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1. Introduction

Let C be a subset of real normal linear space X. A mapping T : C → C is said to be
asymptotically nonexpansive on C if there exists a sequence {rn} in [0,∞)with limn→∞rn = 0
such that for each x, y ∈ C,

∥
∥Tnx − Tny

∥
∥ ≤ (1 + rn)

∥
∥x − y

∥
∥, ∀n ≥ 1. (1.1)

If rn ≡ 0, then T is known as a nonexpansive mapping. T is called asymptotically
nonexpansive in the intermediate sense [1] provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0. (1.2)
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From the above definitions, it follows that asymptotically nonexpansive mapping
must be asymptotically nonexpansive in the intermediate sense.

Let C be a nonempty subset of normed space X, and Let Ti : C → C be m mappings.
For a given x1 ∈ C and a fixedm ∈ N (N denotes the set of all positive integers), compute the
iterative sequences x(1)

n , . . . , x
(m)
n defined by

x
(1)
n = α

(1)
n T k

i xn + β
(1)
n xn + γ

(1)
n u

(1)
n ,

x
(2)
n = α

(2)
n T k

i x
(1)
n + β

(2)
n xn + γ

(2)
n u

(2)
n ,

x
(3)
n = α

(3)
n T k

i x
(2)
n + β

(3)
n xn + γ

(3)
n u

(3)
n ,

...

x
(m−1)
n = α

(m−1)
n T k

i x
(m−2)
n + β

(m−1)
n xn + γ

(m−1)
n u

(m−1)
n ,

xn+1 = x
(m)
n = α

(m)
n T k

i x
(m−1)
n + β

(m)
n xn + γ

(m)
n u

(m)
n , ∀n ≥ 1,

(1.3)

where n = (k − 1)m + i, {u(1)
n }, {u(2)

n }, . . . , {u(m)
n } are bounded sequences in C and {α(i)

n },
{β(i)n }, {γ (i)n }, are appropriate real sequences in [0, 1] such that α(i)

n + β
(i)
n + γ

(i)
n = 1 for each

i ∈ {1, 2, . . . , m}.
The purpose of this paper is to establish a strong convergence theorem for common

fixed points of the multistep iterative scheme with errors for asymptotically nonexpansive
mappings in the intermediate sense in a uniformly convex Banach space. The results
presented in this paper extend and improve the corresponding ones announced by Plubtieng
and Wangkeeree [2], and many others.

2. Preliminaries

Definition 2.1 (see [1]). A Banach space X is said to be a uniformly convex if the modulus of
convexity of X is

δX(ε) = inf

{

1 −
∥
∥x + y

∥
∥

2
: ‖x‖ =

∥
∥y

∥
∥ = 1,

∥
∥x − y

∥
∥ = ε

}

> 0, ∀ε ∈ (0, 2]. (2.1)

Lemma 2.2 (see [3]). Let {an}, {bn}, and {γn} be three nonnegative real sequences satisfying the
following condition:

an+1 ≤
(

1 + γn
)

an + bn, ∀n ≥ 1, (2.2)

where
∑∞

n=1γn < ∞ and
∑∞

n=1bn < ∞. Then

(1) limn→∞an exists;

(2) If lim infn→∞an = 0, then limn→∞an = 0.
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Lemma 2.3 (see [4]). Let X be a uniformly convex Banach space and 0 < α ≤ tn ≤ β < 1 for all
n ≥ 1. Suppose that {xn} and {yn} are two sequences of X such that

lim sup
n→∞

‖xn‖ ≤ a,

lim sup
n→∞

∥
∥yn

∥
∥ ≤ a,

lim
n→∞

∥
∥tnxn + (1 − tn)yn

∥
∥ = a,

(2.3)

for some a ≥ 0. Then

lim
n→∞

∥
∥xn − yn

∥
∥ = 0. (2.4)

3. Main Results

Lemma 3.1. Let X be a uniformly convex Banach space, {xn}, {yn} are two sequences of X, α, β ∈
(0, 1) and {αn} be a real sequence. If there exists n0 ∈ N such that

(i) 0 < α ≤ αn ≤ β < 1 for all n ≥ n0;

(ii) lim supn→∞‖xn‖ ≤ a;

(iii) lim supn→∞‖yn‖ ≤ a;

(iv) limn→∞‖αnxn + (1 − αn)yn‖ = a,

then limn→∞‖xn − yn‖ = 0.

Proof. The proof is clear by Lemma 2.3.

Lemma 3.2. Let X be a uniformly convex Banach space, let C be a nonempty closed bounded convex
subset of X, and let Ti : C → C be m asymptotically nonexpansive mappings in the intermediate
sense such that F =

⋂m
i=1F(Ti)/= ∅. Put

Gik = sup
x,y∈C

(∥
∥
∥T k

i x − T k
i y

∥
∥
∥ − ∥

∥x − y
∥
∥

)

∨ 0, ∀k ≥ 1, (3.1)

so that
∑∞

k=1Gik < ∞. Let {α(i)
n }, {β(i)n }, and {γ (i)n } be real sequences in [0, 1] satisfying the following

condition:

(i) α(i)
n + β

(i)
n + γ

(i)
n = 1 for all i ∈ {1, 2, . . . , m} and n ≥ 1;

(ii)
∑∞

n=1γ
(i)
n < ∞ for all i ∈ {1, 2, . . . , m}.

If {xn} is the iterative sequence defined by (1.3), then, for each p ∈ F =
⋂m

i=1F(Ti), the limit
limn→∞‖xn − p‖ exists.
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Proof. For each q ∈ F, we note that

∥
∥
∥x

(1)
n − q

∥
∥
∥ =

∥
∥
∥α

(1)
n T k

i xn + β
(1)
n xn + γ

(1)
n u

(1)
n − q

∥
∥
∥

≤ α
(1)
n

∥
∥
∥T k

i xn − q
∥
∥
∥ + β

(1)
n

∥
∥xn − q

∥
∥ + γ

(1)
n

∥
∥
∥u

(1)
n − q

∥
∥
∥

≤ α
(1)
n

∥
∥xn − q

∥
∥ + α

(1)
n Gik + β

(1)
n

∥
∥xn − q

∥
∥ + γ

(1)
n

∥
∥
∥u

(1)
n − q

∥
∥
∥

=
(

α
(1)
n + β

(1)
n

)∥
∥xn − q

∥
∥ + α

(1)
n Gik + γ

(1)
n

∥
∥
∥u

(1)
n − q

∥
∥
∥

≤ ∥
∥xn − q

∥
∥ + d

(1)
n ,

(3.2)

where d(1)
n = α

(1)
n Gik + γ

(1)
n ‖u(1)

n − q‖. Since

∞∑

n=1

Gik =
∑

i∈I

∞∑

k=1

Gik < ∞, (3.3)

we see that

∞∑

n=1

d
(1)
n < ∞. (3.4)

It follows from (3.2) that

∥
∥
∥x

(2)
n − q

∥
∥
∥ ≤ α

(2)
n

∥
∥
∥x

(1)
n − q

∥
∥
∥ + α

(2)
n Gik + β

(2)
n

∥
∥xn − q

∥
∥ + γ

(2)
n

∥
∥
∥u

(2)
n − q

∥
∥
∥

≤ α
(2)
n

(∥
∥xn − q

∥
∥ + d

(1)
n

)

+ α
(2)
n Gik + β

(2)
n

∥
∥xn − q

∥
∥ + γ

(2)
n

∥
∥
∥u

(2)
n − q

∥
∥
∥

=
(

α
(2)
n + β

(2)
n

)∥
∥xn − q

∥
∥ + α

(2)
n d

(1)
n + α

(2)
n Gik + γ

(2)
n

∥
∥
∥u

(2)
n − q

∥
∥
∥

≤ ∥
∥xn − q

∥
∥ + d

(2)
n ,

(3.5)

where d(2)
n = α

(2)
n d

(1)
n + α

(2)
n Gik + γ

(2)
n ‖u(2)

n − q‖. Since

∞∑

n=1

Gik < ∞,
∞∑

n=1

d
(1)
n < ∞, (3.6)

we see that

∞∑

n=1

d
(2)
n < ∞. (3.7)



Journal of Inequalities and Applications 5

It follows from (3.5) that

∥
∥
∥x

(3)
n − q

∥
∥
∥ ≤ α

(3)
n

∥
∥
∥x

(2)
n − q

∥
∥
∥ + α

(3)
n Gik + β

(3)
n

∥
∥xn − q

∥
∥ + γ

(3)
n

∥
∥
∥u

(3)
n − q

∥
∥
∥

≤ α
(3)
n

(∥
∥xn − q

∥
∥ + d

(1)
n

)

+ α
(3)
n Gik + β

(3)
n

∥
∥xn − q

∥
∥ + γ

(3)
n

∥
∥
∥u

(3)
n − q

∥
∥
∥

=
(

α
(3)
n + β

(3)
n

)∥
∥xn − q

∥
∥ + α

(3)
n d

(2)
n + α

(3)
n Gik + γ

(3)
n

∥
∥
∥u

(3)
n − q

∥
∥
∥

≤ ∥
∥xn − q

∥
∥ + d

(3)
n ,

(3.8)

where d(3)
n = α

(3)
n d

(2)
n + α

(3)
n Gik + γ

(3)
n ‖u(3)

n − q‖, and so

∞∑

n=1

d
(3)
n < ∞. (3.9)

By continuing the above method, there are nonnegative real sequences {d(k)
n } such that

∞∑

n=1

d
(k)
n < ∞,

∥
∥
∥x

(k)
n − q

∥
∥
∥ ≤ ∥

∥xn − q
∥
∥ + d

(k)
n , ∀k ∈ {1, 2, . . . , m}.

(3.10)

This together with Lemma 2.2 gives that limn→∞‖xn−q‖ exists. This completes the proof.

Lemma 3.3. Let X be a uniformly convex Banach space, let C be a nonempty closed bounded convex
subset of X, and let Ti : C → C be m asymptotically nonexpansive mappings in the intermediate
sense such that F =

⋂m
i=1F(Ti)/= ∅. Put

Gik = sup
x,y∈C

(∥
∥
∥T k

i x − T k
i y

∥
∥
∥ − ∥

∥x − y
∥
∥

)

∨ 0, ∀k ≥ 1, (3.11)

so that
∑∞

k=1Gik < ∞. Let the sequence {xn} be defined by (1.3) whenever {α(i)
n }, {β(i)n }, {γ (i)n } satisfy

the same assumptions as in Lemma 3.2 for each i ∈ {1, 2, . . . , m} and the additional assumption that
there exists n0 ∈ N such that 0 < α ≤ α

(m−1)
n , α

(m)
n ≤ β < 1 for all n ≥ n0. Then we have the following:

(1) limn→∞‖T k
i x

(m−1)
n − xn‖ = 0;

(2) limn→∞‖T k
i x

(m−2)
n − xn‖ = 0.

Proof. (1) Taking each q ∈ F, it follows from Lemma 3.2 that limn→∞‖xn − q‖ exists. Let

lim
n→∞

∥
∥xn − q

∥
∥ = a, (3.12)
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for some a ≥ 0. We note that

∥
∥
∥x

(m−1)
n − q

∥
∥
∥ ≤ ∥

∥xn − q
∥
∥ + d

(m−1)
n , ∀n ≥ 1, (3.13)

where {d(m−1)
n } is a nonnegative real sequence such that

∞∑

n=1

d
(m−1)
n < ∞. (3.14)

It follows that

lim sup
n→∞

∥
∥
∥x

(m−1)
n − q

∥
∥
∥ ≤ lim sup

n→∞

∥
∥xn − q

∥
∥

= lim
n→∞

∥
∥xn − q

∥
∥

= a,

(3.15)

which implies that

lim sup
n→∞

∥
∥
∥T k

i x
(m−1)
n − q

∥
∥
∥ ≤ lim sup

n→∞

(∥
∥
∥x

(m−1)
n − q

∥
∥
∥ +Gik

)

= lim
n→∞

∥
∥
∥x

(m−1)
n − q

∥
∥
∥

≤ a.

(3.16)

Next, we observe that

∥
∥
∥T k

i x
(m−1)
n − q + γ

(m)
n

(

u
(m)
n − xn

)∥
∥
∥ ≤

∥
∥
∥T k

i x
(m−1)
n − q

∥
∥
∥ + γ

(m)
n

∥
∥
∥

(

u
(m)
n − xn

)∥
∥
∥. (3.17)

Thus we have

lim sup
n→∞

∥
∥
∥T k

i x
(m−1)
n − q + γ

(m)
n

(

u
(m)
n − xn

)∥
∥
∥ ≤ a. (3.18)

Also,

∥
∥
∥xn − q + γ

(m)
n

(

u
(m)
n − xn

)∥
∥
∥ ≤ ∥

∥xn − q
∥
∥ + γ

(m)
n

∥
∥
∥u

(m)
n − xn

∥
∥
∥ (3.19)

gives that

lim sup
n→∞

∥
∥
∥xn − q + γ

(m)
n

(

u
(m)
n − xn

)∥
∥
∥ ≤ a. (3.20)
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Note that

a = lim
n→∞

∥
∥
∥x

(m)
n − q

∥
∥
∥

= lim
n→∞

∥
∥
∥α

(m)
n T k

i x
(m−1)
n + β

(m)
n xn + γ

(m)
n u

(m)
n − q

∥
∥
∥

= lim
n→∞

∥
∥
∥α

(m)
n T k

i x
(m−1)
n +

(

1 − α
(m)
n

)

xn − γ
(m)
n xn

+γ (m)
n u

(m)
n −

(

1 − α
(m)
n

)

q − α
(m)
n q

∥
∥
∥

= lim
n→∞

∥
∥
∥α

(m)
n T k

i x
(m−1)
n − α

(m)
n q + α

(m)
n γ

(m)
n u

(m)
n − α

(m)
n γ

(m)
n xn

+
(

1 − α
(m)
n

)

q − γ
(m)
n xn + γ

(m)
n u

(m)
n − α

(m)
n γ

(m)
n u

(m)
n + α

(m)
n γ

(m)
n xn

∥
∥
∥

= lim
n→∞

∥
∥
∥α

(m)
n

(

T k
i x

(m−1)
n − q + γ

(m)
n

(

u
(m)
n − xn

))

+
(

1 − α
(m)
n

)(

xn − q + γ
(m)
n

(

u
(m)
n − xn

))∥
∥
∥.

(3.21)

This together with (3.18), (3.20), and Lemma 3.1, gives

lim
n→∞

∥
∥
∥T k

i x
(m−1)
n − xn

∥
∥
∥ = 0. (3.22)

This completes the proof of (1).
(2) For each n ≥ 1,

∥
∥xn − q

∥
∥ =

∥
∥
∥xn − T k

i x
(m−1)
n

∥
∥
∥ +

∥
∥
∥T k

i x
(m−1)
n − q

∥
∥
∥

≤
∥
∥
∥xn − T k

i x
(m−1)
n

∥
∥
∥ +

∥
∥
∥x

(m−1)
n − q

∥
∥
∥ +Gik.

(3.23)

Since

lim
n→∞

∥
∥
∥xn − T k

i x
(m−1)
n

∥
∥
∥ = 0 = lim

n→∞
Gik, (3.24)

we obtain

a = lim
n→∞

∥
∥xn − q

∥
∥ ≤ lim inf

n→∞

∥
∥
∥x

(m−1)
n − q

∥
∥
∥. (3.25)
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It follows that

a ≤ lim inf
n→∞

∥
∥
∥x

(m−1)
n − q

∥
∥
∥

≤ lim sup
n→∞

∥
∥
∥x

(m−1)
n − q

∥
∥
∥

≤ a,

(3.26)

which implies that

lim
n→∞

∥
∥
∥x

(m−1)
n − q

∥
∥
∥ = a. (3.27)

On the other hand, we note that

∥
∥
∥x

(m−2)
n − q

∥
∥
∥ ≤ ∥

∥xn − q
∥
∥ + d

(m−2)
n , ∀n ≥ 1, (3.28)

where {d(m−2)
n } is a nonnegative real sequence such that

∞∑

n=1

d
(m−2)
n < ∞. (3.29)

Thus we have

lim sup
n→∞

∥
∥
∥x

(m−2)
n − q

∥
∥
∥ ≤ lim sup

n→∞

∥
∥xn − q

∥
∥

= a,

(3.30)

and hence

lim sup
n→∞

∥
∥
∥T k

i x
(m−2)
n − q

∥
∥
∥ ≤ lim sup

n→∞

(∥
∥
∥x

(m−2)
n − q

∥
∥
∥ +Gik

)

≤ a.

(3.31)

Next, we observe that

∥
∥
∥T k

i x
(m−2)
n − q + γ

(m−1)
n

(

u
(m−1)
n − xn

)∥
∥
∥ ≤

∥
∥
∥T k

i x
(m−2)
n − q

∥
∥
∥ + γ

(m−1)
n

∥
∥
∥u

(m−1)
n − xn

∥
∥
∥. (3.32)

Thus we have

lim sup
n→∞

∥
∥
∥T k

i x
(m−2)
n − q + γ

(m−1)
n

(

u
(m−1)
n − xn

)∥
∥
∥ ≤ a. (3.33)
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Also,

∥
∥
∥xn − q + γ

(m−1)
n

(

u
(m−1)
n − xn

)∥
∥
∥ ≤ ∥

∥xn − q
∥
∥ + γ

(m−1)
n

∥
∥
∥u

(m−1)
n − xn

∥
∥
∥ (3.34)

gives that

lim sup
n→∞

∥
∥
∥xn − q + γ

(m−1)
n

(

u
(m−1)
n − xn

)∥
∥
∥ ≤ a. (3.35)

Note that

a = lim
n→∞

∥
∥
∥x

(m−1)
n − q

∥
∥
∥

= lim
n→∞

∥
∥
∥α

(m−1)
n T k

i xn + β
(m−1)
n xn + γ

(m−1)
n u

(m−1)
n − q

∥
∥
∥

= lim
n→∞

∥
∥
∥α

(m−1)
n

(

T k
i x

(m−2)
n − q + γ

(m−1)
n

(

u
(m−1)
n − xn

))

+
(

1 − α
(m−1)
n

)(

xn − q + γ
(m−1)
n

(

u
(m−1)
n − xn

))∥
∥
∥.

(3.36)

Therefore, it follows from (3.33), (3.35), and Lemma 3.1 that

lim
n→∞

∥
∥
∥T k

i x
(m−2)
n − xn

∥
∥
∥ = 0. (3.37)

This completes the proof.

Theorem 3.4. Let X be a uniformly convex Banach space and let C be a nonempty closed bounded
convex subset of X. Let Ti : C → C be m asymptotically nonexpansive mappings in the intermediate
sense such that F =

⋂m
i=1F(Ti)/= ∅ and there exists one member T in {Ti}mi=1which is completely

continuous. Put

Gik = sup
x,y∈C

(∥
∥
∥T k

i x − T k
i y

∥
∥
∥ − ∥

∥x − y
∥
∥

)

∨ 0, ∀k ≥ 1, (3.38)

so that
∑∞

k=1Gik < ∞. Let the sequence {xn} be defined by (1.3) whenever {α(i)
n }, {β(i)n }, {γ (i)n } satisfy

the same assumptions as in Lemma 3.2 for each i ∈ {1, 2, . . . , m} and the additional assumption that
there exists n0 ∈ N such that 0 < α ≤ α

(m−1)
n , α

(m)
n ≤ β < 1 for all n ≥ n0. Then {x(k)

n } converges
strongly to a common fixed point of the mappings {Ti}mi=1.

Proof. From Lemma 3.3, it follows that

lim
n→∞

∥
∥
∥T k

i x
(m−1)
n − xn

∥
∥
∥ = 0 = lim

n→∞

∥
∥
∥T k

i x
(m−2)
n − xn

∥
∥
∥, (3.39)
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which implies that

‖xn+1 − xn‖ =
∥
∥
∥x

(m)
n − xn

∥
∥
∥

≤ α
(m)
n

∥
∥
∥T k

i x
(m−1)
n − xn

∥
∥
∥ + γ

(m−1)
n

∥
∥
∥u

(m−1)
n − xn

∥
∥
∥ −→ 0, (n −→ ∞),

(3.40)

and so

‖xn+l − xn‖ −→ 0, (n −→ ∞). (3.41)

It follows from (3.22), (3.37) that

∥
∥
∥T k

n xn − xn

∥
∥
∥ ≤

∥
∥
∥T k

i xn − T k
i x

(m−1)
n

∥
∥
∥ +

∥
∥
∥T k

i x
(m−1)
n − xn

∥
∥
∥

≤
∥
∥
∥xn − x

(m−1)
n

∥
∥
∥ +Gik +

∥
∥
∥T k

i x
(m−1)
n − xn

∥
∥
∥

≤ α
(m−1)
n

∥
∥
∥T k

i x
(m−2)
n − xn

∥
∥
∥ +Gik + γ

(m−1)
n

∥
∥
∥u

(m−1)
n − xn

∥
∥
∥

+
∥
∥
∥T k

i x
(m−1)
n − xn

∥
∥
∥ −→ 0, (n −→ ∞).

(3.42)

Let σn = ‖T k
i xn − xn‖ for all n > n0. Then we have

‖xn − Tnxn‖ ≤
∥
∥
∥xn − T k

n xn

∥
∥
∥ +

∥
∥
∥T k

n xn − Tnxn

∥
∥
∥

≤
∥
∥
∥xn − T k

i xn

∥
∥
∥ + L

∥
∥
∥T k−1

n xn − xn

∥
∥
∥

≤ σn + L
[∥
∥
∥T k−1

n xn − T k−1
n−mxn−m

∥
∥
∥ +

∥
∥
∥T k−1

n−mxn−m − xn−m
∥
∥
∥ + ‖xn−m − xn‖

]

.

(3.43)

Notice that n ≡ (n −m)(modm). Thus Tn = Tn−m and the above inequality becomes

‖xn − Tnxn‖ ≤ σn + L2‖xn − xn−m‖ + Lσn−m + ‖xn−m − xn‖, (3.44)

and so

lim
n→∞

‖xn − Tnxn‖ = 0. (3.45)

Since

‖xn − Tn+lxn‖ ≤ ‖xn − xn+l‖ + ‖xn+l − Tn+lxn+l‖ + ‖Tn+lxn+l − Tn+lxn‖
≤ (1 + L)‖xn − xn+l‖ + ‖xn+l − Tn+lxn+l‖, ∀l ∈ {1, 2, . . . , m},

(3.46)
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we have

lim
n→∞

‖xn − Tn+lxn‖ = 0, ∀l ∈ {1, 2, . . . , m}, (3.47)

and so

lim
n→∞

‖xn − Tlxn‖ = 0, ∀l ∈ {1, 2, . . . , m}. (3.48)

Since {xn} is bounded and one of Ti is completely continuous, we may assume that T1 is
completely continuous, without loss of generality. Then there exists a subsequence {T1xnk} of
{T1xn} such that T1xnk → q ∈ C as k → ∞. Moreover, by (3.48), we have

lim
n→∞

‖xnk − T1xnk‖ = 0, (3.49)

which implies that xnk → q as k → ∞. By (3.48) again, we have

∥
∥q − Tlq

∥
∥ = lim

n→∞
‖xnk − Tlxnk‖ = 0, ∀l ∈ {1, 2, . . . , m}. (3.50)

It follows that q ∈ F. Since limn→∞‖xn − q‖ exists, we have

lim
n→∞

∥
∥xn − q

∥
∥ = 0, (3.51)

that is,

lim
n→∞

x
(m)
n = lim

n→∞
xn = q. (3.52)

Moreover, we observe that

∥
∥
∥x

(k)
n − q

∥
∥
∥ ≤ ∥

∥xn − q
∥
∥ + d

(k)
n , (3.53)

for all k = 1, 2, . . . , m − 1 and

lim
n→∞

d
(k)
n = 0. (3.54)

Therefore,

lim
n→∞

x
(k)
n = q, (3.55)

for all k = 1, 2, . . . , m − 1. This completes the proof.
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Remark 3.5. Theorem 3.4 improves and extends the corresponding results of Plubtieng and
Wangkeeree [2] in the following ways.

(1) The iterative process {xn} defined by (1.3) in [2] is replaced by the new iterative
process {xn} defined by (1.3) in this paper.

(2) Theorem 3.4 generalizes Theorem 3.4 of Plubtieng and Wangkeeree [2] from
a asymptotically nonexpansive mappings in the intermediate sense to a finite family of
asymptotically nonexpansive mappings in the intermediate sense.

Remark 3.6. If m = 3 and T1 = T2 = T3 = T in Theorem 3.4, we obtain strong convergence
theorem for Noor iteration scheme with error for asymptotically nonexpansive mapping T in
the intermediate sense in Banach space, we omit it here.
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