langle A u_{n}, \eta_{n}\right\rangle \in \operatorname{Min}_{w}^{P\left(\eta_{n}\right)}\left\{\left\langle A u, \eta_{n}\right\rangle:\left(\eta_{n}, u\right) \in \mathfrak{F}\right\}$ and

$$
\begin{equation*}
\left\langle A u_{n}, \eta_{n}\right\rangle \not ¥_{\text {int } P\left(\eta_{n}\right)} 0 . \tag{2.15}
\end{equation*}
$$

Combining this result and Theorem 2.1, we have the conclusion of the theorem.

Remark 2.5. (1) If $A=I$ the identity mapping of $L(X, Y), T$ is a single-valued mapping from X to $L(X, Y)$, and $P(x)=P$ for all $x \in X$, where P is a closed, pointed, and convex cone in Y, then $P(x)$ satisfies the inclusive condition with respect to \mathfrak{F} and Theorem 2.4 reduces to Theorem 3.2 of Chen and Yang [4].
(2) If $A=I$ the identity mapping of $L(X, Y)$ and T is a single-valued mapping from $K=X$ to $L(X, Y)$, then Theorem 2.4 coincides with Theorem 2.2 of Huang et al. [9].

We next consider the generalized positive vector complementarity problem (GPVCP). Finding $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle \not ¥_{\text {int } P(x)} 0, \quad\langle A u, y\rangle \geq_{P(x)} 0, \quad \forall y \in K . \tag{2.16}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathfrak{G}=\left\{(x, u) \in K \times T K: u \in T x,\langle A u, y\rangle \geq_{P(x)} 0, \forall y \in K\right\} . \tag{2.17}
\end{equation*}
$$

Consider the following generalized vector optimization problem (GVOP) $)_{0}$ to be

$$
\begin{equation*}
\operatorname{Min}_{P}\langle A u, x\rangle \quad \text { subject to }(x, u) \in \mathfrak{G} . \tag{2.18}
\end{equation*}
$$

We denote the set of all minimal points of $(G V O P)_{0}$ with respect to the cone $P(x)$ by $\Gamma^{P(x)}$, that is, $\Gamma^{P(x)}=\operatorname{Min}^{P(x)}\{\langle A u, x\rangle:(x, u) \in \mathfrak{G}\}$, and denote the set of all minimal points of $(\mathrm{GVOP})_{0}$ by

$$
\begin{equation*}
\Gamma=\bigcup_{x \in K} \Gamma^{P(x)} \tag{2.19}
\end{equation*}
$$

Using a similar argument of Theorem 2.1, we have the following results of solvability for (GPVCP).

Theorem 2.6. If $\Gamma \neq \emptyset$ and there exists $(x, u) \in \Gamma^{P(x)}$ such that $\langle A u, x\rangle \not ¥_{\operatorname{int} P(x)} 0$, then $(G P V C P)$ is solvable.

Theorem 2.7. Suppose that P is inclusive with respect to \mathfrak{G}. If there exist at most a finite number of solutions of (GPVCP), then (GPVCP) is solvable if and only if $\Gamma \neq \emptyset$, and there exists $(x, u) \in \Gamma^{P(x)}$ such that $\langle A u, x\rangle ¥_{\text {int } P(x)} 0$.

One remarks that If $A=I$ the identity mapping of $L(X, Y)$ and T is a single-valued mapping from $K=X$ to $L(X, Y)$, then Theorems 2.6 and 2.7 coincide with Theorems 2.3 and 2.4 of Huang et al. [9], respectively.

3. Equivalences between Generalized Vector Complementarity

3.1. Problems and Generalized Weak Minimal Element Problems

Let X, Y be two Banach spaces, and $P: K \rightarrow 2^{\Upsilon}$ a set-valued mapping such that, for each $x \in$ $K, P(x)$ is a proper closed convex and pointed cone with apex at the origin and int $P(x) \neq \emptyset$,
let $A: L(X, Y) \rightarrow L(X, Y)$ be a single-valued mapping, and $T: X \rightarrow 2^{L(X, Y)}$ a set-valued mapping, where $2^{L(X, Y)}$ is a collection of all nonempty subsets of $L(X, Y)$, and $f: X \rightarrow Y$ a given operator.

Define the feasible set associated with T and A

$$
\begin{equation*}
\widetilde{\mathfrak{F}}=\left\{x \in K: \text { there is } u \in T x \text { such that }\langle A u, y\rangle \not_{\operatorname{int} P(x)} 0, \forall y \in K\right\} . \tag{3.1}
\end{equation*}
$$

We now consider the following five problems.
(i) The generalized vector optimization problem $\left(\mathrm{GVOP}_{l}\right.$: for a given $l \in L(X, Y)$, finding $x \in \widetilde{\mathfrak{F}}$ such that

$$
\begin{equation*}
l(x) \in \operatorname{Min}_{w}^{P(x)} l(\widetilde{\mathfrak{F}}) . \tag{3.2}
\end{equation*}
$$

(ii) The generalized weak minimal element problem (GWMEP): finding $x \in \widetilde{\mathfrak{F}}$ such that $x \in \operatorname{Min}_{w}^{K} \tilde{\mathcal{F}}$.
(iii) The generalized vector complementarity problem (GVCP): finding $x \in \widetilde{\mathcal{F}}$ such that $\langle A u, x\rangle ¥_{\text {int } P(x)} 0$ where $u \in T x$ is associated with x in the definition of $\widetilde{\mathfrak{F}}$.
(iv) The generalized vector variational inequality problem (GVVIP): finding $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, y-x\rangle \mathbb{Z}_{\text {int } P(x)} 0, \quad \forall y \in K . \tag{3.3}
\end{equation*}
$$

(v) The generalized vector unilateral optimization problem (GVUOP): finding $x \in K$ such that $f(x) \in \operatorname{Min}_{w}^{P(x)} f(K)$.

We remark that if $A=I$ the identity mapping of $L(X, Y)$ and T is a singlevalued mapping from X to $L(X, Y)$, then the (GVOP) l_{l} (GWMEP), (GVCP), (GVVIP), and (GVUOP) reduce to Huang, et al.'s problems (VOP) l_{l} (WMEP), (VCP), (VVIP), and (VUOP), respectively; see [9] for more details.

Definition 3.1 (see [4]). A linear operator $l: X \rightarrow Y$ is called weakly positive if, for any $x, y \in X, x \not ¥_{\text {int } C} y$ implies that $l(x) ¥_{\text {int } P(x)} l(y)$.

Definition 3.2. Let X and Y be two Banach spaces and l a linear operator from X to Y. If the image of any bounded set in X is a self-sequentially compact set in Y, then l is called completely continuous.

A mapping $f: X \rightarrow Y$ is said to be convex if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq_{P(x)} \lambda f(x)+(1-\lambda) f(y) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$ and $0 \leq \lambda \leq 1$.

Definition 3.3. Let $A: L(X, Y) \rightarrow L(X, Y)$ and $f: X \rightarrow Y$ be two mappings. f is said to be A-subdifferentiable at $x_{0} \in X$ if there exists $u_{0} \in L(X, Y)$ such that

$$
\begin{equation*}
f(x)-f\left(x_{0}\right) \geq_{P\left(x_{0}\right)}\left\langle A u_{0}, x-x_{0}\right\rangle, \quad \forall x \in X \tag{3.5}
\end{equation*}
$$

If f is A-subdifferentiable at $x_{0} \in X$, then we define the A-subdifferential of f at x_{0} as follows:

$$
\begin{equation*}
\partial_{A} f\left(x_{0}\right):=\left\{u \in L(X, Y): f(x)-f\left(x_{0}\right) \geq_{P\left(x_{0}\right)}\left\langle A u, x-x_{0}\right\rangle, \forall x \in X\right\} \tag{3.6}
\end{equation*}
$$

If f is A-subdifferentiable at each $x \in X$, then we say that f is A-subdifferentiable on X.
Remark 3.4. We note that as the mentions in [9], if X and Y are two Banach spaces, a mapping $f: X \rightarrow Y$ is Fréchet differentiable at $x_{0} \in X$ if there exists a linear bounded operator $D f\left(x_{0}\right)$ such that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\left\|f\left(x_{0}+x\right)-f\left(x_{0}\right)-\left\langle D f\left(x_{0}\right), x\right\rangle\right\|}{\|x\|}=0 \tag{3.7}
\end{equation*}
$$

where $D f\left(x_{0}\right)$ is said to be the Fréchet derivative of f at x_{0}. The mapping f is said to be Fréchet differentiable on X if f is Fréchet differentiable at each point of X. If $f: X \rightarrow Y$ is convex and Fréchet differentiable on X, then

$$
\begin{equation*}
f(y)-f(x) \geq_{P(x)}\langle D f(x), y-x\rangle, \quad \forall x, y \in X \tag{3.8}
\end{equation*}
$$

If f is Fréchet differentiable at $x_{0} \in X$, then f is I-subdifferentiable at $x_{0} \in X$ and $D f\left(x_{0}\right) \in \partial_{I} f\left(x_{0}\right)$.

If f is A-subdifferentiable on X, then for each $x, y \in X$ we have

$$
\begin{equation*}
f(y)-f(x) \geq_{P(x)}\langle A u, y-x\rangle, \quad \forall u \in \partial_{A} f(x) \tag{3.9}
\end{equation*}
$$

Definition 3.5. Let X be a Banach space, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$. The norm $\|\cdot\|$ in X is called strictly monotonically increasing on K [9] if, for each $y \in K$,

$$
\begin{equation*}
x \in(\{y\}-\operatorname{int} K) \cap K \quad \text { only implies }\|x\|<\|y\| \tag{3.10}
\end{equation*}
$$

For the example of the strictly monotonically increasing property, we refer the reader to [9, Example 3.1].

Theorem 3.6. Let X, Y be two Banach spaces, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$, and $P: K \rightarrow 2^{\Upsilon}$ a set-valued mapping with closed, convex, and pointed cones values such that int $P(x) \neq \emptyset$ for all $x \in K$. Suppose that
(1) $T=\partial_{A} f$ is the A-subdifferential of a convex operator $f: X \rightarrow Y$;
(2) l is a weakly positive linear operator;
(3) there exists $x \in \tilde{F}$ such that $A u$ is one to one and completely continuous, where $u \in T x$ is associated with x in the definition of \mathfrak{F};
(4) X is a topological dual space of a real normed space and the norm $\|\cdot\|$ in X is strictly monotonically increasing on K.

If (GVVIP) is solvable, then (GVOP) l_{l}, (GWMEP), (GVCP), and (GVUOP) are also solvable.
Corollary 3.7 (see [9, Theorem 3.1]). Let X, Y be two Banach spaces, K ¢ X a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$, and $\{P(x): x \in X\}$ that a family of closed, pointed, and convex cones in Y such that int $P(x) \neq \emptyset$ for all $x \in X$. Suppose that
(1) $T=D f$ is the Fréchet derivative of a convex operator $f: X \rightarrow Y$;
(2) l is a weakly positive linear operator;
(3) there exists $x \in \tilde{\mathfrak{F}}$ such that $T x$ is one to one and completely continuous, where $\widetilde{\mathfrak{F}}=\left\{x \in K:\langle T x, y\rangle \not_{\text {int } P(x)} 0, \forall y \in K\right\} ;$
(4) X is a topological dual space of a real normed space and the norm $\|\cdot\|$ in X is strictly monotonically increasing on K.

If (VVIP) is solvable, then (VOP) $)_{l}($ WMEP $),(V C P)$, and (VUOP) are also solvable.
Proof. Since $A=I$ the identity mapping of $L(X, Y)$ and T is a single-valued mapping from X to $L(X, Y)$, we have

$$
\begin{align*}
\tilde{\mathfrak{F}} & =\left\{x \in K: \text { there is } u \in T x \text { such that }\langle A u, y\rangle \Sigma_{\text {int } P(x)} 0, \forall y \in K\right\} \tag{3.11}\\
& =\left\{x \in K:\langle T x, y\rangle \not_{\text {int } P(x)} 0, \forall y \in K\right\} .
\end{align*}
$$

Utilizing Theorem 3.6, we immediately obtain the desired conclusion.
Remark 3.8. If $P(x)=P$ for all $x \in X$, where P is a closed, pointed, and convex cone in Y, then Corollary 3.7 coincides with Theorem 3.1 of Chen and Yang [4].

We need the following propositions to prove Theorem 3.6.
Proposition 3.9. Let $A: L(X, Y) \rightarrow L(X, Y)$ and $f: X \rightarrow Y$ be two mappings, and let $T=\partial_{A} f$ be the A-subdifferential of f. Then x solves (GVUOP) which implies that x solves (GVVIP). If in addition, f is a convex mapping, then conversely, x solves (GVVIP) which implies that x solves (GVUOP).

Proof. Let x be a solution of (GVUOP). Then $x \in K$ and $f(x) \in \operatorname{Min}_{w}^{P(x)} f(K)$, that is, $f(x) \not ¥_{\text {int } P(x)} f(y)$ for all $y \in K$. Since K is a convex cone,

$$
\begin{equation*}
f(x) \not ¥_{\text {int } P(x)} f(x+t(w-x)), \quad 0<t<1, w \in K . \tag{3.12}
\end{equation*}
$$

Also, since f is A-subdifferentiable on X, it follows that for all $u \in T x=\partial_{A} f(x)$

$$
\begin{equation*}
f(x) \not ¥_{\operatorname{int} P(x)} f(x+t(w-x)) \geq_{P(x)} f(x)+\langle A u, t(w-x)\rangle, \quad 0<t<1, w \in K . \tag{3.13}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\langle A u, t(w-x)\rangle \Sigma_{\operatorname{int} P(x)} 0, \quad 0<t<1, w \in K \tag{3.14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\langle A u, w-x\rangle \mathbb{Z}_{\operatorname{int} P(x)} 0, \quad \forall w \in K \tag{3.15}
\end{equation*}
$$

Thus, x solves (GVVIP).
Conversely, let x solve (GVVIP). Then there exists $\widehat{u} \in T x=\partial_{A} f(x)$ such that

$$
\begin{equation*}
\langle A \widehat{u}, w-x\rangle \mathbb{Z}_{\operatorname{int} P(x)} 0, \quad \forall w \in K \tag{3.16}
\end{equation*}
$$

Since f is A-subdifferentiable on X, we have for all $u \in T x=\partial_{A} f(x)$

$$
\begin{equation*}
f(w)-f(x) \geq_{P(x)}\langle A u, w-x\rangle, \quad \forall w \in K, \tag{3.17}
\end{equation*}
$$

and hence

$$
\begin{equation*}
f(w)-f(x) \geq_{P(x)}\langle A \widehat{u}, w-x\rangle \mathbb{Z}_{\operatorname{int} P(x)} 0, \quad \forall w \in K . \tag{3.18}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
f(w) \mathbb{Z}_{\operatorname{int} P(x)} f(x), \quad \forall w \in K \tag{3.19}
\end{equation*}
$$

Consequently, x solves (GVUOP). This completes the proof.
Proposition 3.10. If x solves (GVVIP), then x also solves (GVCP). Conversely, if $\langle A u, x\rangle_{P(x)} 0$, for all $x \in K, u \in T x$, then x solves (GVCP) which implies that x solves (GVVIP).

Proof. Let x be a solution of (GVVIP). Then there exists $u \in T x$ such that

$$
\begin{equation*}
\langle A u, y-x\rangle \Sigma_{\operatorname{int} P(x)} 0, \quad \forall y \in K \tag{3.20}
\end{equation*}
$$

Letting $y=0$, we get $\langle A u, x\rangle \not \underbrace{}_{\operatorname{int} P(x)} 0$. For $y=w+x$ with any $w \in K$, we have

$$
\begin{equation*}
\langle A u, w\rangle \mathbb{Z}_{\text {int } P(x)} 0, \quad \forall w \in K \tag{3.21}
\end{equation*}
$$

Thus, x is a solution of the (GVCP).
Conversely, let x solve the (GVCP). Then there exists $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle \leq_{P(x)} 0 \not ¥_{\operatorname{int} P(x)}\langle A u, y\rangle, \quad \forall y \in K . \tag{3.22}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\langle A u, x\rangle \not ¥_{\operatorname{int} P(x)}\langle A u, y\rangle, \quad \forall y \in K, \tag{3.23}
\end{equation*}
$$

and so

$$
\begin{equation*}
\langle A u, y-x\rangle ¥_{\operatorname{int} P(x)} 0, \quad \forall y \in K . \tag{3.24}
\end{equation*}
$$

This completes the proof.
Proposition 3.11. Let l be a weakly positive linear operator. Then x solves (GWMEP) which implies that x solves (GVOP) .

Proof. Let x be a solution of (GWMEP). Then $x \in \tilde{\mathfrak{F}}$ and $x \in \operatorname{Min}_{w}^{K} \tilde{\mathcal{F}}$, that is, for any $z \in \tilde{\mathfrak{F}}$, $x \not ¥_{\text {int } K} z$. Since l is a weakly positive linear operator, it follows that $l(x) \not ¥_{\text {int }} P(x) l(z)$ and so

$$
\begin{equation*}
l(x) \in \operatorname{Min}_{w}^{P(x)} l(\widetilde{\mathfrak{F}}), \tag{3.25}
\end{equation*}
$$

hence x solves (GVOP) ${ }_{l}$. This completes the proof.
Definition 3.12 (see [9]). Let X be a Banach space, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset, E$ a nonempty subset of X.
(1) If, for some $x \in X, E_{x}=(\{x\}-K) \cap E \neq \emptyset$, then E_{x} is called a section of the set E.
(2) E is called weakly closed if $\left\{x_{n}\right\} \subset E, x \in X,\left\langle x^{*}, x_{n}\right\rangle \rightarrow\left\langle x^{*}, x\right\rangle$ for all $x^{*} \in X^{*}$, then $x \in E$.
(3) E is called bounded below if there exists a point p in X such that $E \subset p+K$.

Lemma 3.13 (see [11]). Let X be a Banach space, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and $\operatorname{int} K \neq \emptyset, E$ a nonempty subset of X and X the topological dual space of a real normed space $\left(Z,\|\cdot\|_{Z}\right)$. Suppose there exists $x \in X$ such that the section E_{x} is weakly closed and bounded below and the norm $\|\cdot\|$ in X is strictly monotonically increasing, then the set E has at least one weakly minimal point.

Lemma 3.14. If (GVVIP) is solvable, then the feasible set $\tilde{\mathfrak{F}}$ is nonempty.
Proof. Let x be a solution of (GVVIP). Then there exists $u \in T x$ such that

$$
\begin{equation*}
\langle A u, y-x\rangle \Sigma_{\operatorname{int} P(x)} 0, \quad \forall y \in K . \tag{3.26}
\end{equation*}
$$

Taking $y=z+x$ with any $z \in K$, we know that $y \in C$ and

$$
\begin{equation*}
\langle A u, z\rangle \Sigma_{\text {int } P(x)} 0, \quad \forall z \in K . \tag{3.27}
\end{equation*}
$$

Thus, $x \in \tilde{\mathfrak{F}}$. This completes the proof.

Let X be a Banach space, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$. For any $x, y \in X,[x, y]=(x+K) \cap(y-K)$ is called an order interval.

Lemma 3.15 (see [4]). Let X be a Banach space, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$. If the norm $\|\cdot\|$ in X is strictly monotonically increasing, then the order intervals in X are bounded.

Proposition 3.16. Suppose that (GVVIP) is solvable and
(1) there exists x in $\tilde{\mathfrak{F}}$ such that $A u$ is one to one and completely continuous, where $u \in T x$ is associated with x in the definition of $\widetilde{\mathfrak{F}}$;
(2) X is the topological dual space of a real normed space $\left(Z,\|\cdot\|_{Z}\right)$ and the norm $\|\cdot\|$ in X is strictly monotonically increasing.

Then (GWMEP) has at least one solution.
Proof. By the assumption and Lemma 3.14, $\widetilde{\mathfrak{F}} \neq \emptyset$. Let $x \in \widetilde{\mathfrak{F}}$ be a point such that $A u$ is one to one and completely continuous, where $u \in T x$ is associated with x in the definition of $\widetilde{\mathfrak{F}}$, and let $\left\{y_{n}\right\} \subset \widetilde{\mathfrak{F}}$ with $y_{n} \rightarrow y$ (weakly). Since

$$
\begin{equation*}
\tilde{\mathfrak{F}}_{x}=(\{x\}-C) \cap \tilde{\mathfrak{F}} \subset(\{x\}-C) \cap C=[0, x] \tag{3.28}
\end{equation*}
$$

by Lemma $3.15,[0, x]$ is bounded and so is $\tilde{\mathfrak{F}}_{x}$. Since $A u$ is completely continuous, $\left\langle A u, \widetilde{\mathfrak{F}}_{x}\right\rangle$ is a self-sequentially compact set and so $\left\{\left\langle A u, y_{n}\right\rangle\right\} \subset\left\langle A u, \widetilde{\mathfrak{F}}_{x}\right\rangle$ implies that there exists a subsequence $\left\{\left\langle A u, y_{n_{k}}\right\rangle\right\}$ which converges to $z \in\left\langle A u, \widetilde{\mathfrak{F}}_{x}\right\rangle$. We get a point $y_{0} \in \widetilde{\mathfrak{F}}_{x}$ such that

$$
\begin{equation*}
\left\langle A u, y_{n_{k}}\right\rangle \longrightarrow\left\langle A u, y_{0}\right\rangle \quad \text { (strongly) } \tag{3.29}
\end{equation*}
$$

On the other hand, since $y_{n} \rightarrow y$ (weakly) and $A u$ is completely continuous,

$$
\begin{equation*}
\left\langle A u, y_{n}\right\rangle \longrightarrow\langle A u, y\rangle \quad \text { (strongly). } \tag{3.30}
\end{equation*}
$$

By the uniqueness of the limit, we get $\langle A u, y\rangle=\left\langle A u, y_{0}\right\rangle$. Since $A u$ is one to one, $y=y_{0}$, and so $y \in \widetilde{\mathfrak{F}}_{x}$. Since $\widetilde{\mathfrak{F}}_{x}$ is weakly closed, it follows from Lemma 3.13 that $\widetilde{\mathfrak{F}}$ has a weakly minimal point p such that $p \not ¥_{\text {int } P(p)} x$ for all $x \in \widetilde{\mathfrak{F}}$. Therefore, (GWMEP) has at least one solution. This completes the proof.

Definition 3.17. Let X, Y be two Banach spaces, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$, and $P: K \rightarrow 2^{\Upsilon}$ a set-valued mapping with closed, convex and pointed cones values such that int $P(x) \neq \emptyset$ for all $x \in K$. Let $A: L(X, Y) \rightarrow$ $L(X, Y)$ be a single-valued mapping and $T: X \rightarrow 2^{L(X, Y)}$ a set-valued mapping. T is called A-positive if

$$
\begin{equation*}
\langle A u, y\rangle \geq_{P(x)} 0, \quad \forall x, y \in K, u \in T x . \tag{3.31}
\end{equation*}
$$

We now consider the generalized positive vector complementarity problem (GPVCP). Finding $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle \not ¥_{\text {int } P(x)} 0, \quad\langle A u, y\rangle \geq_{P(x)} 0, \quad \forall y \in K . \tag{3.32}
\end{equation*}
$$

The feasible set related to (GPVCP) is defined as

$$
\begin{equation*}
\widetilde{\mathfrak{F}}_{0}=\left\{x \in K: \text { there is } u \in T x \text { such that }\langle A u, y\rangle_{P(x)} 0, \forall y \in K\right\} . \tag{3.33}
\end{equation*}
$$

Let us consider the following problems.
The generalized vector optimization problem (GVOP) ${ }_{10}$: finding $x \in \widetilde{\mathfrak{F}}_{0}$ such that $l(x) \in$ $\operatorname{Min}_{w}^{P} l\left(\tilde{\mathfrak{F}}_{0}\right)$.

The generalized weak minimal element problem (GWMEP) 0 : finding $x \in \widetilde{\mathfrak{F}}_{0}$ such that $x \in \operatorname{Min}_{w}^{K} \widetilde{\mathfrak{F}}_{0}$.

The generalized positive vector complementarity problem (GPVCP): finding $x \in \widetilde{\mathfrak{F}}_{0}$ such that

$$
\begin{equation*}
\langle A u, x\rangle ¥_{\text {int } P(x)} 0, \tag{3.34}
\end{equation*}
$$

where $u \in T x$ is associated with x in the definition of $\widetilde{\mathfrak{F}}_{0}$.
The generalized vector variational inequality problem (GVVIP): finding $x \in K$ and $u \in T x$ such that

$$
\begin{equation*}
\langle A u, y-x\rangle \Sigma_{\operatorname{int} P(x)} 0, \quad \forall y \in K . \tag{3.35}
\end{equation*}
$$

The generalized vector unilateral optimization problem (GVUOP): for a given mapping $f: X \rightarrow Y$, finding $x \in K$ such that $f(x) \in \operatorname{Min}_{w}^{P} f(K)$.

Definition 3.18. A set-valued mapping $T: X \rightarrow 2^{L(X, Y)}$ is said to be A-strictly monotone where $A: L(X, Y) \rightarrow L(X, Y)$ is single-valued, if

$$
\begin{equation*}
\langle A u-A v, x-y\rangle \geq_{\operatorname{int} P(x)} 0, \quad \forall x, y \in X, x \neq y, u \in T x, v \in T y . \tag{3.36}
\end{equation*}
$$

Definition 3.19 (see [9]). We say that $P(x)$ satisfies an inclusive condition if, for any $x, y \in X$,

$$
\begin{equation*}
x \leq \text { int } \subset y \text { only implies that } P(x) \subset P(y) \text {. } \tag{3.37}
\end{equation*}
$$

It is easy to see that, if $P(x)=P$ for all $x \in X$, where P is a closed, pointed, and convex cone in Y, then $P(x)$ satisfies the inclusive condition.

Example 3.20. Let $X=(-\infty,+\infty), C=[0,+\infty), Y=R^{2}$, and

$$
P(x)= \begin{cases}\left\{\left(z_{1}, z_{2}\right) \in R^{2}: 0 \leq z_{2} \leq 2 z_{1}\right\}, & x \in(-\infty, 2) \tag{3.38}\\ \left\{\left(z_{1}, z_{2}\right) \in R^{2}: 0 \leq z_{2} \leq x z_{1}\right\}, & x \in[2,5) \\ \left\{\left(z_{1}, z_{2}\right) \in R^{2}: 0 \leq z_{2} \leq 5 z_{1}\right\}, & x \in[5,+\infty)\end{cases}
$$

for all $x \in X$. Then it is easy to check that $P(x)$ satisfies the inclusive condition.
Proposition 3.21. Let T be A-strictly monotone and x a solution of (GPVCP). If P satisfies the inclusive condition, then x is a weakly minimal point of $\widetilde{\mathfrak{F}}_{0}$ (i.e., x solves $\left.(G W M E P)_{0}\right)$.

Proof. It is easy to see that $x \in \widetilde{\mathfrak{F}}_{0} \subset K$. If $x \in b d(K)$ (where $b d(K)$ denotes the boundary of $K)$, then x solves $(G W M E P)_{0}$. Otherwise, there exists $x^{\prime} \in \widetilde{\mathfrak{F}}_{0}$ such that $x \geq_{\operatorname{int} K} x^{\prime}$ and so

$$
\begin{equation*}
x=x-x^{\prime}+x^{\prime} \in \operatorname{int} K+K \subset \operatorname{int} K \tag{3.39}
\end{equation*}
$$

which is a contradiction. If $x \in \operatorname{int} K$, by the A-strict monotonicity of T,

$$
\begin{equation*}
\langle A u, x-y\rangle \geq_{\operatorname{int} P(x)}\langle A v, x-y\rangle, \quad \forall y \in \widetilde{\mathfrak{F}}_{0}, y \neq x, v \in T y \tag{3.40}
\end{equation*}
$$

Suppose $x \geq_{\operatorname{int} K} y$. Since T is A-positive, $\langle A v, x-y\rangle_{P(y)} 0$ and

$$
\begin{equation*}
\langle A u, x-y\rangle \geq_{\operatorname{int} P(x)}\langle A v, x-y\rangle \geq_{P(y)} 0 \tag{3.41}
\end{equation*}
$$

By the assumption, we get $P(y) \subset P(x)$ and so

$$
\begin{equation*}
\langle A u, x-y\rangle \in\langle A v, x-y\rangle+\operatorname{int} P(x) \subset P(y)+\operatorname{int} P(x) \subset P(x)+\operatorname{int} P(x)=\operatorname{int} P(x) \tag{3.42}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\langle A u, x-y\rangle \geq_{\operatorname{int} P(x)} 0 \tag{3.43}
\end{equation*}
$$

and thus

$$
\begin{equation*}
0 \not_{\operatorname{int} P(x)}\langle A u, x\rangle \geq_{P(x)}\langle A u, y\rangle+k \tag{3.44}
\end{equation*}
$$

for some $k \in \operatorname{int} P(x)$. This implies

$$
\begin{equation*}
\langle A u, y\rangle+k \not ¥_{\operatorname{int} P(x)} 0 . \tag{3.45}
\end{equation*}
$$

Since $k \in \operatorname{int} P(x)$ and $x \in \widetilde{\mathfrak{F}}_{0}$,

$$
\begin{equation*}
\langle A u, y\rangle+k \in P(x)+\operatorname{int} P(x) \subset \operatorname{int} P(x) \tag{3.46}
\end{equation*}
$$

and so

$$
\begin{equation*}
\langle A u, y\rangle+k \geq_{\operatorname{int} P(x)} 0, \tag{3.47}
\end{equation*}
$$

which leads to a contradiction. Therefore, $x \geq_{\operatorname{int} K} y$ does not hold, that is, $x \not ¥_{\operatorname{int} K} y$ for all $y \in \widetilde{\mathfrak{F}}_{0}$. It follows that x solves (GWMEP) $)_{0}$. This completes the proof.

Proposition 3.22. If x solves (GPVCP), then x also solves (GVVIP).
Proof. Suppose that x solves (GPVCP). Then $x \in K$ and there exists $u \in T x$ such that

$$
\begin{equation*}
\langle A u, x\rangle ¥_{\text {int } P(x)} 0, \quad\langle A u, y\rangle \geq_{P(x)} 0, \quad \forall y \in K . \tag{3.48}
\end{equation*}
$$

If $\langle A u, y-x\rangle \leq_{\text {int } P(x)} 0$, then

$$
\begin{equation*}
\langle A u, x\rangle=-\langle A u, y-x\rangle+\langle A u, y\rangle \in \operatorname{int} P(x)+P(x) \subset \operatorname{int} P(x), \tag{3.49}
\end{equation*}
$$

and so

$$
\begin{equation*}
\langle A u, x\rangle \geq_{\text {int } P(x)} 0, \tag{3.50}
\end{equation*}
$$

which is a contradiction. It follows that

$$
\begin{equation*}
\langle A u, y-x\rangle \mathbb{I}_{\operatorname{int} P(x)} 0, \tag{3.51}
\end{equation*}
$$

and x solves (GVVIP). This completes the proof.
Similarly, we can obtain other equivalence conditions. We have the following theorem.
Theorem 3.23. Let X, Y be two Banach spaces, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$, and $\{P(x): x \in X\}$ a family of closed, pointed, and convex cones in Y such that int $P(x) \neq \emptyset$ for all $x \in X$. Suppose that P satisfies the inclusive condition and
(1) $T=\partial_{A} f$ is the A-subdifferential of the convex operator $f: X \rightarrow Y$;
(2) l is a weakly positive linear operator;
(3) T is A-strictly monotone.

If (GPVCP) is solvable, then (GVOP) $)_{10},(G W M E P)_{0},(G P V C P),(G V V I P)$, and (GVUOP) have at least a common solution.

Corollary 3.24 (see [9, Theorem 3.2]). Let X, Y be two Banach spaces, $K \subset X$ a proper closed convex and pointed cone with apex at the origin and int $K \neq \emptyset$, and $\{P(x): x \in X\}$ a family of closed, pointed, and convex cones in Y such that $\operatorname{int} P(x) \neq \emptyset$ for all $x \in X$. Suppose that P satisfies the
inclusive condition and
(1) $T=D f$ is the Fréchet derivative of the convex operator $f: X \rightarrow Y$;
(2) l is a weakly positive linear operator;
(3) T is strictly monotone.

If $(P V C P)$ is solvable, then $(V O P)_{10},(W M E P)_{0},(P V C P),(V V I P)$, and $(V U O P)$ have at least a common solution.

Proof. Note that $A=I$ the identity mapping of $L(X, Y)$ and T is a single-valued mapping from X to $L(X, Y)$. From Theorem 3.23, we immediately obtain the desired conclusion.

Remark 3.25. If $P(x)=P$ for all $x \in X$, where P is a closed, pointed, and convex cone in Y, then Corollary 3.24 coincides with Theorem 4.1 of Chen and Yang [4].

Acknowledgments

This research of the first author was partially supported by the National Science Foundation of China (10771141), Ph.D. Program Foundation of Ministry of Education of China (20070270004), and Science and Technology Commission of Shanghai Municipality Grant (075105118). The second author would like to thank the support of NSC97-2115-M-039-001Grant from the National Science Council of Taiwan.

References

[1] F. Giannessi, "Theorems of alternative, quadratic programs and complementarity problems," in Variational Inequalities and Complementarity Problems (Proc. Internat. School, Erice, 1978), R. W. Cottle, F. Giannessi, and J. L. Lions, Eds., pp. 151-186, John Wiley \& Sons, Chichester, UK, 1980.
[2] Q. H. Ansari, T. C. Lai, and J. C. Yao, "On the equivalence of extended generalized complementarity and generalized least-element problems," Journal of Optimization Theory and Applications, vol. 102, no. 2, pp. 277-288, 1999.
[3] G. Y. Chen, "Existence of solutions for a vector variational inequality: an extension of the HartmannStampacchia theorem," Journal of Optimization Theory and Applications, vol. 74, no. 3, pp. 445-456, 1992.
[4] G. Y. Chen and X. Q. Yang, "The vector complementary problem and its equivalences with the weak minimal element in ordered spaces," Journal of Mathematical Analysis and Applications, vol. 153, no. 1, pp. 136-158, 1990.
[5] Y.-P. Fang and N.-J. Huang, "The vector F-complementary problems with demipseudomonotone mappings in Banach spaces," Applied Mathematics Letters, vol. 16, no. 7, pp. 1019-1024, 2003.
[6] F. Giannessi, Ed., Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, vol. 38 of Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[7] N.-J. Huang and C.-J. Gao, "Some generalized vector variational inequalities and complementarity problems for multivalued mappings," Applied Mathematics Letters, vol. 16, no. 7, pp. 1003-1010, 2003.
[8] X. Q. Yang, "Vector complementarity and minimal element problems," Journal of Optimization Theory and Applications, vol. 77, no. 3, pp. 483-495, 1993.
[9] N. J. Huang, X. Q. Yang, and W. K. Chan, "Vector complementarity problems with a variable ordering relation," European Journal of Operational Research, vol. 176, no. 1, pp. 15-26, 2007.
[10] Y. C. Lin, "On F-implicit generalized vector variational inequalities," Journal of Optimization Theory and Applications, vol. 142, no. 3, pp. 557-568, 2009.
[11] J. Jahn, "Existence theorems in vector optimization," Journal of Optimization Theory and Applications, vol. 50, no. 3, pp. 397-406, 1986.

