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1. Introduction

Let K be a nonempty subset of a Banach space X. We shall denote by CB(K) the family
of nonempty closed bounded subsets of K, by P(K) the family of nonempty bounded
proximinal subsets of K, and by K(K) the family of nonempty compact subsets of K. Let
H(·, ·) be the Hausdorff distance on CB(X), that is,

H(A,B) = max

{
sup
a∈A

dist(a, B), sup
b∈B

dist(b,A)

}
, A, B ∈ CB(X), (1.1)

where dist(a, B) = inf{d(a, b) : b ∈ B} is the distance from the point a to the set B.
A multivalued mapping T : K → CB(X) is said to be a nonexpansive if

H
(
Tx, Ty

) ≤ d
(
x, y

) ∀x, y ∈ K. (1.2)

A point x is called a fixed point of T if x ∈ Tx. We denote by F(T) the set of all fixed points of
T.
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In 2005, Sastry and Babu [1] introduced the Mann and Ishikawa iterations for
multivalued mappings as follows: let X be a real Hilbert space and T : X → P(X) be a
multivalued mapping for which F(T)/= ∅. Fix p ∈ F(T) and define

(A) the sequence of Mann iterates by x0 ∈ X,

xn+1 = αnxn + (1 − αn)yn, αn ∈ [0, 1], n ≥ 0 (1.3)

where yn ∈ Txn is such that ‖yn − p‖ = dist(p, Txn),

(B) the sequence of Ishikawa iterates by x0 ∈ X,

yn =
(
1 − βn

)
xn + βnzn, βn ∈ [0, 1], n ≥ 0 (1.4)

where zn ∈ Txn is such that ‖zn − p‖ = dist(p, Txn), and

xn+1 = (1 − αn)xn + αnz
′
n, αn ∈ [0, 1], (1.5)

where z′n ∈ Tyn is such that ‖z′n − p‖ = dist(p, Tyn).
They proved the following results.

Theorem 1.1. Let K be a nonempty compact convex subset of a Hilbert space X. Suppose T : K →
P(K) is nonexpansive and has a fixed point p. Assume that (i) 0 ≤ αn < 1 and (ii)

∑
αn = ∞.Then

the sequence of Mann iterates defined by (A) converges to a fixed point q of T.

Theorem 1.2. Let K be a nonempty compact convex subset of a Hilbert space X. Suppose that a
nonexpansive map T : K → P(K) has a fixed point p. Assume that (i) 0 ≤ αn, βn < 1; (ii) limnβn =
0, and (iii)

∑
αnβn = ∞. Then the sequence of Ishikawa iterates defined by (B) converges to a fixed

point q of T.

In 2007, Panyanak [2] extended Sastry-Babu’s results to uniformly convex Banach
spaces as the following results.

Theorem 1.3. Let K be a nonempty compact convex subset of a uniformly convex Banach spaces X.
Suppose that a nonexpansive map T : K → P(K) has a fixed point p. Let {xn} be the sequence of
Mann iterates defined by (A). Assume that (i) 0 ≤ αn < 1 and (ii)

∑
αn = ∞.Then the sequence {xn}

converges to a fixed point of T.

Theorem 1.4. Let K be a nonempty compact convex subset of a uniformly convex Banach spaces X.
Suppose that a nonexpansive map T : K → P(K) has a fixed point p. Let {xn} be the sequence of
Ishikawa iterates defined by (B). Assume that (i) 0 ≤ αn, βn < 1, (ii) limn βn = 0, and (iii)

∑
αnβn =

∞. Then the sequence {xn} converges to a fixed point of T.

Recently, Song and Wang [3, 4] pointed out that the proof of Theorem 1.4 contains a
gap. Namely, the iterative sequence {xn} defined by (B) depends on the fixed point p. Clearly,
if q ∈ F(T) and q /= p, then the sequence {xn} defined by q is different from the one defined
by p. Thus, for {xn} defined by p, we cannot obtain that {‖xn − q‖} is a decreasing sequence
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from the monotony of {‖xn − p‖}. Hence, the conclusion of Theorem 1.4 (also Theorem 1.3) is
very dubious.

Motivated by solving the above gap, they defined the modified Mann and Ishikawa
iterations as follows.

Let K be a nonempty convex subset of a Banach space (X, ‖ · ‖) and T : K → CB(K)
be a multivalued mapping. The sequence of Mann iterates is defined as follows: let αn ∈ [0, 1]
and γn ∈ (0,+∞) such that limn→∞γn = 0. Choose x0 ∈ K and y0 ∈ Tx0. Let

x1 = (1 − α0)x0 + α0y0. (1.6)

There exists y1 ∈ Tx1 such that d(y1, y0) ≤ H(Tx1, Tx0) + γ0 (see [5, 6]). Take

x2 = (1 − α1)x1 + α1y1. (1.7)

Inductively, we have

xn+1 = (1 − αn)xn + αnyn, (1.8)

where yn ∈ Txn such that d(yn+1, yn) ≤ H(Txn+1, Txn) + γn.
The sequence of Ishikawa iterates is defined as follows: let βn ∈ [0, 1], αn ∈ [0, 1] and

γn ∈ (0,+∞) such that limn→∞γn = 0. Choose x0 ∈ K and z0 ∈ Tx0. Let

y0 =
(
1 − β0

)
x0 + β0z0. (1.9)

There exists z′0 ∈ Ty0 such that d(z0, z′0) ≤ H(Tx0, Ty0) + γ0. Let

x1 = (1 − α0)x0 + α0z
′
0. (1.10)

There is z1 ∈ Tx1 such that d(z1, z′0) ≤ H(Tx1, Ty0) + γ1. Take

y1 =
(
1 − β1

)
x1 + β1z1. (1.11)

There exists z′1 ∈ Ty1 such that d(z1, z′1) ≤ H(Tx1, Ty1) + γ1. Let

x2 = (1 − α1)x1 + α1z
′
1. (1.12)

Inductively, we have

yn =
(
1 − βn

)
xn + βnzn, xn+1 = (1 − αn)xn + αnz

′
n, (1.13)

where zn ∈ Txn and z′n ∈ Tyn such that d(zn, z′n) ≤ H(Txn, Tyn) + γn and d(zn+1, z′n) ≤
H(Txn+1, Tyn) + γn.

They obtained the following results.
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Theorem 1.5 (see [3, Theorem2.3]). LetK be a nonempty compact convex subset of a Banach space
X. Suppose that T : K → CB(K) is a multivalued nonexpansive mapping for which F(T)/= ∅ and
T(y) = {y} for each y ∈ F(T). Let {xn} be the sequence of Mann iteration defined by (1.8). Assume
that

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1. (1.14)

Then the sequence {xn} strongly converges to a fixed point of T.

Recall that a multivalued mapping T : K → CB(K) is said to satisfy Condition I ([7])
if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r > 0 such that

dist(x, Tx) ≥ f(dist(x, F(T))) ∀x ∈ K. (1.15)

Theorem 1.6 (see [3, Theorem2.4]). Let K be a nonempty closed convex subset of a Banach space
X. Suppose that T : K → CB(K) is a multivalued nonexpansive mapping that satisfies Condition
I. Let {xn} be the sequence of Mann iteration defined by (1.8). Assume that F(T)/= ∅ and satisfies
T(y) = {y} for each y ∈ F(T) and

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1. (1.16)

Then the sequence {xn} strongly converges to a fixed point of T.

Theorem 1.7 (see [3, Theorem2.5]). Let X be a Banach space satisfying Opial’s condition and K
be a nonempty weakly compact convex subset of X. Suppose that T : K → K(K) is a multivalued
nonexpansive mapping. Let {xn} be the sequence of Mann iteration defined by (1.8). Assume that
F(T)/= ∅ and satisfies T(y) = {y} for each y ∈ F(T) and

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1. (1.17)

Then the sequence {xn} weakly converges to a fixed point of T.

Theorem 1.8 (see [4, Theorem 1]). Let K be a nonempty compact convex subset of a uniformly
convex Banach space X. Suppose that T : K → CB(K) is a multivalued nonexpansive mapping and
F(T)/= ∅ satisfying T(y) = {y} for any fixed point y ∈ F(T). Let {xn} be the sequence of Ishikawa
iterates defined by (1.13). Assume that (i) αn, βn ∈ [0, 1); (ii) limn→∞βn = 0 and (iii)

∑∞
n=0αnβn =

∞.Then the sequence {xn} strongly converges to a fixed point of T.

Theorem 1.9 (see [4, Theorem 2]). LetK be a nonempty closed convex subset of a uniformly convex
Banach space X. Suppose that T : K → CB(K) is a multivalued nonexpansive mapping that satisfy
Condition I. Let {xn} be the sequence of Ishikawa iterates defined by (1.13). Assume that F(T)/= ∅
satisfying T(y) = {y} for any fixed point y ∈ F(T) and αn, βn ∈ [a, b] ⊂ (0, 1). Then the sequence
{xn} strongly converges to a fixed point of T.
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In this paper, we study the iteration processes defined by (1.8) and (1.13) in a CAT(0)
space and give analogs of Theorems 1.5–1.9 in this setting.

2. CAT(0) Spaces

A metric space X is a CAT(0) space if it is geodesically connected, and if every geodesic
triangle inX is at least as “thin” as its comparison triangle in the Euclidean plane. The precise
definition is given below. It is well known that any complete, simply connected Riemannian
manifold having nonpositive sectional curvature is a CAT(0) space. Other examples include
Pre-Hilbert spaces, R-trees (see [8]), Euclidean buildings (see [9]), the complex Hilbert ball
with a hyperbolic metric (see [10]), and many others. For a thorough discussion of these
spaces and of the fundamental role they play in geometry (see Bridson and Haefliger [8]).
Burago, et al. [11] contains a somewhat more elementary treatment, and Gromov [12] a
deeper study.

Fixed point theory in a CAT(0) space was first studied by Kirk (see [13] and [14]).
He showed that every nonexpansive (single-valued) mapping defined on a bounded closed
convex subset of a complete CAT(0) space always has a fixed point. Since then the fixed
point theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly
developed and many of papers have appeared (see, e.g., [15–24]). It is worth mentioning that
the results in CAT(0) spaces can be applied to any CAT(κ) space with κ ≤ 0 since any CAT(κ)
space is a CAT( κ′) space for every κ′ ≥ κ (see [8], page 165).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) =
y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique
this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points ofX are joined by a geodesic, andX is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes
every geodesic segment joining any two of its points.

A geodesic triangleΔ(x1, x2, x3) in a geodesic space (X, d) consists of three points
x1, x2, x3 in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the
edges of Δ). A comparison triangle for geodesic triangle Δ(x1, x2, x3) in (X, d) is a triangle
Δ(x1, x2, x3) := Δ(x1, x2, x3) in the Euclidean plane E

2 such that dE2(xi, xj) = d(xi, xj) for
i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.

CAT(0): let Δ be a geodesic triangle in X and let Δ be a comparison triangle for Δ.
Then Δ is said to satisfy the CAT(0) inequality if for all x, y ∈ Δ and all comparison points
x, y ∈ Δ,

d
(
x, y

) ≤ dE2
(
x, y

)
. (2.1)

Let x, y ∈ X, by [24, Lemma 2.1(iv)] for each t ∈ [0, 1], there exists a unique point
z ∈ [x, y] such that

d(x, z) = td
(
x, y

)
, d

(
y, z

)
= (1 − t)d

(
x, y

)
. (2.2)
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From now on we will use the notation (1 − t)x ⊕ ty for the unique point z satisfying (2.2).
By using this notation Dhompongsa and Panyanak [24] obtained the following lemma which
will be used frequently in the proof of our main theorems.

Lemma 2.1. Let X be a CAT (0) space . Then

d
(
(1 − t)x ⊕ ty, z

) ≤ (1 − t)d(x, z) + td
(
y, z

)
(2.3)

for all x, y, z ∈ X and t ∈ [0, 1].
If x, y1, y2 are points in a CAT(0) space and if y0 = 1/2y1 ⊕ 1/2y2 then the CAT(0)

inequality implies

d
(
x, y0

)2 ≤ 1
2
d
(
x, y1

)2 + 1
2
d
(
x, y2

)2 − 1
4
d
(
y1, y2

)2
. (2.4)

This is the (CN) inequality of Bruhat and Tits [25]. In fact (cf. [8, page 163]), a geodesic metric
space is a CAT(0) space if and only if it satisfies (CN).

The following lemma is a generalization of the (CN) inequality which can be found in
[24].

Lemma 2.2. Let (X, d) be a CAT(0) space. Then

d
(
(1 − t)x ⊕ ty, z

)2 ≤ (1 − t)d(x, z)2 + td
(
y, z

)2 − t(1 − t)d
(
x, y

)2 (2.5)

for all t ∈ [0, 1] and x, y, z ∈ X.

The preceding facts yield the following result.

Proposition 2.3. Let X be a geodesic space. Then the following are equivalent:

(i) X is a CAT (0) space;

(ii) X satisfies (CN);

(iii) X satisfies (2.5).

The existence of fixed points for multivalued nonexpansive mappings in a CAT(0)
space was proved by S. Dhompongsa et al. [17], as follows.

Theorem 2.4. LetK be a closed convex subset of a completeCAT(0) spaceX, and let T : K → K(X)
be a nonexpansive nonself-mapping. Suppose

lim
n→∞

dist(xn, Txn) = 0 (2.6)

for some bounded sequence {xn} in K. Then T has a fixed point.



Journal of Inequalities and Applications 7

3. The Setting

Let (X, ‖ · ‖) be a Banach space, and let {xn} be a bounded sequence in X, for x ∈ X we let

r(x, {xn}) = lim sup
n→∞

‖x − xn‖. (3.1)

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}, (3.2)

and the asymptotic centerA({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. (3.3)

The notion of asymptotic centers in a Banach space (X, ‖ · ‖) can be extended to a
CAT(0) space (X, d) as well, simply replacing ‖ · ‖ with d(·, ·). It is known (see, e.g., [18,
Proposition 7]) that in a CAT(0) space, A({xn}) consists of exactly one point.

Next we provide the definition and collect some basic properties of Δ-convergence.

Definition 3.1 (see [23]). A sequence {xn} in a CAT(0) space X is said to Δ-converge to x ∈ X
if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case
one must write Δ-limnxn = x and call x the Δ-limit of {xn}.

Remark 3.2. In a CAT(0) space X, strong convergence implies Δ-convergence and they are
coincided when X is a Hilbert space. Indeed, we prove a much more general result. Recall
that a Banach space is said to satisfyOpial’s condition ([26]) if given whenever {xn} converges
weakly to x ∈ X,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥∥xn − y
∥∥ for each y ∈ X with y /=x. (3.4)

Proposition 3.3. Let X be a reflexive Banach space satisfying Opial’s condition and let {xn} be a
bounded sequence in X and let x ∈ X. Then {xn} converges weakly to x if and only ifA({un}) = {x}
for all subsequence {un} of {xn}.

Proof. (⇒) Let {un} be a subsequence of {xn}. Then {un} converges weakly to x. By Opial’s
condition A({un}) = {x}. (⇐) Suppose A({un}) = {x} for all subsequence {un} of {xn} and
assume that {xn} does not converge weakly to x. Then there exists a subsequence {zn} of {xn}
such that for each n, zn is outside a weak neighborhood of x. Since {zn} is bounded, without
loss of generality we may assume that {zn} converges weakly to z/=x. By Opial’s condition
A({zn}) = {z}/= {x}, a contradiction.

Lemma 3.4. (i) Every bounded sequence in X has a Δ-convergent subsequence (see [23, page
3690]). (ii) If C is a closed convex subset of X and if {xn} is a bounded sequence in C, then the
asymptotic center of {xn} is in C (see [17, Proposition 2.1]).

Now, we define the sequences of Mann and Ishikawa iterates in a CAT(0) space which
are analogs of the two defined in Banach spaces by Song and Wang [3, 4].
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Definition 3.5. Let K be a nonempty convex subset of a CAT(0) space X and T : K → CB(K)
be a multivalued mapping. The sequence of Mann iterates is defined as follows: let αn ∈ [0, 1]
and γn ∈ (0,+∞) such that limn→∞γn = 0. Choose x0 ∈ K and y0 ∈ Tx0. Let

x1 = (1 − α0)x0 ⊕ α0y0. (3.5)

There exists y1 ∈ Tx1 such that d(y1, y0) ≤ H(Tx1, Tx0) + γ0. Take

x2 = (1 − α1)x1 ⊕ α1y1. (3.6)

Inductively, we have

xn+1 = (1 − αn)xn ⊕ αnyn, (3.7)

where yn ∈ Txn such that d(yn+1, yn) ≤ H(Txn+1, Txn) + γn.

Definition 3.6. Let K be a nonempty convex subset of a CAT(0) space X and T : K → CB(K)
be a multivalued mapping. The sequence of Ishikawa iterates is defined as follows: let βn ∈ [0, 1],
αn ∈ [0, 1] and γn ∈ (0,+∞) such that limn→∞γn = 0. Choose x0 ∈ K and z0 ∈ Tx0. Let

y0 =
(
1 − β0

)
x0 ⊕ β0z0. (3.8)

There exists z′0 ∈ Ty0 such that d(z0, z′0) ≤ H(Tx0, Ty0) + γ0. Let

x1 = (1 − α0)x0 ⊕ α0z
′
0. (3.9)

There is z1 ∈ Tx1 such that d(z1, z′0) ≤ H(Tx1, Ty0) + γ1. Take

y1 =
(
1 − β1

)
x1 ⊕ β1z1. (3.10)

There exists z′1 ∈ Ty1 such that d(z1, z′1) ≤ H(Tx1, Ty1) + γ1. Let

x2 = (1 − α1)x1 ⊕ α1z
′
1. (3.11)

Inductively, we have

yn =
(
1 − βn

)
xn ⊕ βnzn, xn+1 = (1 − αn)xn ⊕ αnz

′
n, (3.12)

where zn ∈ Txn and z′n ∈ Tyn such that d(zn, z′n) ≤ H(Txn, Tyn) + γn and d(zn+1, z′n) ≤
H(Txn+1, Tyn) + γn.

Lemma 3.7. Let K be a nonempty compact convex subset of a complete CAT (0) space X, and let
T : K → CB(X) be a nonexpansive nonself-mapping. Suppose that

lim
n→∞

dist(xn, Txn) = 0 (3.13)
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for some sequence {xn} in K. Then T has a fixed point. Moreover, if {d(xn, y)} converges for each
y ∈ F(T), then {xn} strongly converges to a fixed point of T.

Proof. By the compactness ofK, there exists a subsequence {xnk} of {xn} such that xnk → q ∈
K. Thus

dist
(
q, Tq

) ≤ d
(
q, xnk

)
+ dist(xnk , Txnk) +H

(
Txnk , Tq

) −→ 0 as k −→ ∞. (3.14)

This implies that q is a fixed point of T. Since the limit of {d(xn, q)} exists and
limk→∞d(xnk , q) = 0,we have limn→∞d(xn, q) = 0. This show that the sequence {xn} strongly
converges to q ∈ F(T).

Before proving our main results we state a lemma which is an analog of Lemma 2.2 of
[27]. The proof is metric in nature and carries over to the present setting without change.

Lemma 3.8. Let {xn} and {yn} be bounded sequences in aCAT (0)spaceX and let {αn} be a sequence
in [0, 1] with 0 < lim infnαn ≤ lim supnαn < 1. Suppose that xn+1 = αnyn⊕(1−αn)xn for all n ∈ N

and

lim sup
n→∞

(
d
(
yn+1, yn

) − d(xn+1, xn)
) ≤ 0. (3.15)

Then limnd(xn, yn) = 0.

4. Strong and Δ Convergence of Mann Iteration

Theorem 4.1. Let K be a nonempty compact convex subset of a complete CAT (0)space X. Suppose
that T : K → CB(K) is a multivalued nonexpansive mapping and F(T)/= ∅ satisfying Ty = {y} for
any fixed point y ∈ F(T). If {xn} is the sequence of Mann iterates defined by (3.7) such that one of
the following two conditions is satisfied:

(i) αn ∈ [0, 1) and
∑∞

n=0αn = ∞;
(ii) 0 < lim infnαn ≤ lim supnαn < 1.

Then the sequence {xn} strongly converges to a fixed point of T.

Proof

Case 1. Suppose that (i) is satisfied. Let p ∈ F(T), by Lemma 2.2 and the nonexpansiveness of
T,we have

d
(
xn+1, p

)2 ≤ (1 − αn)d
(
xn, p

)2 + αnd
(
yn, p

)2 − αn(1 − αn)d
(
xn, yn

)2
≤ (1 − αn)d

(
xn, p

)2 + αn

(
H(Txn, Tp)

)2 − αn(1 − αn)d
(
xn, yn

)2
≤ (1 − αn)d

(
xn, p

)2 + αnd
(
xn, p

)2 − αn(1 − αn)d
(
xn, yn

)2
= d

(
xn, p

)2 − αn(1 − αn)d
(
xn, yn

)2
.

(4.1)
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This implies

d
(
xn+1, p

)2 ≤ d
(
xn, p

)2
, (4.2)

αn(1 − αn)d
(
xn, yn

)2 ≤ d
(
xn, p

)2 − d
(
xn+1, p

)2
. (4.3)

It follows from (4.2) that d(xn, p) ≤ d(x1, p) for all n ≥ 1. This implies that {d(xn, p)}∞n=1 is
bounded and decreasing. Hence limnd(xn, p) exists for all p ∈ F(T). On the other hand, (4.3)
implies

∞∑
n=0

αn(1 − αn)d
(
xn, yn

)2 ≤ d
(
x1, p

)2
< ∞. (4.4)

Since
∑∞

n=0 αn diverges, we have lim infn d(xn, yn)
2 = 0 and hence lim infn d(xn, yn) = 0. Then

there exists a subsequence {d(xnk , ynk)} of {d(xn, yn)} such that

lim
k→∞

d
(
xnk , ynk

)
= 0. (4.5)

This implies

lim
k→∞

dist(xnk , Txnk) = 0. (4.6)

By Lemma 3.7, {xnk} converges to a point q ∈ F(T). Since the limit of {d(xn, q)} exists, it must
be the case

that limn→∞d(xn, q) = 0, and hence the conclusion follows.

Case 2. If (ii) is satisfied. As in the Case 1, limn d(xn, p) exists for each p ∈ F(T). It follows
from the definition of Mann iteration (3.7) that

d
(
yn+1, yn

) ≤ H(Txn+1, Txn) + γn

≤ d(xn+1, xn) + γn.
(4.7)

Therefore,

lim sup
n→∞

(
d
(
yn+1, yn

) − d(xn+1, xn)
) ≤ lim sup

n→∞
γn = 0. (4.8)

By Lemma 3.8, we obtain

lim
n→∞

d
(
xn, yn

)
= 0. (4.9)
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This implies

lim
n→∞

dist(xn, Txn) = 0, (4.10)

so the conclusion follows from Lemma 3.7.

Theorem 4.2. LetK be a nonempty closed convex subset of a completeCAT(0) spaceX. Suppose that
T : K → CB(K) is a multivalued nonexpansive mapping that satisfies Condition I. Let {xn} be the
sequence of Mann iterates defined by (3.7). Assume that F(T)/= ∅ satisfying Ty = {y} for any fixed
point y ∈ F(T) and αn ∈ [a, b] ⊂ (0, 1). Then the sequence {xn} strongly converges to a fixed point
of T.

Proof. It follows from the proof of the Case 1 in Theorem 4.1 that limn→∞ d(xn, p) exists for
each p ∈ F(T) and

αn(1 − αn)d
(
xn, yn

)2 ≤ d
(
xn, p

)2 − d
(
xn+1, p

)2
. (4.11)

Then

a(1 − b)d
(
xn, yn

)2 ≤ αn(1 − αn)d
(
xn, yn

)2 ≤ d
(
xn, p

)2 − d
(
xn+1, p

)2
. (4.12)

This implies

∞∑
n=0

a(1 − b)d
(
xn, yn

)2 ≤ d
(
x1, p

)2
< ∞. (4.13)

Thus, limn→∞d(xn, yn)
2 = 0 and hence limn→∞d(xn, yn) = 0. Since yn ∈ Txn,

dist(xn, Txn) ≤ d
(
xn, yn

)
. (4.14)

Therefore, limn→∞dist(xn, Txn) = 0. Furthermore Condition I implies

lim
n→∞

dist(xn, F(T)) = 0. (4.15)

The proof of remaining part closely follows the proof of of [2, Theorem 3.8], simply replacing
‖ · ‖with d(·, ·).

Next we show a Δ-convergence theorem of Mann iteration in a CAT(0) space setting
which is an analog of Theorem 1.7. For this we need more lemmas.

Lemma 4.3 (see [24, Lemma 2.8]). If {xn} is a bounded sequence in a complete CAT (0)space
X with A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u} and the sequence
{d(xn, u)} converges, then x = u.
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Lemma 4.4. Let K be a nonempty closed convex subset of a complete CAT (0) space X, and let
T : K → K(X) be a nonexpansive nonself-mapping. Suppose that {xn} is a sequence in K which
Δ-converges to x in X and

lim
n→∞

dist(xn, Txn) = 0. (4.16)

Then x ∈ F(T).

Proof. Notice from Lemma 3.4(ii) that x ∈ K. Since T is compact-valued, for each n ≥ 1 there
exists yn ∈ Txn and zn ∈ Tx such that d(xn, yn) = dist(xn, Txn) and d(yn, zn) = dist(yn, Tx).
It follows from (4.16) that

lim
n→∞

d
(
xn, yn

)
= 0. (4.17)

By the compactness of Tx, there exists a subsequence {znk} of {zn} such that limk→∞znk =
z ∈ Tx. Then

d(xnk , z) ≤ d
(
xnk , ynk

)
+ d

(
ynk , znk

)
+ d(znk , z)

≤ d
(
xnk , ynk

)
+ dist

(
ynk , Tx

)
+ d(znk , z)

≤ d
(
xnk , ynk

)
+H(Txnk , Tx) + d(znk , z)

≤ d
(
xnk , ynk

)
+ d(xnk , x) + d(znk , z).

(4.18)

This implies

lim sup
k

d(xnk , z) ≤ lim sup
k

d(xnk , x). (4.19)

Since Δ-limnxn = x,A({xnk}) = {x} and hence z = x by (4.19). Therefore x is a fixed point of
T.

Lemma 4.5. LetK be a closed convex subset of a complete CAT (0)spaceX,and let T : K → K(X)be
a nonexpansive mapping. Suppose{xn}is a bounded sequence inKsuch that limndist(xn, Txn) =
0and{d(xn, v)}converges for allv ∈ F(T), then ωw(xn) ⊂ F(T). Here ωw(xn) := ∪A({un})where
the union is taken over all subsequences {un} of {xn}.Moreover, ωw(xn)consists of exactly one
point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}.
By Lemma 3.4(i) and (ii) there exists a subsequence {vn} of {un} such that Δ-limnvn = v ∈
K. By Lemma 4.4, v ∈ F(T). By Lemma 4.3, u = v. This shows that ωw(xn) ⊂ F(T). Next,
we show that ωw(xn) consists of exactly one point. Let {un} be a subsequence of {xn} with
A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊂ F(T), {d(xn, u)} is convergent by
the assumption. By Lemma 4.3, x = u. This completes the proof.
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Theorem 4.6. Let K be a nonempty closed convex subset of a complete CAT (0) space X. Suppose
that T : K → K(K) is a multivalued nonexpansive mapping. Let {xn} be the sequence of Mann
iterates defined by (3.7). Assume that F(T)/= ∅ satisfying Ty = {y} for any fixed point y ∈ F(T) and

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1. (4.20)

Then the sequence {xn}Δ-converges to a fixed point of T.

Proof. Let p ∈ F(T), it follows from (4.2) in the proof of Theorem 4.1 that d(xn, p) ≤ d(x1, p)
for all n ≥ 1. This implies that {d(xn, p)}∞n=1 is bounded and decreasing. Hence limnd(xn, p)
exists for all p ∈ F(T). Since yn ∈ Txn,

dist(xn, Txn) ≤ d
(
xn, yn

)
. (4.21)

Thus limn→∞dist(xn, Txn) = 0 by (4.9). By Lemma 4.5, ωw(xn) consists of exactly one point
and is contained in F(T). This shows that {xn}Δ-converges to an element of F(T).

5. Strong Convergence of Ishikawa Iteration

The following lemma can be found in [2].

Lemma 5.1. Let {αn}, {βn} be two real sequences such that

(i) 0 ≤ αn, βn < 1;

(ii) βn → 0 as n → ∞;

(iii)
∑

αnβn = ∞.

Let {γn} be a nonnegative real sequence such that
∑

αnβn(1 − βn)γn is bounded. Then {γn} has a
subsequence which converges to zero.

The following theorem is an analog of Theorem 1.8.

Theorem 5.2. Let K be a nonempty compact convex subset of a complete CAT (0) space X. Suppose
that T : K → CB(K) is a multivalued nonexpansive mapping and F(T)/= ∅ satisfying Ty = {y} for
any fixed point y ∈ F(T). Let {xn} be the sequence of Ishikawa iterates defined by (3.12). Assume that

(i) αn, βn ∈ [0, 1);

(ii) limn→∞βn = 0;

(iii)
∑∞

n=0αnβn = ∞.

Then the sequence {xn} strongly converges to a fixed point of T.
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Proof. Let p ∈ F(T), by Lemma 2.2 and the nonexpansiveness of T we have

d
(
xn+1, p

)2 ≤ (1 − αn)d
(
xn, p

)2 + αnd
(
z′n, p

)2 − αn(1 − αn)d
(
xn, z

′
n

)2
≤ (1 − αn)d

(
xn, p

)2 + αn

(
H
(
Tyn, Tp

))2
≤ (1 − αn)d

(
xn, p

)2 + αnd
(
yn, p

)2
≤ (1 − αn)d

(
xn, p

)2
+ αn

[(
1 − βn

)
d
(
xn, p

)2 + βnd
(
zn, p

)2 − βn
(
1 − βn

)
d(xn, zn)2

]
≤ (1 − αn)d

(
xn, p

)2
+ αn

[(
1 − βn

)
d
(
xn, p

)2 + βn
(
H
(
Txn, Tp

))2 − βn
(
1 − βn

)
d(xn, zn)2

]
≤ d

(
xn, p

)2 − αnβn
(
1 − βn

)
d(xn, zn)2.

(5.1)

This implies

d
(
xn+1, p

)2 ≤ d
(
xn, p

)2
, (5.2)

αnβn
(
1 − βn

)
d(xn, zn)2 ≤ d

(
xn, p

)2 − d
(
xn+1, p

)2
. (5.3)

It follows from (5.2) that the sequence {d(xn, p)} is decreasing and hence limn d(xn, p) exists
for each p ∈ F(T). On the other hand, (5.3) implies

∞∑
n=0

αnβn
(
1 − βn

)
d(xn, zn)2 ≤ d

(
x1, p

)2
< ∞. (5.4)

By Lemma 5.1, there exists a subsequence {d(xnk , znk)} of {d(xn, zn)} such that

lim
k→∞

d(xnk , znk) = 0. (5.5)

This implies

lim
k→∞

dist(xnk , Txnk) = 0. (5.6)

By Lemma 3.7, {xnk} converges to a point q ∈ F(T). Since the limit of {d(xn, q)} exists, it must
be the case that limn→∞d(xn, q) = 0, and hence the conclusion follows.

The following theorem is an analog of Theorem 1.9.

Theorem 5.3. Let K be a nonempty closed convex subset of a complete CAT(0) space X. Suppose
that T : K → CB(K) is a multivalued nonexpansive mapping that satisfies Condition I. Let {xn}
be the sequence of Ishikawa iterates defined by (3.12). Assume that F(T)/= ∅ satisfying Ty = {y} for
any fixed point y ∈ F(T) and αn, βn ∈ [a, b] ⊂ (0, 1). Then the sequence {xn} strongly converges to
a fixed point of T.
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Proof. Similar to the proof of Theorem 5.2, we obtain limn→∞d(xn, p) exists for each p ∈ F(T)
and

αnβn
(
1 − βn

)
d(xn, zn)2 ≤ d

(
xn, p

)2 − d
(
xn+1, p

)2
. (5.7)

Then

a2(1 − b)d(xn, zn)2 ≤ αnβn
(
1 − βn

)
d(xn, zn)2 ≤ d

(
xn, p

)2 − d
(
xn+1, p

)2
. (5.8)

This implies

∞∑
n=0

a2(1 − b)d(xn, zn)2 ≤ d
(
x1, p

)2
< ∞. (5.9)

Thus, limn→∞d(xn, zn)
2 = 0 and hence limn→∞d(xn, zn) = 0. Since zn ∈ Txn,

dist(xn, Txn) ≤ d(xn, zn). (5.10)

Therefore, limn→∞dist(xn, Txn) = 0. Furthermore Condition I implies

lim
n→∞

dist(xn, F(T)) = 0. (5.11)

The proof of remaining part closely follows the proof of [2, Theorem 3.8], simply replacing
‖ · ‖with d(·, ·).

Acknowledgments

We are grateful to Professor Sompong Dhompongsa for his suggestion and advice during
the preparation of the article. The research was supported by the Commission on Higher
Education and Thailand Research Fund under Grant MRG5080188.

References

[1] K. P. R. Sastry and G. V. R. Babu, “Convergence of Ishikawa iterates for a multi-valued mapping with
a fixed point,” Czechoslovak Mathematical Journal, vol. 55, no. 4, pp. 817–826, 2005.

[2] B. Panyanak, “Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces,”
Computers & Mathematics with Applications, vol. 54, no. 6, pp. 872–877, 2007.

[3] Y. Song and H. Wang, “Convergence of iterative algorithms for multivalued mappings in Banach
spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 4, pp. 1547–1556, 2009.

[4] Y. Song andH.Wang, “Erratum to “Mann and Ishikawa iterative processes for multivaluedmappings
in Banach spaces” [Comput. Math. Appl. 54 (2007) 872–877],” Computers & Mathematics with
Applications, vol. 55, no. 12, pp. 2999–3002, 2008.

[5] S. B. Nadler Jr., “Multi-valued contraction mappings,” Pacific Journal of Mathematics, vol. 30, pp. 475–
488, 1969.

[6] N. A. Assad and W. A. Kirk, “Fixed point theorems for set-valued mappings of contractive type,”
Pacific Journal of Mathematics, vol. 43, no. 3, pp. 553–562, 1972.



16 Journal of Inequalities and Applications

[7] H. F. Senter and W. G. Dotson Jr., “Approximating fixed points of nonexpansive mappings,”
Proceedings of the American Mathematical Society, vol. 44, no. 2, pp. 375–380, 1974.

[8] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319 of Fundamental
Principles of Mathematical Sciences, Springer, Berlin, Germany, 1999.

[9] K. S. Brown, Buildings, Springer, New York, NY, USA, 1989.
[10] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, vol. 83 of

Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1984.
[11] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, vol. 33 of Graduate Studies in

Mathematics, American Mathematical Society, Providence, RI, USA, 2001.
[12] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, vol. 152 of Progress in
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