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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space
(Ω,F, P). The concept of negatively associated random variables was introduced by Alam
and Saxena [1] and carefully studied by Joag-Dev and Proschan [2]. A finite family of random
variables {Xi, 1 ≤ i ≤ n} is said to be negatively associated if for every pair of disjoint subsets
A and B of {1, 2, . . . , n},

Cov
(
f1(Xi, i ∈ A), f2

(
Xj, j ∈ B

)) ≤ 0, (1.1)

whenever f1 and f2 are coordinatewise increasing and the covariance exists. An infinite
family of random variables is negatively associated if every finite subfamily is negatively
associated. As pointed out and proved by Joag-Dev and Proschan [2], a number of
well-known multivariate distributions possess the negative association property, such as
multinomial, convolution of unlike multinomial, multivariate hypergeometric, Dirichlet,
permutation distribution, negatively correlated normal distribution, random sampling
without replacement, and joint distribution of ranks.
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The exponential inequality plays an important role in various proofs of limit theorems.
In particular, it provides a measure of convergence rate for the strong law of large numbers.
The counterpart of the negative association is positive association. The concept of positively
associated random variables was introduced by Esary et al. [3]. The exponential inequalities
for positively associated random variables were obtained by Devroye [4], Ioannides and
Roussas [5], Oliveira [6], Sung [7], Xing and Yang [8], and Xing et al. [9]. On the other hand,
Kim and Kim [10], Nooghabi and Azarnoosh [11], and Xing et al. [12] obtained exponential
inequalities for negatively associated random variables.

In this paper, we establish an exponential inequality for identically distributed
negatively associated random variables by using truncation method (not using a block
decomposition of the sums). Our result improves those of Kim and Kim [10], Nooghabi and
Azarnoosh [11], and Xing et al. [12]. We also obtain the convergence rate O(1)n1/2(logn)−1/2

for the strong law of large numbers.

2. Preliminary lemmas

To prove our main results, the following lemmas are needed. We start with a well known
lemma. The constant Cp can be taken as that of Marcinkiewicz-Zygmund (see Shao [13]).

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of negatively associated random variables with mean zero
and finite pth moments, where 1 < p ≤ 2. Then there exists a positive constant Cp depending only on
p such that

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

≤ Cp

n∑

i=1

E|Xi|p. (2.1)

If p = 2, then it is possible to take C2 = 1.

The following lemma is due to Joag-Dev and Proschan [2]. It is still valid for any t ≤ 0.

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of negatively associated random variables. Then for any
t > 0,

E exp

{

t
n∑

i=1

Xi

}

≤
n∏

i=1

EetXi . (2.2)

The following lemma plays an essential role in our main results.

Lemma 2.3. Let X1, . . . , Xn be negatively associated mean zero random variables such that

|Xi| ≤ di, 1 ≤ i ≤ n, (2.3)

for a sequence of positive constants d1, . . . , dn. Then for any λ > 0,

E exp

{

λ
n∑

i=1

Xi

}

≤ exp

{
λ2

2

n∑

i=1

eλdiEX2
i

}

. (2.4)
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Proof. From the inequality ex ≤ 1 + x + (x2/2)e|x| for all x ∈ R,we have

EeλXi ≤ 1 + λEXi +
λ2

2
E
(
X2

i e
λ|Xi|
)

= 1 +
λ2

2
E
(
X2

i e
λ|Xi|
)
(since the Xi have mean zero)

≤ 1 +
λ2

2
eλdiEX2

i

≤ exp

{
λ2

2
eλdiEX2

i

}

,

(2.5)

since 1 + x ≤ ex for all x ∈ R. It follows by Lemma 2.2 that

E exp

{

λ
n∑

i=1

Xi

}

≤
n∏

i=1

EeλXi ≤
n∏

i=1

exp

{
λ2

2
eλdiEX2

i

}

= exp

{
λ2

2

n∑

i=1

eλdiEX2
i

}

. (2.6)

3. Main results

Let {Xn, n ≥ 1} be a sequence of random variables and {cn, n ≥ 1} be a sequence of positive
real numbers. Define for 1 ≤ i ≤ n, n ≥ 1,

X1,i,n = −cnI(Xi < −cn) +XiI(−cn ≤ Xi ≤ cn) + cnI(Xi > cn),

X2,i,n = (Xi − cn)I(Xi > cn),

X3,i,n = (Xi + cn)I(Xi < −cn).
(3.1)

Note that X1,i,n + X2,i,n + X3,i,n = Xi for 1 ≤ i ≤ n, n ≥ 1. For each fixed n ≥ 1, X1,1,n, . . . , X1,n,n

are bounded by cn. If {Xn, n ≥ 1} are negatively associated random variables, then {Xq,i,n, 1 ≤
i ≤ n}, q = 1, 2, 3, are also negatively associated random variables, since {Xq,i,n, 1 ≤ i ≤ n} are
monotone transformations of {Xi, 1 ≤ i ≤ n}.

Lemma 3.1. Let {Xn, n ≥ 1} be a sequence of identically distributed negatively associated random
variables. Let X1,i,n, 1 ≤ i ≤ n, n ≥ 1 be as in (3.1). Then for any λ > 0,

E exp

{

λ
n∑

i=1

(X1,i,n − EX1,i,n)

}

≤ exp

{
λ2n

2
e2λcnE|X1|2

}

. (3.2)
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Proof. Noting that |X1,i,n − EX1,i,n| ≤ 2cn,we have by Lemma 2.3 that

E exp

{

λ
n∑

i=1

(X1,i,n − EX1,i,n)

}

≤ exp

{
λ2

2

n∑

i=1

e2λcnVar(X1,i,n)

}

≤ exp

{
λ2n

2
e2λcnE|X1,1,n|2

}

≤ exp

{
λ2n

2
e2λcnE|X1|2

}

.

(3.3)

The following lemma gives an exponential inequality for the sum of bounded terms.

Lemma 3.2. Let {Xn, n ≥ 1} be a sequence of identically distributed negatively associated random
variables. Let X1,i,n, 1 ≤ i ≤ n, n ≥ 1 be as in (3.1). Then for any ε > 0 such that ε ≤ eE|X1|2/(2cn),

P

(
1
n

∣∣∣∣∣

n∑

i=1

(X1,i,n − EX1,i,n)

∣∣∣∣∣
> ε

)

≤ 2 exp

{

− nε2

2eE|X1|2
}

. (3.4)

Proof. By Markov’s inequality and Lemma 3.1, we have that for any λ > 0

P

(
1
n

n∑

i=1

(X1,i,n − EX1,i,n) > ε

)

= P

(

exp

{

λ
n∑

i=1

(X1,i,n − EX1,i,n)

}

> eλnε
)

≤ e−λnεE exp

{

λ
n∑

i=1

(X1,i,n − EX1,i,n)

}

≤ exp

{

−λnε + λ2n

2
e2λcnE|X1|2

}

.

(3.5)

Putting λ = ε/(eE|X1|2), note that 2λcn ≤ 1, we get

P

(
1
n

n∑

i=1

(X1,i,n − EX1,i,n) > ε

)

≤ exp

{

− nε2

2eE|X1|2
}

. (3.6)

Since {−Xn, n ≥ 1} are also negatively associated random variables, we can replace X1,i,n by
−X1,i,n in the above statement. That is,

P

(

− 1
n

n∑

i=1

(X1,i,n − EX1,i,n) > ε

)

≤ exp

{

− nε2

2eE|X1|2
}

. (3.7)
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Observing that

P

(
1
n

∣
∣
∣
∣
∣

n∑

i=1

(X1,i,n − EX1,i,n)

∣
∣
∣
∣
∣
> ε

)

= P

(
1
n

n∑

i=1

(X1,i,n − EX1,i,n) > ε

)

+ P

(

− 1
n

n∑

i=1

(X1,i,n − EX1,i,n) > ε

)

,

(3.8)

the result follows by (3.6) and (3.7).

Remark 3.3. From [14, Lemma 3.5] in Yang, it can be obtained an upper bound
2 exp(−nε2/(4E|X1|2 + 2eE|X1|2),which is greater than our upper bound.

The following lemma gives an exponential inequality for the sum of unbounded terms.

Lemma 3.4. Let {Xn, n ≥ 1} be a sequence of identically distributed negatively associated random
variables with Eeδ|X1| < ∞ for some δ > 0. Let Xq,i,n, 1 ≤ i ≤ n, n ≥ 1, q = 2, 3, be as in (3.1). Then,
for any ε > 0, the following statements hold:

(i) P(1/n|∑n
i=1(X2,i,n − EX2,i,n)| > ε) ≤ 2δ−2ε−2n−1Eeδ|X1|e−δcn .

(ii) P(1/n|∑n
i=1(X3,i,n − EX3,i,n)| > ε) ≤ 2δ−2ε−2n−1Eeδ|X1|e−δcn .

Proof. (i) By Markov’s inequality and Lemma 2.1, we get

P

(
1
n

∣∣∣∣∣

n∑

i=1

(X2,i,n − EX2,i,n)

∣∣∣∣∣

)

≤ 1
ε2n2

E

∣∣∣∣∣

n∑

i=1

(X2,i,n − EX2,i,n)

∣∣∣∣∣

2

≤ Var(X2,1,n)
ε2n

≤ E|X2,1,n|2
ε2n

.

(3.9)

The rest of the proof is similar to that of [12, Lemma 4.1] in Xing et al. and is omitted.
(ii) The proof is similar to that of (i) and is omitted.

Now we state and prove one of our main results.

Theorem 3.5. Let {Xn, n ≥ 1} be a sequence of identically distributed negatively associated random

variables with Eeδ|X1| < ∞ for some δ > 0. Let εn =
√
2δeE|X1|2cn/n, where {cn, n ≥ 1} is a

sequence of positive numbers such that

0 < cn ≤
(

eE|X1|2n
8δ

)1/3

. (3.10)

Then

P

(
1
n

∣∣∣∣∣

n∑

i=1

(Xi − EXi)

∣∣∣∣∣
> 3εn

)

≤ 2

(

1 +
Eeδ|X1|

δ3eE|X1|2cn

)

e−δcn . (3.11)
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Proof. Note that 2εncn ≤ eE|X1|2 and nε2n/(2eE|X1|2) = δcn. It follows by Lemmas 3.2 and 3.4
that

P

(
1
n

∣
∣
∣
∣∣

n∑

i=1

(Xi − EXi)

∣
∣
∣
∣∣
> 3εn

)

≤
[

P

(
1
n

∣
∣
∣
∣
∣

n∑

i=1

(X1,i,n − EX1,i,n)

∣
∣
∣
∣
∣
> εn

)

+ P

(
1
n

∣
∣
∣
∣
∣

n∑

i=1

(X2,i,n − EX2,i,n)

∣
∣
∣
∣
∣
> εn

)

+P

(
1
n

∣
∣
∣
∣
∣

n∑

i=1

(X3,i,n − EX3,i,n)

∣
∣
∣
∣
∣
> εn

)]

≤ 2exp

{

− nε2n

2eE|X1|2
}

+
4Eeδ|X1|

δ2ε2nn
e−δcn

= 2

(

1 +
Eeδ|X1|

δ3eE|X1|2cn

)

e−δcn

(3.12)

In Theorem 3.5, the condition on cn is (3.10). But, Kim and Kim [10], Nooghabi and
Azarnoosh [11], and Xing et al. [12] used cn as only log n.We give some examples satisfying
the condition (3.10) of Theorem 3.5.

Example 3.6. Let cn = (log n)3pn, where 1 ≤ pn = o(n1/3/(log n)3). Then cn → ∞ as n → ∞
and so the upper bound of (3.11) isO(1)e−δpn(log n)3 . The corresponding upper boundO(1)(1+
n2/pn(log n)3)n−δ was obtained by Kim and Kim [10] and Nooghabi and Azarnoosh [11].
Since our upper bound is much lower than it, our result improves the theorem in Kim and
Kim [10] and Nooghabi and Azarnoosh [11, Theorem 5.1].

Example 3.7. Let cn = (log n)3. By Example 3.6 with pn = 1, the upper bound of (3.11) is
O(1)e−δ(log n)3 . The corresponding upper bound O(1)n−δ was obtained by Xing et al. [12].
Hence our result improves Xing et al. [12, Theorem 5.1].

By choosing cn = log n and δ > 1 in Theorem 3.5, we obtain the following result.

Theorem 3.8. Let {Xn, n ≥ 1} be a sequence of identically distributed negatively associated random

variables with Eeδ|X1| < ∞ for some δ > 1. Let εn =
√
2δeE|X1|2 log n/n. Then

∞∑

n=1

P

(
1
n

∣∣∣∣∣

n∑

i=1

(Xi − EXi)

∣∣∣∣∣
> 3εn

)

< ∞. (3.13)

Remark 3.9. By the Borel-Cantelli lemma,
∑n

i=1(Xi −EXi)/n converges almost surely with rate
(3εn)

−1 = O(1)n1/2(log n)−1/2. The convergence rate is faster than the rateO(1)n1/2(log n)−3/2

obtained by Xing et al. [12].

The following example shows that the convergence rate n1/2(log n)−1/2 is unattainable
in Theorem 3.8.
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Example 3.10. Let {Xn, n ≥ 1} be a sequence of i.i.d. N(0, 1) random variables. Then {Xn} are
negatively associated random variables with Eeδ|X1| < ∞ for any δ. Set Z =:

∑n
i=1Xi/

√
n. Then

Z is also N(0, 1). It is well known that P(Z > ε) ≥ 1/
√
2π(1/ε − 1/ε3)e−ε

2/2 (see Feller [15,
page 175]). Thus we have that

P

⎛

⎝ 1
n

∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
>

√
log n

n

⎞

⎠ = 2P
(
Z >

√
logn

)
≥
√

2
π

(
log n − 1

)

logn
√
n log n

, (3.14)

which implies that the series
∑∞

n=1P(1/n|
∑n

i=1Xi| >
√
log n/n) diverges.
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