Research Article

Bounds of Eigenvalues of $K_{3,3}$-Minor Free Graphs

Kun-Fu Fang
Faculty of Science, Huzhou Teachers College, Huzhou 313000, China
Correspondence should be addressed to Kun-Fu Fang, kffang@hutc.zj.cn

Received 17 February 2009; Accepted 11 May 2009
Recommended by Wing-Sum Cheung
The spectral radius $\rho(G)$ of a graph G is the largest eigenvalue of its adjacency matrix. Let $\lambda(G)$ be the smallest eigenvalue of G. In this paper, we have described the $K_{3,3}$-minor free graphs and showed that (A) let G be a simple graph with order $n \geq 7$. If G has no $K_{3,3}$-minor, then $\rho(G) \leq 1+\sqrt{3 n-8}$. (B) Let G be a simple connected graph with order $n \geq 3$. If G has no $K_{3,3}$-minor, then $\lambda(G) \geq-\sqrt{2 n-4}$, where equality holds if and only if G is isomorphic to $K_{2, n-2}$.

Copyright © 2009 Kun-Fu Fang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, all graphs are finite undirected graphs without loops and multiple edges. Let G be a graph with $n=n(G)$ vertices, $m=m(G)$ edges, and minimum degree δ or $\delta(G)$. The spectral radius $\rho(G)$ of G is the largest eigenvalue of its adjacency matrix. Let $\lambda(G)$ be the smallest eigenvalue of G. The join $G \nabla H$ is the graph obtained from $G \cup H$ by joining each vertex of G to each vertex of H. A graph H is said to be a minor of G if H can be obtained from G by deleting edges, contracting edges, and deleting isolated vertices. A graph G is H-minor free if G has no H-minor.

Brualdi and Hoffman [1] showed that the spectral radius satisfies $\rho(G) \leq k-1$, where $m=k(k-1) / 2$, with equality if and only if G is isomorphic to the disjoint union of the complete graph K_{k} and isolated vertices. Stanley [2] improved the above result. Hong et al. [3] showed that if G is a simple connected graph then $\rho \leq\left(\delta-1+\sqrt{(\delta+1)^{2}+4(2 m-n \delta)}\right) / 2$ with equality if and only if G is either a regular graph or a bidegreed graph in which each vertex is of degree either δ or $n-1$. Hong [4] showed that if G is a K_{5}-minor free graph then (1) $\rho(G) \leq 1+\sqrt{3 n-8}$, where equality holds if and only if G is isomorphic to $K_{3} \nabla(n-3) K_{1}$; (2) $\lambda(G) \geq-\sqrt{3 n-9}$, where equality holds if and only if G is isomorphic to $K_{3, n-3}(n \geq 5)$.

In this paper, we have described the $K_{3,3}$-minor free graphs and obtained that
(a) let G be a simple graph with order $n \geq 7$. If G has no $K_{3,3}$-minor, then $\rho(G) \leq$ $1+\sqrt{3 n-8} ;$
(b) let G be a simple connected graph with order $n \geq 3$. If G has no $K_{3,3}$-minor, then $\lambda(G) \geq-\sqrt{2 n-4}$, where equality holds if and only if G is isomorphic to $K_{2, n-2}$.

2. $K_{3,3}$-Minor Free Graphs

The intersection $G \cap H$ of G and H is the graph with vertex set $V(G) \cap V(H)$ and edge set $E(G) \cap E(H)$. Suppose G is a connected graph and S be a minimal separating vertex set of G. Then we can write $G=G_{1} \cup G_{2}$, where G_{1} and G_{2} are connected and $G_{1} \cap G_{2}=G(S)$. Now suppose further that $G(S)$ is a complete graph. We say that G is a k-sum of G_{1} and G_{2}, denoted by $G \equiv G_{1} \oplus G_{2}$, if $|S|=k$. In particular, let $G_{1} \oplus_{2} G_{2}$ denote a 2 -sum of G_{1} and G_{2}. Moreover, if G_{1} or G_{2} (say G_{1}) has a separating vertex set which induces a complete graph, then we can write $G_{1}=G_{3} \cup G_{4}$ such that G_{3} and G_{4} are connected and $G_{3} \cap G_{4}$ is a complete subgraph of G. We proceed like this until none of the resulting subgraphs $G_{1}, G_{2}, \cdots, G_{t}$ has a complete separating subgraph. The graphs $G_{1}, G_{2}, \cdots, G_{t}$ are called the simplical summands of G. It is easy to show that the subgraphs $G_{1}, G_{2}, \cdots, G_{t}$ are independent of the order in which the decomposition is carried out (see [5]).

Theorem 2.1 (see [6], D. W. Hall; K. Wagner). A graph has no $K_{3,3}$-minor if and only if it can be obtained by $0-, 1$-, 2-summing starting from planar graphs and K_{5}.

A graph G is said to be a edge-maximal H-minor free graph if G has no H-minor and G^{\prime} has at least an H-minor, where G^{\prime} is obtained from G by joining any two nonadjacent vertices of G. A graph G is called a maximal planar graph if the planarity will be not held by joining any two nonadjacent vertices of G.

Corollary 2.2. If G is an edge maximal $K_{3,3}$-minor free graph then it can be obtained by 2 -summing starting from K_{5} and edge maximal planar graphs.

Proof. This follows from Theorem 2.1.
Lemma 2.3. If G_{1} and G_{2} are two maximal planar graphs with order $n_{1} \geq 3$ and $n_{2} \geq 3$, respectively, then $G_{1} \oplus_{2} G_{2}$ is not a maximal planar graph.

Proof. We denote a planar embedding of G_{i} by G_{i} still. Since G_{i} is a maximal planar graph, every face boundary in G_{i} is a 3-cycle. Hence the outside face boundary in $G_{1} \oplus_{2} G_{2}$ is a 4-cycle, this implies that the graph $G_{1} \oplus_{2} G_{2}$ is not maximal planar.

Further, we have the following results.
Theorem 2.4. If G is an edge-maximal $K_{3,3}$-minor free graph with $n \geq 3$ vertices then $G \cong$ $G_{0} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$, where $t=\left(n-n_{0}\right) / 3, G_{0}$ is a maximal planar graph with order $2 \leq n_{0} \leq n$. In particular,
(1) when $n_{0}=2, G \cong \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$, where $t=(n-2) / 3$;
(2) when $n_{0}=3, G \cong K_{3} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$, where $t=(n-3) / 3$;
(3) when $n_{0}=4, \quad G \cong K_{4} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$, where $t=(n-4) / 3$;
(4) when $n_{0}=n, \quad G \cong G_{0}$ is a maximal planar graph.

Proof. Suppose that the graphs $G_{1}, G_{2}, \cdots, G_{t}(t \geq 1)$ are the simplical summands of G, namely $G \cong G_{1} \oplus_{2} G_{2} \oplus_{2} \cdots \oplus_{2} G_{t}$. By Corollary 2.2, G_{i} is either a maximal planar graph or a K_{5}. By Lemma 2.3, there is at most a maximal planar graph in $G_{i}, 1 \leq i \leq t$. Hence we have $G \cong$ $G_{0} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$, where $t=\left(n-n_{0}\right) / 3, G_{0}$ is a maximal planar graph with order $2 \leq n_{0} \leq n$.

Lemma 2.5 (see [7]). Let G be a simple planar bipartite graph with $n \geq 3$ vertices and m edges. Then $m \leq 2 n-4$.

Theorem 2.6. Let G be a simple connected bipartite graph with $n \geq 3$ vertices and m edges. If G has no $K_{3,3}$-minor, then $m \leq 2 n-4$.

Proof. Let H be a simple connected edge-maximal $K_{3,3}$-minor free graph with $n(H)=n(G)$ vertices and $m(H)$ edges. Suppose that the graphs $H_{1}, H_{2}, \cdots, H_{t}(t \geq 1)$ are the simplical summands of H. Then H_{i} is either a maximal planar graph or the graph K_{5} by Corollary 2.2. Further, without loss generality, we may assume that G is a spanning subgraph of H. Let the graph G_{i} be the intersection of G and $H_{i}(1 \leq i \leq t)$. Then $n\left(G_{i}\right)=n\left(H_{i}\right)$ for $1 \leq i \leq t$. If $H_{i} \cong K_{5}$ then G_{i} is a subgraph of $K_{2,3}$, implies that $m\left(G_{i}\right) \leq 6=2 n\left(G_{i}\right)-4$. If H_{i} is a maximal planar graph then G_{i} is a simple planar bipartite graph, implies that $m\left(G_{i}\right) \leq 2 n\left(G_{i}\right)-4$ by Lemma 2.5. Next we prove this result by induction on t. For $t=1, m=m(G)=m\left(G_{1}\right) \leq$ $2 n\left(G_{1}\right)-4=2 n(G)-4$. Now we assume it is true for $t=k$ and prove it for $t=k+1$. Let $H^{\prime}=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$ and $G^{\prime}=G \cap H^{\prime}$. Then $m\left(G^{\prime}\right) \leq 2 n\left(G^{\prime}\right)-4$ by the induction hypothesis. $H=H^{\prime} \oplus_{2} H_{k+1}$. Hence $m(G) \leq m\left(G^{\prime}\right)+m\left(G_{k+1}\right) \leq 2\left(n\left(G^{\prime}\right)+n\left(G_{k+1}\right)-2\right)-4=2 n(G)-4$.

3. Bounds of Eigenvalues of $K_{3,3}$-Minor Free Graphs

Lemma 3.1 (see [3]). If G is a simple connected graph then $\rho \leq\left(\delta-1+\sqrt{(\delta+1)^{2}+4(2 m-n \delta)}\right) / 2$ with equality if and only if G is either a regular graph or a bidegreed graph in which each vertex is of degree either δ or $n-1$.

Lemma 3.2. Let G be a simple connected graph with n vertices and m edges. If $\delta(G) \geq k$, then $\rho \leq\left(k-1+\sqrt{(k+1)^{2}+4(2 m-k n)}\right) / 2$, where equality holds if and only if $\delta(G)=k$ and G is either a regular graph or a bidegreed graph in which each vertex is of degree either δ or $n-1$.

Proof. Because when $n-1 \leq m \leq n(n-1) / 2$ and $2 m \geq x n, f(x)=(x-1+$ $\sqrt{\left.(x+1)^{2}+4(2 m-n x)\right) / 2}$ is a decreasing function of x for $1 \leq x \leq n-1$, this follows from Lemma 3.1.

Lemma 3.3. Let G_{0} be a maximal planar graph with order n_{0}, and let G be a graph with n vertices and m edges.
(1) If $G \cong \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$ and $n \geq 5$, where $t=(n-2) / 3$, then $m=3 n-5, \delta(G)=4$.
(2) If $G \cong K_{3} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$ and $n \geq 6$, where $t=(n-3) / 3$, then $m=3 n-6, \delta(G)=2$.
(3) If $G \cong G_{0} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$ and $n \geq n_{0} \geq 4$, where $t=\left(n-n_{0}\right) / 3$, then $m=3 n-6$, $\delta(G) \geq 3$.

Proof. Applying the properties of the maximal planar graphs, this follows by calculating.
Lemma 3.4. Let G_{0} be a maximal planar graph with order n_{0}, and let G be a graph with n vertices.
(1) If $G \cong \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$ and $n \geq 5$, where $t=n-2 / 3$, then $\rho(G) \leq(3+\sqrt{8 n-15}) / 2$.
(2) If $G \cong K_{3} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$ and $n \geq 6$, where $t=n-3 / 3$, then $\rho(G)<(3+\sqrt{8 n+1}) / 2$.
(3) If $G \cong G_{0} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}$ and $n \geq n_{0} \geq 4$, where $t=n-n_{0} / 3$, then $\rho(G) \leq 1+\sqrt{3 n-8}$.

Proof. It follows that (1) and (3) are true by Lemma 3.2 and 5(1)(3). Next we prove that (2) is true too.

Let G^{*} be a graph obtained from G by expanding K_{3} (in the simplcal summands of G) to K_{5}, such that G^{*} can be obtained by 2-summing K_{5}, namely, $G^{*} \cong \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t+1}$.

This implies that $\rho\left(G^{*}\right) \leq\left(3+\sqrt{8 n^{*}-15}\right) / 2$ by (1). Also we have $n^{*}=n\left(G^{*}\right)=n(G)+$ $2=n+2$, so $\rho(G)<\rho\left(G^{*}\right) \leq(3+\sqrt{8 n+1}) / 2$.

Theorem 3.5. Let G be a simple graph with order $n \geq 7$. If G has no $K_{3,3}$-minor, then $\rho(G) \leq$ $1+\sqrt{3 n-8}$.

Proof. Since when adding an edge in G the spectral radius $\rho(G)$ is strict increasing, we consider the edge-maximal $K_{3,3}$-minor free graph only. Next we may assume that G is an edge-maximal $K_{3,3}-$ minor free graph.

By Theorem 2.4 and Lemma 3.4, when $n \geq 4, \rho(G) \leq \max \{(1+\sqrt{3 n-8}),(3+$ $(\sqrt{8 n-15}) / 2), 3+(\sqrt{8 n+1} / 2)\}$.

When $n \geq 14,1+\sqrt{3 n-8}>\max \{3+(\sqrt{8 n-15}) / 2,(3+\sqrt{8 n+1}) / 2\}$.
When $7 \leq n \leq 13$, we have $\rho(G) \leq \rho(G_{0} \oplus_{2} \underbrace{K_{5} \oplus_{2} \cdots \oplus_{2} K_{5}}_{t}) \leq 1+\sqrt{3 n-8}$ by calculating directly, where $t=\left(n-n_{0}\right) / 3, G_{0}$ is a maximal planar graph with order $2 \leq n_{0} \leq n$ (see Theorem 2.4).

Therefore when $n \geq 7, \rho(G) \leq 1+\sqrt{3 n-8}$.
Remark 3.6. In Theorem 3.5, the equality holds only if $n=8$, for the others, the upper bounds of $\rho(G)$ are not sharp. We conjecture that the best bound of $\rho(G)$ is $(3+\sqrt{8 n-15}) / 2$ still.

Lemma 3.7 (see [7]). If G is a simple connected graph with n vertices, then there exists a connected bipartite subgraph H of G such that $\lambda(G) \geq \lambda(H)$ with equality holding if and only if $G \cong H$.

Lemma 3.8 (see [7]). If G is a connected bipartite graph with n vertices and m edges, then $\lambda(G) \geq$ $-\sqrt{m}$, where equality holds if and only if G is a complete bipartite graph.

Theorem 3.9. Let G be a simple connected graph with $n \geq 3$ vertices. If G has no $K_{3,3}$ minor, then $\lambda(G) \geq-\sqrt{2 n-4}$, where equality holds if and only if G is isomorphic to $K_{2, n-2}$.

Proof. This follows from Lemmas 3.7, 3.8 and Theorem 2.6.

Acknowledgments

The author wishes to express his thanks to the referee for valuable comments which led to an improved version of the paper. Work supported by NNSF of China (no. 10671074) and NSF of Zhejian Province (no. Y7080364).

References

[1] R. A. Brualdi and A. J. Hoffman, "On the spectral radius of (0,1)-matrices," Linear Algebra and Its Applications, vol. 65, pp. 133-146, 1985.
[2] R. P. Stanley, "A bound on the spectral radius of graphs with e edges," Linear Algebra and Its Applications, vol. 87, pp. 267-269, 1987.
[3] Y. Hong, J.-L. Shu, and K. F. Fang, "A sharp upper bound of the spectral radius of graphs," Journal of Combinatorial Theory, Series B, vol. 81, no. 2, pp. 177-183, 2001.
[4] Y. Hong, "Tree-width, clique-minors, and eigenvalues," Discrete Mathematics, vol. 274, no. 1-3, pp. 281287, 2004.
[5] C. Thomassen, "Embeddings and minors," in Handbook of Combinatorics, Vol. 1, 2, R. Graham, M. Grotschel, and L. Lovasz, Eds., pp. 301-349, Elsevier, Amsterdam, The Netherlands, 1995.
[6] J. A. Bondy and U. S. R. Murty, Graph Theory, vol. 244 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2008.
[7] Y. Hong and J.-L. Shu, "Sharp lower bounds of the least eigenvalue of planar graphs," Linear Algebra and Its Applications, vol. 296, no. 1-3, pp. 227-232, 1999.

