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1. Introduction

Shafer (see Mitrinovic and Vasic [1, page 247]) gives us a result as follows.

Theorem 1.1. Let x > 0. Then

arcsinx >
6
(√

1 + x − √
1 − x

)

4 +
√
1 + x +

√
1 − x

>
3x

2 +
√
1 − x2

. (1.1)

The theorem is generalized by Fink [2] as follows.

Theorem 1.2. Let 0 ≤ x ≤ 1. Then

3x

2 +
√
1 − x2

≤ arcsinx ≤ πx

2 +
√
1 − x2

. (1.2)

Furthermore, 3 and π are the best constants in (1.2).

In [3], Zhu presents an upper bound for arcsinx and proves the following result.
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Theorem 1.3. Let 0 ≤ x ≤ 1. Then

3x

2 +
√
1 − x2

≤
6
(√

1 + x − √
1 − x

)

4 +
√
1 + x +

√
1 − x

≤ arcsinx

≤
π
(√

2 + 1/2
)(√

1 + x − √
1 − x

)

4 +
√
1 + x +

√
1 − x

≤ πx

2 +
√
1 − x2

.

(1.3)

Furthermore, 3 and π, 6 and π(
√
2 + 1/2) are the best constants in (1.3).

Malesevic [4–6] obtains the following inequality by using λ-method and computer
separately.

Theorem 1.4. Let 0 ≤ x ≤ 1. Then

arcsinx ≤

(
π
(
2 − √

2
))

/
(
π − 2

√
2
)(√

1 + x − √
1 − x

)
(√

2(4 − π)
)
/
(
π − 2

√
2
)
+
√
1 + x +

√
1 − x

≤ π/(π − 2)x

(2/(π − 2)) +
√
1 − x2

. (1.4)

Zhu [7, 8] offers some new simple proofs of inequality (1.4) by L’Hospital’s rule for
monotonicity.

In this paper, we give some generalizations of these above results and obtain two new
Shafer-Fink type double inequalities as follows.

Theorem 1.5. Let 0 ≤ x ≤ 1, and a, b1, b2 > 0. If

(a, b1, b2) ∈
{
a ≥ 3, b1 ≥ a − 1, b2 ≤ 2a

π

}

⋃{
3 > a >

π

π − 2
, b2 ≤ 2a

π
, b1 ≥ a sin ta

ta
− costa

}

⋃{
π

π − 2
≥ a >

π2

4
, b2 ≤ a − 1, b1 ≥ a sin ta

ta
− costa

}

⋃{
π2

4
≥ a > 1, b1 ≥ 2a

π
, b2 ≤ a − 1

}
,

(1.5)

then

ax

b1 +
√
1 − x2

≤ arcsinx ≤ ax

b2 +
√
1 − x2

(1.6)

holds, where ta is a point in (0, π/2] and satisfies a(tacosta − sinta) + t2asinta = 0.
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Theorem 1.6. Let 0 ≤ x ≤ 1, and c, d1, d2 > 0. If

(c, d1, d2) ∈
{
c ≥ 6, d1 ≥ c − 2, d2 ≤

√
2
(
2c
π

− 1
)}

⋃
⎧
⎨
⎩6 > c >

π
(
2 − √

2
)

π − 2
√
2

, d2 ≤
√
2
(
2c
π

− 1
)
, d1 ≥ c sin tc

tc
− 2cos tc

⎫
⎬
⎭

⋃
⎧
⎨
⎩

π
(
2 − √

2
)

π − 2
√
2

≥ c >
π2

8 − 2π
, d2 ≤ c − 2, d1 ≥ c sin tc

tc
− 2cos tc

⎫
⎬
⎭

⋃{
π2

8 − 2π
≥ c > 2, d1 ≥

√
2
2

(
4c
π

− 2
)
, d2 ≤ c − 2

}
,

(1.7)

then

c
(√

1 + x − √
1 − x

)

d1 +
√
1 + x +

√
1 − x

≤ arcsinx ≤
c
(√

1 + x − √
1 − x

)

d2 +
√
1 + x +

√
1 − x

(1.8)

holds, where tc is a point in (0, π/4] and satisfies c(tccostc − sintc) + 2t2csintc = 0.

2. One Lemma: L’Hospital’s Rule for Monotonicity

Lemma 2.1 (see [9–15]). Let f, g : [a, b] → R be two continuous functions which are differentiable
and g ′ /= 0 on (a, b). If f ′/g ′ is increasing (or decreasing) on (a, b), then the functions (f(x) −
f(b))/(g(x) − g(b)) and (f(x) − f(a))/(g(x) − g(a)) are also increasing (or decreasing) on (a, b).

3. Proofs of Theorems 1.5 and 1.6

(A)We first process the proof of Theorem 1.5.
Let x = sin t for x ∈ (0, 1], in which case the proof of Theorem 1.5 can be completed

when proving that the double inequality

b1
a

≥ sin t
t

− cos t
a

≥ b2
a

(3.1)

holds for t ∈ (0, π/2].
Let F(t) = (sin t/t) − (cos t/a), we have

F ′(t) =
t cos t − sin t

t2
+
sin t
a

= sin t
(
t cos t − sin t

t2 sin t
+
1
a

)
=: sin t

[
H(t) +

1
a

]
, (3.2)

where H(t) = (t cos t − sin t)/(t2 sin t) =: f1(t)/g1(t) and f1(t) = t cos t − sin t, g1(t) = t2 sin t,
f1(0) = 0, g1(0) = 0.
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Since f ′
1(t)/g

′
1(t) = (−t sin t)/(2t sin t + t2 cos t) = −(1/(2 + (t/tant)) decreases on

(0, π/2], we obtain that H(t) decreases on (0, π/2] by using Lemma 2.1. At the same time,
H(0 + 0) = −1/3, H(π/2) = −4/π2, and F(0 + 0) = 1 − (1/a), F(π/2) = 2/π .

There are four cases to consider.

Case 1 (a ≥ 3)

Since F ′(t) ≤ 0, F(t) decreases on (0, π/2], and infx∈(0,π/2]F(t) = 2/π , supx∈(0,π/2]F(t) = 1 −
1/a. So when b1 ≥ a − 1 and b2 ≤ 2a/π , (3.1) and (1.6) hold.

Case 2 (3 > a > π/(π − 2))

At this moment, there exists a number ta ∈ (0, π/2] such that a(ta cos ta − sin ta)+ t2a sin ta = 0,
F ′(t) is positive on (0, ta] and negative on (ta, π/2]. That is, F(t) firstly increases on (0, ta] then
decreases on (ta, π/2], and infx∈(0,π/2]F(t) = 2/π , supx∈(0,π/2]F(t) = F(ta). So when b2 ≤ 2a/π
and b1 ≥ a sin ta/ta − cos ta, (3.1) and (1.6) hold.

Case 3 (π/(π − 2) ≥ a > π2/4)

Now, F(t) also firstly increases on (0, ta] then decreases on (ta, 2/π], and infx∈(0,π/2]F(t) =
1−1/a, supx∈(0,π/2]F(t) = F(ta). So when b2 ≤ a−1 and b1 ≥ a sin ta/ta − cos ta, (3.1) and (1.6)
hold too.

Case 4 (π2/4 ≥ a > 1)

Since F ′(t) ≥ 0, F(t) increases on (0, π/2], infx∈(0,π/2]F(t) = 1−1/a, and supx∈(0,π/2]F(t) = 2/π .
So when b1 ≥ 2a/π and b2 ≤ a − 1, (3.1) and (1.6) hold.

(B) Now we consider proving Theorem 1.6.
In view of the fact that (1.8) holds for x = 0, we suppose that 0 < x ≤ 1 in the following.
First, let

√
1 + x =

√
2 cosα and

√
1 − x =

√
2 sinα for x ∈ (0, 1], we have x = cos 2α and

α ∈ [0, π/4). Second, let α + π/4 = π/2 − t, then t ∈ (0, π/4] and (1.8) is equivalent to

d1

c
≥ sin t

t
− 2 cos t

c
≥ d2

c
. (3.3)

When letting c = 2a and di = 2bi (i = 1, 2), (3.3) becomes (3.1).
Let F(t) = sin t/t−cos t/a. At thismoment,H(t) decreases on (0, π/4],H(0+0) = −1/3,

H(π/4) = −(1 − π/4)16/π2, and F(0 + 0) = 1 − 2/c, F(π/4) =
√
2(2/π − 1/c).

There are four cases to consider too.

Case 1 (c ≥ 6)

Since F ′(t) ≤ 0, F(t) decreases on (0, π/4], and infx∈(0,π/4]F(t) =
√
2(2/π − 1/c),

supx∈(0,π/4]F(t) = 1 − 2/c. If d1 ≥ c − 2 and d2 ≤ √
2(2c/π − 1), then (3.1) holds on (0, π/4]

and (1.8) holds.
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Case 2 (6 > c > (π(2 − √
2))/(π − 2

√
2))

At this moment, there exists a number ta ∈ (0, π/4] such that a(tc cos tc−sin tc)+2t2c sin tc = 0,
F ′(t) is positive on (0, tc] and negative on (tc, π/4]. That is, F(t) firstly increases on (0, tc]
then decreases on (tc, π/4], and infx∈(0,π/4]F(t) =

√
2((2/π) − (1/c)), supx∈(0,π/4]F(t) = F(tc).

If d2 ≤ √
2((2c/π − 1)) and d1 ≥ (c sin tc/tc) − 2 cos tc, then (3.1) holds on (0, π/4] and (1.8)

holds.

Case 3 ((π(2 − √
2))/(π − 2

√
2) ≥ c > π2/(8 − 2π))

Now, F(t) also firstly increases on (0, tc] then decreases on (tc, π/4], and infx∈(0,π/4]F(t) =
1 − 2/c, supx∈(0,π/4]F(t) = F(tc). If d2 ≤ c − 2 and d1 ≥ (c sin tc/tc) − 2 cos tc, then (3.1) holds
on (0, π/4] and (1.8) holds too.

Case 4 (π2/(8 − 2π) ≥ c > 2)

Since F ′(t) ≥ 0, F(t) increases on (0, π/4], infx∈(0,π/4]F(t) = 1 − 2/c, and supx∈(0,π/4]F(t) =√
2(2/π − 1/c). If d1 ≥ √

2(2c/π − 1) and d2 ≤ c − 2, then (3.1) holds on (0, π/4] and (1.8)
holds.

4. The Special Cases of Theorems 1.5 and 1.6

(1) Taking a = 3, b1 = a − 1 = 2 in Theorem 1.5 and c = 6, d1 = c − 2 = 4 in Theorem 1.6
leads to the inequality (1.1).

(2) Taking a = π/(π−2), b2 = a−1 = 2/(π−2) in Theorem 1.5 and c = (π(2−√2))/(π−
2
√
2), d2 = c−2 =

√
2(4−π)/(π −2

√
2) in Theorem 1.6 leads to the inequality (1.4).

(3) Let a = π2/4, b1 = (2/π)a = π/2 in Theorem 1.5 and c = π2/2(4 − π), d1 =
(2
√
2/π)c −√

2 = 2
√
2(π − 2)/(4 −π) in Theorem 1.6, we have the following result.

Theorem 4.1. Let 0 ≤ x ≤ 1. Then

(
π2/4

)
x

π/2 +
√
1 − x2

≤
(
π2/(8 − 2π)

)(√
1 + x − √

1 − x
)

2
√
2(π − 2)/(4 − π) +

√
1 + x +

√
1 − x

≤ arcsinx. (4.1)

Furthermore, π2/4 and π/2, π2/(8 − 2π) and 2
√
2(π − 2)/(4 − π) are the best constants in (4.1).
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