Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2009, Article ID 741923, 6 pages doi:10.1155/2009/741923

Research Article

Two Sharp Inequalities for Power Mean, Geometric Mean, and Harmonic Mean

Yu-Ming Chu¹ and Wei-Feng Xia²

Correspondence should be addressed to Yu-Ming Chu, chuyuming 2005@yahoo.com.cn

Received 23 July 2009; Accepted 30 October 2009

Recommended by Wing-Sum Cheung

For $p \in R$, the power mean of order p of two positive numbers a and b is defined by $M_p(a,b) = ((a^p + b^p)/2)^{1/p}, p \neq 0$, and $M_p(a,b) = \sqrt{ab}, p = 0$. In this paper, we establish two sharp inequalities as follows: $(2/3)G(a,b) + (1/3)H(a,b) \geqslant M_{-1/3}(a,b)$ and $(1/3)G(a,b) + (2/3)H(a,b) \geqslant M_{-2/3}(a,b)$ for all a,b > 0. Here $G(a,b) = \sqrt{ab}$ and H(a,b) = 2ab/(a+b) denote the geometric mean and harmonic mean of a and b, respectively.

Copyright © 2009 Y.-M. Chu and W.-F. Xia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

For $p \in R$, the power mean of order p of two positive numbers a and b is defined by

$$M_{p}(a,b) = \begin{cases} \left(\frac{a^{p} + b^{p}}{2}\right)^{1/p}, & p \neq 0, \\ \sqrt{ab}, & p = 0. \end{cases}$$
 (1.1)

Recently, the power mean has been the subject of intensive research. In particular, many remarkable inequalities for $M_p(a,b)$ can be found in literature [1–12]. It is well known that $M_p(a,b)$ is continuous and increasing with respect to $p \in R$ for fixed a and b. If we denote by A(a,b)=(a+b)/2, $G(a,b)=\sqrt{ab}$, and H(a,b)=2ab/(a+b) the arithmetic mean, geometric mean and harmonic mean of a and b, respectively, then

$$\min\{a,b\} \leqslant H(a,b) = M_{-1}(a,b) \leqslant G(a,b) = M_0(a,b) \leqslant A(a,b) = M_1(a,b) \leqslant \max\{a,b\}.$$
(1.2)

¹ Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China

² School of Teacher Education, Huzhou Teachers College, Huzhou 313000, China

In [13], Alzer and Janous established the following sharp double-inequality (see also [14, page 350]):

$$M_{\log 2/\log 3}(a,b) \le \frac{2}{3}A(a,b) + \frac{1}{3}G(a,b) \le M_{2/3}(a,b)$$
 (1.3)

for all a, b > 0.

In [15], Mao proved

$$M_{1/3}(a,b) \le \frac{1}{3}A(a,b) + \frac{2}{3}G(a,b) \le M_{1/2}(a,b)$$
 (1.4)

for all a, b > 0, and $M_{1/3}(a, b)$ is the best possible lower power mean bound for the sum (1/3)A(a, b) + (2/3)G(a, b).

The purpose of this paper is to answer the questions: what are the greatest values p and q, and the least values r and s, such that $M_p(a,b) \le (2/3)G(a,b) + (1/3)H(a,b) \le M_r(a,b)$ and $M_q(a,b) \le (1/3)G(a,b) + (2/3)H(a,b) \le M_s(a,b)$ for all a,b > 0?

2. Main Results

Theorem 2.1. $(2/3)G(a,b) + (1/3)H(a,b) \ge M_{-1/3}(a,b)$ for all a,b > 0, equality holds if and only if a = b, and $M_{-1/3}(a,b)$ is the best possible lower power mean bound for the sum (2/3)G(a,b) + (1/3)H(a,b).

Proof. If a = b, then we clearly see that $(2/3)G(a,b) + (1/3)H(a,b) = M_{-1/3}(a,b) = a$. If $a \neq b$ and $a/b = t^6$, then simple computation leads to

$$\frac{2}{3}G(a,b) + \frac{1}{3}H(a,b) - M_{-1/3}(a,b)
= b \left[\frac{2t^3}{3} + \frac{2t^6}{3(1+t^6)} - \frac{8t^6}{(1+t^2)^3} \right]
= \frac{2bt^3}{3(1+t^2)^3(t^4-t^2+1)} \times \left[(t^2+1)^3(t^4-t^2+1) + t^3(t^2+1)^2 - 12t^3(t^4-t^2+1) \right]
= \frac{2bt^3}{3(1+t^2)^3(t^4-t^2+1)} \times \left[t^{10} + 2t^8 - 11t^7 + t^6 + 14t^5 + t^4 - 11t^3 + 2t^2 + 1 \right]
= \frac{2bt^3(t-1)^4}{3(1+t^2)^3(t^4-t^2+1)} \times \left(t^6 + 4t^5 + 12t^4 + 17t^3 + 12t^2 + 4t + 1 \right)
> 0.$$
(2.1)

Next, we prove that $M_{-1/3}(a,b)$ is the best possible lower power mean bound for the sum (2/3)G(a,b) + (1/3)H(a,b).

For any $0 < \varepsilon < \frac{1}{3}$ and 0 < x < 1, one has

$$\left[M_{-1/3+\varepsilon} ((1+x)^2, 1) \right]^{1/3-\varepsilon} - \left[\frac{2}{3} G((1+x)^2, 1) + \frac{1}{3} H((1+x)^2, 1) \right]^{1/3-\varepsilon}
= \left[\frac{1+(1+x)^{-2/3+2\varepsilon}}{2} \right]^{-1} - \left[\frac{2}{3} (1+x) + \frac{2(1+x)^2}{3(x^2+2x+2)} \right]^{1/3-\varepsilon}
= \frac{2(1+x)^{2/3-2\varepsilon}}{1+(1+x)^{2/3-2\varepsilon}} - \left(\frac{1+2x+(4/3)x^2+x^3/3}{1+x+x^2/2} \right)^{1/3-\varepsilon}
= \frac{f(x)}{\left[1+(1+x)^{2/3-2\varepsilon} \right] (1+x+x^2/2)^{1/3-\varepsilon}},$$
(2.2)

where $f(x) = 2(1+x)^{2/3-2\varepsilon} (1+x+(x^2/2))^{1/3-\varepsilon} - [1+(1+x)^{2/3-2\varepsilon}](1+2x+(4/3)x^2+x^3/3)^{1/3-\varepsilon}$.

Let $x \to 0$, then the Taylor expansion leads to

$$f(x) = 2\left[1 + \frac{2 - 6\varepsilon}{3}x - \frac{(1 - 3\varepsilon)(1 + 6\varepsilon)}{9}x^2 + o(x^2)\right]$$

$$\times \left[1 + \frac{1 - 3\varepsilon}{3}x + \frac{(1 - 3\varepsilon)^2}{18}x^2 + o(x^2)\right]$$

$$-2\left[1 + \frac{1 - 3\varepsilon}{3}x - \frac{(1 - 3\varepsilon)(1 + 6\varepsilon)}{18}x^2 + o(x^2)\right]$$

$$\times \left[1 + \frac{2 - 6\varepsilon}{3}x - \frac{2\varepsilon(1 - 3\varepsilon)}{3}x^2 + o(x^2)\right]$$

$$= 2\left[1 + (1 - 3\varepsilon)x + \frac{(1 - 3\varepsilon)(1 - 9\varepsilon)}{6}x^2 + o(x^2)\right]$$

$$-2\left[1 + (1 - 3\varepsilon)x + \frac{(1 - 3\varepsilon)(1 - 10\varepsilon)}{6}x^2 + o(x^2)\right]$$

$$= \frac{\varepsilon(1 - 3\varepsilon)}{3}x^2 + o(x^2).$$
(2.3)

Equations (2.2) and (2.3) imply that for any $0 < \varepsilon < 1/3$ there exists $0 < \delta = \delta(\varepsilon) < 1$, such that $M_{-1/3+\varepsilon}((1+x)^2,1) > (2/3)G((1+x)^2,1) + (1/3)H((1+x)^2,1)$ for $x \in (0,\delta)$.

Remark 2.2. For any $\varepsilon > 0$, one has

$$\lim_{t\to+\infty}\left[\frac{2}{3}G(1,t)+\frac{1}{3}H(1,t)-M_{-\varepsilon}(1,t)\right]=\lim_{t\to+\infty}\left[\frac{2}{3}\sqrt{t}+\frac{2t}{3(1+t)}-\left(\frac{2t^{\varepsilon}}{1+t^{\varepsilon}}\right)^{1/\varepsilon}\right]=+\infty. \tag{2.4}$$

Therefore, $M_0(a,b) = G(a,b)$ is the best possible upper power mean bound for the sum (2/3)G(a,b) + (1/3)H(a,b).

Theorem 2.3. $(1/3)G(a,b) + (2/3)H(a,b) \ge M_{-2/3}(a,b)$ for all a,b > 0, equality holds if and only if a = b, and $M_{-2/3}(a,b)$ is the best possible lower power mean bound for the sum (1/3)G(a,b) + (2/3)H(a,b).

Proof. If a = b, then we clearly see that $(1/3)G(a,b) + (2/3)H(a,b) = M_{-2/3}(a,b) = a$. If $a \neq b$ and $a/b = t^6$, then elementary calculation yields

$$\left[\frac{1}{3}G(a,b) + \frac{2}{3}H(a,b)\right]^{2} - \left[M_{-2/3}(a,b)\right]^{2} \\
= b^{2}\left[\left(\frac{t^{3}}{3} + \frac{4t^{6}}{3(1+t^{6})}\right)^{2} - \left(\frac{2t^{4}}{1+t^{4}}\right)^{3}\right] \\
= \frac{b^{2}t^{6}}{9(1+t^{6})^{2}(1+t^{4})^{3}}\left[\left(t^{4}+1\right)^{3}\left(t^{6}+4t^{3}+1\right)^{2} - 72t^{6}\left(t^{6}+1\right)^{2}\right] \\
= \frac{b^{2}t^{6}}{9(1+t^{6})^{2}(1+t^{4})^{3}}\left[\left(t^{24}+8t^{21}+3t^{20}+18t^{18}+24t^{17}+3t^{16}+8t^{15}+54t^{14}+24t^{13}+24t^{13}+24t^{11}+54t^{10}+8t^{9}+3t^{8}+24t^{7}+18t^{6}+3t^{4}+8t^{3}+1\right) \\
-\left(72t^{18}+144t^{12}+72t^{6}\right)\right] \\
= \frac{b^{2}t^{6}}{9(1+t^{6})^{2}(1+t^{4})^{3}}\left(t^{24}+8t^{21}+3t^{20}-54t^{18}+24t^{17}+3t^{16}+8t^{15}+54t^{14}+24t^{13}-142t^{12}+24t^{11}+54t^{10}+8t^{9}+3t^{8}+24t^{7}-54t^{6}+3t^{4}+8t^{3}+1\right) \\
= \frac{b^{2}t^{6}(t-1)^{4}}{9(1+t^{6})^{2}(1+t^{4})^{3}}\left(t^{20}+4t^{19}+10t^{18}+28t^{17}+70t^{16}+148t^{15}+220t^{14}+268t^{13}+277t^{12}+240t^{11}+240t^{10}+240t^{9}+277t^{8}+268t^{7}+220t^{6}+148t^{5}+70t^{4}+28t^{3}+10t^{2}+4t+1\right) > 0. \tag{2.5}$$

Next, we prove that $M_{-2/3}(a,b)$ is the best possible lower power mean bound for the sum (1/3)G(a,b) + (2/3)H(a,b).

For any $0 < \varepsilon < 2/3$ and 0 < x < 1, one has

$$\left[M_{-2/3+\varepsilon} (1, (1+x)^2) \right]^{2/3-\varepsilon} - \left[\frac{1}{3} G(1, (1+x)^2) + \frac{2}{3} H(1, (1+x)^2) \right]^{2/3-\varepsilon}
= \frac{2(1+x)^{(4-6\varepsilon)/3}}{1+(1+x)^{(4-6\varepsilon)/3}} - \frac{(1+2x+(7/6)x^2+(1/6)x^3)^{(2-3\varepsilon)/3}}{(1+x+(1/2)x^2)^{(2-3\varepsilon)/3}}
= \frac{f(x)}{\left[1+(1+x)^{(4-6\varepsilon)/3} \right] (1+x+(1/2)x^2)^{(2-3\varepsilon)/3}},$$
(2.6)

where $f(x) = 2(1+x)^{(4-6\varepsilon)/3}(1+x+x^2/2)^{(2-3\varepsilon)/3} - (1+2x+(7/6)x^2+(1/6)x^3)^{(2-3\varepsilon)/3}[1+(1+x)^{(4-6\varepsilon)/3}].$

Let $x \to 0$, then the Taylor expansion leads to

$$f(x) = 2\left[1 + \frac{4 - 6\varepsilon}{3}x + \frac{(2 - 3\varepsilon)(1 - 6\varepsilon)}{9}x^{2} + o(x^{2})\right]$$

$$\times \left[1 + \frac{2 - 3\varepsilon}{3}x + \frac{(2 - 3\varepsilon)^{2}}{18}x^{2} + o(x^{2})\right]$$

$$-2\left[1 + \frac{4 - 6\varepsilon}{3}x + \frac{(2 - 3\varepsilon)(1 - 4\varepsilon)}{6}x^{2} + o(x^{2})\right]$$

$$\times \left[1 + \frac{2 - 3\varepsilon}{3}x + \frac{(2 - 3\varepsilon)(1 - 6\varepsilon)}{18}x^{2} + o(x^{2})\right]$$

$$= 2\left[1 + (2 - 3\varepsilon)x + \frac{(2 - 3\varepsilon)(4 - 9\varepsilon)}{6}x^{2} + o(x^{2})\right]$$

$$-2\left[1 + (2 - 3\varepsilon)x + \frac{(2 - 3\varepsilon)(4 - 10\varepsilon)}{6}x^{2} + o(x^{2})\right]$$

$$= \frac{\varepsilon(2 - 3\varepsilon)}{3}x^{2} + o(x^{2}).$$
(2.7)

Equations (2.6) and (2.7) imply that for any $0 < \varepsilon < 2/3$ there exists $0 < \delta = \delta(\varepsilon) < 1$, such that

$$M_{-2/3+\varepsilon}\left(1,(1+x)^2\right) > (1/3)G\left(1,(1+x)^2\right) + (2/3)H\left(1,(1+x)^2\right)$$
 (2.8)

for
$$x \in (0, \delta)$$
.

Remark 2.4. For any $\varepsilon > 0$, one has

$$\lim_{t \to +\infty} \left[\frac{1}{3} G(1,t) + \frac{2}{3} H(1,t) - M_{-\varepsilon}(1,t) \right] = \lim_{t \to +\infty} \left[\frac{1}{3} \sqrt{t} + \frac{4t}{3(1+t)} - \left(\frac{2t^{\varepsilon}}{1+t^{\varepsilon}} \right)^{1/\varepsilon} \right] = +\infty.$$
(2.9)

Therefore, $M_0(a,b) = G(a,b)$ is the best possible upper power mean bound for the sum (1/3)G(a,b) + (2/3)H(a,b).

Acknowledgments

This research is partly supported by N S Foundation of China under Grant 60850005 and the N S Foundation of Zhejiang Province under Grants Y7080185 and Y607128.

References

- [1] S. H. Wu, "Generalization and sharpness of the power means inequality and their applications," *Journal of Mathematical Analysis and Applications*, vol. 312, no. 2, pp. 637–652, 2005.
- [2] K. C. Richards, "Sharp power mean bounds for the Gaussian hypergeometric function," *Journal of Mathematical Analysis and Applications*, vol. 308, no. 1, pp. 303–313, 2005.
- [3] W. L. Wang, J. J. Wen, and H. N. Shi, "Optimal inequalities involving power means," *Acta Mathematica Sinica*, vol. 47, no. 6, pp. 1053–1062, 2004 (Chinese).
- [4] P. A. Hästö, "Optimal inequalities between Seiffert's mean and power means," *Mathematical Inequalities & Applications*, vol. 7, no. 1, pp. 47–53, 2004.
- [5] H. Alzer and S.-L. Qiu, "Inequalities for means in two variables," *Archiv der Mathematik*, vol. 80, no. 2, pp. 201–215, 2003.
- [6] H. Alzer, "A power mean inequality for the gamma function," *Monatshefte für Mathematik*, vol. 131, no. 3, pp. 179–188, 2000.
- [7] C. D. Tarnavas and D. D. Tarnavas, "An inequality for mixed power means," *Mathematical Inequalities & Applications*, vol. 2, no. 2, pp. 175–181, 1999.
- [8] J. Bukor, J. Tóth, and L. Zsilinszky, "The logarithmic mean and the power mean of positive numbers," *Octogon Mathematical Magazine*, vol. 2, no. 1, pp. 19–24, 1994.
- [9] J. E. Pečarić, "Generalization of the power means and their inequalities," *Journal of Mathematical Analysis and Applications*, vol. 161, no. 2, pp. 395–404, 1991.
- [10] J. Chen and B. Hu, "The identric mean and the power mean inequalities of Ky Fan type," *Facta Universitatis*, no. 4, pp. 15–18, 1989.
- [11] C. O. Imoru, "The power mean and the logarithmic mean," *International Journal of Mathematics and Mathematical Sciences*, vol. 5, no. 2, pp. 337–343, 1982.
- [12] T. P. Lin, "The power mean and the logarithmic mean," The American Mathematical Monthly, vol. 81, pp. 879–883, 1974.
- [13] H. Alzer and W. Janous, "Solution of problem 8*," Crux Mathematicorum, vol. 13, pp. 173-178, 1987.
- [14] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, *Means and Their Inequalities*, vol. 31 of *Mathematics and Its Applications (East European Series)*, D. Reidel, Dordrecht, The Netherlands, 1988.
- [15] Q. J. Mao, "Power mean, logarithmic mean and Heronian dual mean of two positive number," *Journal of Suzhou College of Education*, vol. 16, no. 1-2, pp. 82–85, 1999 (Chinese).