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1. Introduction

Throughout the paper, let X, Y, and Z be real Hausdorff topological vector spaces, D ⊂ X a
nonempty subset, and 0Y denotes the zero element of Y . Let C ⊂ Y andK ⊂ Z be two pointed
convex cones (see [1]) such that intC/= ∅, intK/= ∅, where intC denotes the interior of C. Let
g : D → Z be a mapping and let F : D ×D → Y be a mapping such that F(x, x) = 0, for all
x ∈ D. For each x ∈ D, we denote F(x,D) =

⋃
y∈D F(x, y) and define the constraint set

A =
{
x ∈ D : g(x) ∈ −K}

, (1.1)

which is assumed to be nonempty.
Consider the vector equilibrium problems with constraints (for short, VEPC): finding

x ∈ A such that

F
(
x, y

)
/∈ − P, ∀y ∈ A, (VEPC)

where P ∪ {0Y} is a convex cone in Y .
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Vector equilibrium problems, which contain vector optimization problems, vector
variational inequality problems, and vector complementarity problems as special case, have
been studied by Ansari et al. [2, 3], Bianchi et al. [4], Fu [5], Gong [6], Gong and Yao [7, 8],
Hadjisavvas and Schaible [9], Kimura and Yao [10–13], Oettli [14], and Zeng et al. [15]. But
so far, most papers focused mainly on the existence of solutions and the properties of the
solutions, there are few papers which deal with the optimality conditions. Giannessi et al.
[16] turned the vector variational inequalities with constraints into another vector variational
inequalities without constraints. They gave sufficient conditions for efficient solution and
weakly efficient solution of the vector variational inequalities in finite dimensional spaces.
Morgan and Romaniello [17] gave scalarization and Kuhn-Tucker-like conditions for weak
vector generalized quasivariational inequalities in Hilbert space by using the concept of
subdifferential of the function. Gong [18] presented the necessary and sufficient conditions
for weakly efficient solution, Henig efficient solution, and superefficient solution for
the vector equilibrium problems with constraints under the condition of cone-convexity.
However, the condition of cone-convexity is too strong. Some generalized convexity has
been developed, such as cone-preinvexity (see [19]), cone-convexlikeness (see [20]), cone-
subconvexlikeness (see [21]), and generalized cone-convexlikeness (see [22]). Among them,
the generalized cone-subconvexlikeness has received more attention. Then, it is important to
give the optimality conditions for the solution of (VEPC) under conditions of generalized
convexity. Moreover, it appears that no work has been done on the Kuhn-Tucker condition of
solution for (VEPC). This paper is the effort in this direction.

In the paper, we study the optimality conditions for the vector equilibrium problems.
Firstly, we present the necessary and sufficient conditions for globally efficient solution
of (VEPC) under generalized cone-subconvexlikeness. Secondly, we prove that the Kuhn-
Tucker condition for (VEPC) is both necessary and sufficient under the condition of
cone-preinvexity. Meanwhile, we obtain the optimality conditions for vector optimization
problems with constraints and vector variational inequality problems with constraints in
Section 4.

2. Preliminaries and Definitions

Let Y ∗, Z∗ be the dual space of Y , Z, respectively, then the dual cone of C is defined as

C∗ =
{
ϕ ∈ Y ∗ : ϕ(c) ≥ 0, ∀c ∈ C}. (2.1)

The set of strictly positive functional in C∗ is denoted by C+i, that is,

C+i =
{
ϕ ∈ C∗ : ϕ(c) > 0, ∀c ∈ C \ {0Y}

}
. (2.2)

It is well known that

(i) if C+i /= ∅, then C has a base;

(ii) if Y is a Hausdorff locally convex space, then C+i /= ∅ if and only if C has a base;

(iii) if Y is a separable normed space and C is a pointed closed convex cone, then C+i is
nonempty (see [1]).
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Remark 2.1. The positive cone in many common Banach spaces possesses strictly positive
functionals. However, this is not always the case (see [23]).

Let M ⊂ Y be an arbitrary nonempty subset and cone+(M) =
⋃{λx : λ > 0, x ∈ M}.

The symbol cl(M) denotes the closure ofM, and cone(M) denotes the generated cone ofM,
that is, cone(M) =

⋃{λx : λ ≥ 0, x ∈M}. WhenM is a convex, so is cone(M).

Remark 2.2. Obviously, we have

(i) cone(M) = cone+(M)
⋃{0Y};

(ii) cl(cone(M)) = cl(cone+(M));

(iii) if P ⊂ Y satisfying for all λ > 0, λP ⊂ P , then cone+(M + P) = cone+(M) + P .

Several definitions of generalized convex mapping have been introduced in literature.

(1) Let S0 ⊂ X be a nonempty convex subset and letC ⊂ Y be a convex cone. Amapping
f : S0 → Y is called C-convex, if for all x1, x2 ∈ S0, for all λ ∈ (0, 1), we have

λf(x1) + (1 − λ)f(x2) − f(λx1 + (1 − λ)x2) ∈ C. (2.3)

(2) Let D ⊂ X be a nonempty subset and let C ⊂ Y be a convex cone.

(i) A mapping f : D → Y is called C-convexlike (see [20]), if for all x1, x2 ∈ D,
for all λ ∈ (0, 1), there exists x3 ∈ D such that

λf(x1) + (1 − λ)f(x2) − f(x3) ∈ C. (2.4)

(ii) f is said to be C-subconvexlike (see [21]), if there exists θ ∈ intC such that for
all x1, x2 ∈ D, for all λ ∈ (0, 1), for all ε > 0, there exists x3 ∈ D such that

εθ + f(x1) + (1 − λ)f(x2) − f(x3) ∈ C. (2.5)

(iii) f is said to be generalized C-subconvexlike (see [22]), if there exists θ ∈ intC
such that for all x1, x2 ∈ D, for all λ ∈ (0, 1), for all ε > 0, there exists x3 ∈ D,
ρ > 0 such that

εθ + λf(x1) + (1 − λ)f(x2) − ρf(x3) ∈ C. (2.6)

A nonempty subset S ⊂ X is called invex with respect to η, if there exists a
mapping η : S×S → X such that for any x, y ∈ S, and t ∈ [0, 1], x+tη(y, x) ∈ S.

(3) Let S ⊂ X be a invex set with respect to η. A mapping f : S → Y is said to be
C-preinvex with respect to η (see [19]), if for any x, y ∈ S, and t ∈ [0, 1], we have

(1 − t)f(x) + tf(y) − f(x + tη
(
y, x

)) ∈ C. (2.7)
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Remark 2.3. (i) From [21], we know that f is C-convexlike on D if and only if f(D) + C is a
convex set and f is C-subconvexlike on D if and only if f(D) + intC is a convex set.

(ii) If f(D)+C is a convex set, so is int(cl(f(D)+C)). By Lemma 2.5 of [24], f(D)+intC
is convex. This shows that C-convexlikeness implies C-subconvexlikeness. But in general the
converse is not true (see [21]).

(iii) It is clear that C-subconvexlikeness implies generalized C-subconvexlikeness. But
in general the converse is not true (see [22]).

Remark 2.4. For η(x, y) = x − y, the invex set is a convex set and the C-preinvex mapping is
a convex mapping. However, there are mappings which are C-preinvex but not convex (see
[25]).

Relationships among various types of convexity are as shown below:

C-convexity =⇒ C-preinvexity =⇒ C-convexlikeness =⇒ C-subconvexlikeness

=⇒ generalized C-subconvexlikeness.
(2.8)

Yang [26] proved the following Lemma in Banach space; Chen and Rong [27]
generalized the result to topological vector space.

Lemma 2.5. Assume that intC/= ∅. Then f : D → Y is generalized C-subconvexlike if and only if
cone+(f(D)) + intC is convex.

Lemma 2.6. Assume that (i)M ⊂ Y is a nonempty subset andC ⊂ Y is a convex cone with intC/= ∅.
(ii) cone+(M) + intC is convex. Then cl(cone(M + C)) is also convex.

Proof. By Lemma 2.5 and Remark 2.1(iii), we deduce that cone+(M + intC) is a convex set. It
is not difficult to prove that cone(M + intC) is a convex set.

Note that cl(cone(M + C)) = cl(cone(M + intC)) and the closure of a convex set is
convex, then cl(cone(M + C)) is a convex set. The proof is finished.

Lemma 2.7 (see [1]). If ψ ∈ K∗ \ {0Z∗}, z ∈ − intK, then 〈ψ, z〉 < 0.
Assume that intC/= ∅, a vector x ∈ A is called a weakly efficient solution of (VEPC), if x

satisfies

F
(
x, y

)
/∈ − intC, ∀y ∈ A. (2.9)

Definition 2.8 (see [6]). LetC ⊂ Y be a convex cone. Also, x ∈ A is said to be a globally efficient
solution of (VEPC), if there exists a pointed convex cone H ⊂ Y with C \ {0Y} ⊂ intH such
that

F(x,A) ∩ (−H \ {0Y}) = ∅. (2.10)

Remark 2.9. Obviously, x ∈ A is a globally efficient solution of (VEPC), then x is also a weakly
efficient solution of (VEPC). But in general the converse is not true (see [6]).
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3. Optimality Conditions

Theorem 3.1. Assume that (i) x ∈ A and there exists x0 ∈ D such that g(x0) ∈ − intK; (ii)
h(y) = (F(x, y), g(y)) is a generalized C ×K-subconvexlike onD. Then x ∈ A is a globally efficient
solution of (VEPC) if and only if there exists ϕ ∈ C+i and ψ ∈ K∗ such that

〈
ϕ, F(x, x)

〉
+
〈
ψ, g(x)

〉
= min

y∈D
{〈
ϕ, F

(
x, y

)〉
+
〈
ψ, g

(
y
)〉}

, (3.1)

〈
ψ, g(x)

〉
= 0. (3.2)

Proof. Assume that x ∈ A is a globally efficient solution of (VEPC), then there exists a pointed
convex coneH ⊂ Y with C \ {0Y} ⊂ intH such that

F(x,A) ∩ −H = {0Y}. (3.3)

SinceH is a pointed convex cone with C \ {0Y} ⊂ intH, then

(F(x,A) + C) ∩ − intH = ∅. (3.4)

Note that h(y) = (F(x, y), g(y)), for all y ∈ D and above formula, it is not difficult to prove

(h(D) + C ×K) ∩ (− intH) × (− intK) = ∅. (3.5)

Since intH and intK are two open sets and C,K are two pointed convex cones, by
(3.5), we have

cl(cone(h(D) + C ×K)) ∩ (− intH) × (− intK) = ∅. (3.6)

Moreover, since h(y) = (F(x, y), g(y)) is a generalized C × K-subconvexlike on D, by
Lemma 2.5, cone+(h(D)) + intH × intK is convex. This follows from Lemma 2.6 that
cl(cone(h(D) + C × K)) is convex. By the standard separation theorem (see [1, page 76]),
there exists (ϕ, ψ) ∈ Y ∗ × Z∗ \ {0Y ∗ , 0Z∗} such that

〈(
ϕ, ψ

)
, cl(cone(h(D) + C ×K))

〉
>
〈
ϕ,− intC

〉
+
〈
ψ,− intK

〉
. (3.7)

Since cl(cone(h(D) + C ×K)) is a cone, it follows from (3.7) that

〈(
ϕ, ψ

)
, cl(cone(h(D) + C ×K))

〉 ≥ 0. (3.8)

Note that (0Y , 0Z) ∈ C×K, thus h(D) ⊂ cl(cone(h(D)+C×K)). By (3.8), we obtain immediately

〈(
ϕ, ψ

)
, h(D)

〉 ≥ 0. (3.9)
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It implies that

〈
ϕ, F

(
x, y

)〉
+
〈
ψ, g

(
y
)〉 ≥ 0, ∀y ∈ D. (3.10)

On the other hand, by (0Y , 0Z) ∈ cl(cone(h(D) + C ×K)) and (3.7), we get

〈
ϕ,− intH

〉
+
〈
ψ,− intK

〉
< 0. (3.11)

Since for all h ∈ intH, for all λ > 0, we have λh ∈ intH, by (3.11), we get

〈ϕ, h〉 > 1
λ

〈
ψ,−k0

〉
, ∀h ∈ intH, ∀λ > 0, k0 ∈ intK. (3.12)

Letting λ → ∞, we have

〈ϕ, h〉 ≥ 0, ∀h ∈ intH. (3.13)

Firstly, we prove that

ϕ ∈ H∗ \ {0Y ∗}, ψ ∈ K∗. (3.14)

SinceH is convex and intH is nonempty, thenH ⊂ cl(H) = cl(intH). Note that ϕ ∈ Y ∗

and (3.13), and we have ϕ ∈ H∗. With similar proof of ϕ ∈ H∗, we can prove that ψ ∈ K∗.
We need to show that ϕ/= 0Y ∗ .
In fact, if ϕ = 0Y ∗ , then ψ ∈ K∗ \ {0Z∗}. By (3.10), we have

〈
ψ, g

(
y
)〉 ≥ 0, ∀y ∈ D. (3.15)

On the other hand, since ψ ∈ K∗, g(x0) ∈ − intK, by Lemma 2.7, we have 〈ψ, g(x0)〉 <
0, which is a contradiction with (3.15).

Secondly, we show that ϕ ∈ C+i.
For any c ∈ C \ {0Y}, since C \ {0Y} ⊂ intH, then there exists a balanced neighborhood

U of zero element such that

c +U ⊂ H. (3.16)

Note that ϕ/= 0Y ∗ , and there exists −u ∈ U such that 〈ϕ, u〉 > 0.
Since ϕ ∈ H∗, then

〈ϕ, c〉 ≥ 〈ϕ, u〉 > 0. (3.17)

By the arbitrariness of c ∈ C \ {0Y}, we have ϕ ∈ C+i.
Lastly, we show that (3.1) and (3.2) hold.
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Taking y = x in (3.10), we get

〈
ψ, g(x)

〉 ≥ 0. (3.18)

Moreover, since x ∈ A = {x ∈ D : g(x) ∈ −K}, ψ ∈ K∗, then

〈
ψ, g(x)

〉 ≤ 0. (3.19)

Thus (3.2) holds.
Since F(x, x) = 0 and 〈ψ, g(x)〉 = 0, by (3.10), we have

〈
ϕ, F(x, x)

〉
+
〈
ψ, g(x)

〉
= min

y∈D
{〈
ϕ, F

(
x, y

)〉
+
〈
ψ, g

(
y
)〉}

. (3.20)

Then (3.1) holds.
Conversely, if x ∈ A is not a globally efficient solution of (VEPC), then for any pointed

convex coneH ⊂ Y with C \ {0Y} ⊂ intH, we have

F(x,A) ∩ (−H \ {0Y})/= ∅. (3.21)

By ϕ ∈ C+i, let

H0 =
{
y ∈ Y :

〈
ϕ, y

〉
> 0

} ∪ {0Y}. (3.22)

Obviously, H0 is a pointed convex cone and C \ {0Y} ⊂ intH0. By (3.21), then there exists
y0 ∈ A such that

F
(
x, y0

) ∈ F(x,A) ∩ (−H \ {0Y}). (3.23)

By the definition ofH0, we get

〈
ϕ, F

(
x, y0

)〉
< 0. (3.24)

Moreover, since y0 ∈ A = {x ∈ D : g(x) ∈ −K} and ψ ∈ K∗, then

〈
ψ, g

(
y0
)〉 ≤ 0. (3.25)

This together with (3.24) implies that

〈
ϕ, F

(
x, y0

)〉
+
〈
ψ, g

(
y0
)〉
< 0. (3.26)
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On the other hand, since F(x, x) = 0, by (3.1) and (3.2), we get

0 =
〈
ϕ, F(x, x)

〉
+
〈
ψ, g(x)

〉

= min
y∈D

{〈
ϕ, F

(
x, y

)〉
+
〈
ψ, g

(
y
)〉}

≤ 〈
ϕ, F

(
x, y0

)〉
+
〈
ψ, g

(
y0
)〉
,

(3.27)

which contradicts (3.26). The proof is finished.

Corollary 3.2. Assume that (i) D ⊂ X is invex with respect to η; (ii) x ∈ A and there exists x0 ∈ D
such that g(x0) ∈ − intK; (iii) F(x, ·) is C-preinvex on D with respect to η, and g : D → Y is
K-preinvex on D with respect to η. Then x ∈ A is a globally efficient solution of (VEPC) if and only
if there exist ϕ ∈ C+i and ψ ∈ K∗ such that (3.1) and (3.2) hold.

Proof. Since F(x, ·) is C-preinvex on D with respect to η, g : D → Y is K-preinvex on D with
respect to η. Then h(y) = (F(x, y), g(y)) is C × K-preinvex on D with respect to η. Thus by
Theorem 3.1, the conclusion of Corollary 3.2 holds.

Remark 3.3. Corollary 3.2 generalizes and improves the recent results of Gong (see [18,
Theorem 3.3]). Especially, Corollary 3.2 generalizes and improves in the following several
aspects.

(1) The condition that the subset D is convex is extended to invex.

(2) F(x, y) is C-convex in y is extended to C-preinvex in y.

(3) g(y) is K-convex is extended to K-preinvex.

Next, we introduce Gateaux derivative of mapping.
Let x ∈ X and let f : X → Y be a mapping. f is called Gateaux differentiable at x if

for any x ∈ X, there exists limit

f ′
x(x) = lim

t→ 0

f(x + tx) − f(x)
t

. (3.28)

Mapping f ′
x
: x → f ′

x
(x) is called Gateaux derivative of f at x.

The following theorem shows that the Kuhn-Tucker condition for (VEPC) is both
necessary and sufficient.

Theorem 3.4. Assume that (i) C ⊂ Y ,K ⊂ Z are closed,D ⊂ X is invex with respect to η; (ii) x ∈ A
and there exists x0 ∈ D such that g(x0) ∈ − intK; (iii) F(x, ·) is C-preinvex on D with respect to
η and Gateaux differentiable at x, and g : D → Y is Gateaux differentiable at x and K-preinvex on
D with respect to η; . Then x ∈ A is a globally efficient solution of (VEPC) if and only if there exists
ϕ ∈ C+i and ψ ∈ K∗ such that

〈
ϕ, F ′

x

(
x, η

(
y, x

))〉
+
〈
ψ, g ′

x

(
η
(
y, x

))〉 ≥ 0, ∀y ∈ D, (3.29)

〈ψ, g(x)〉 = 0. (3.30)
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Proof. Assume that x ∈ A is a globally efficient solution of (VEPC), by Corollary 3.2, there
exists ϕ ∈ C+i and ψ ∈ K∗ such that

〈
ψ, g(x)

〉
= 0, (3.31)

〈
ϕ, F

(
x, y

) − F(x, x)〉 + 〈
ψ, g

(
y
) − g(x)〉 ≥ 0, ∀y ∈ D. (3.32)

Since D is invex with respect to η, then for any y ∈ D,

x + tη
(
y, x

) ∈ D, ∀t ∈ (0, 1). (3.33)

By (3.32), for any t ∈ (0, 1), we have

〈

ϕ,
F
(
x, x + tη

(
y, x

)) − F(x, x)
t

〉

+

〈

ψ,
g
(
x + tη

(
y, x

)) − g(x)
t

〉

≥ 0, ∀y ∈ D. (3.34)

Since F(x, ·) is Gateaux differentiable at x, and g : D → Y is Gateaux differentiable at x,
letting t → 0 in (3.34), we have

〈
ϕ, F ′

x

(
x, η

(
y, x

))〉
+
〈
ψ, g ′

x

(
η
(
y, x

))〉 ≥ 0, ∀y ∈ D. (3.35)

Conversely, if x is not a globally efficient solution of (VEPC), a similar proof of (3.24)
in Theorem 3.1, there exists x1 ∈ A such that

〈
ϕ, F(x, x1)

〉
< 0. (3.36)

Since F(x, x) = 0, thus we have

〈
ϕ, F(x, x1) − F(x, x)

〉
< 0. (3.37)

Moreover, since F(x, ·) is C-preinvex onD with respect to η, then for any λ ∈ (0, 1), x, x1 ∈ D,
we have

λF(x, x1) + (1 − λ)F(x, x) − F(x, x + λη(x1, x)
) ∈ C. (3.38)

This together with C being cone yields that

F(x, x1) − F(x, x) −
F
(
x, x + λη(x1, x)

) − F(x, x)
λ

∈ C. (3.39)

Since C is closed, taking λ → 0 in the above formula, we have

F(x, x1) − F(x, x) − F ′
x

(
x, η(x1, x)

) ∈ C. (3.40)
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Note that ϕ ∈ C∗, then we have

〈
ϕ, F(x, x1) − F(x, x)

〉 ≥ 〈
ϕ, F ′

x

(
x, η(x1, x)

)〉
. (3.41)

This together with (3.37) yields that

〈
ϕ, F ′

x

(
x, η(x1, x)

)〉
< 0. (3.42)

Moreover, since x1 ∈ A, ψ ∈ K∗ and 〈ψ, g(x)〉 = 0, then we have

〈
ψ, g(x1) − g(x)

〉 ≤ 0. (3.43)

With similar proof of (3.41), we get

〈
ψ, g ′

x

(
η(x1, x)

)〉 ≤ 〈
ψ, g(x1) − g(x)

〉 ≤ 0. (3.44)

This together with (3.42) implies that

〈
ϕ, F ′

x

(
x, η(x1, x)

)〉
+
〈
ψ, g ′

x

(
η(x1, x)

)〉
< 0, (3.45)

which contradicts (3.29). The proof is finished.

4. Application

As interesting applications of the results of Section 3, we obtain the optimality conditions for
vector optimization problems and vector variational inequality problems.

Let L(X,Y ) be the space of all bounded linear mapping from X to Y . We denote by
〈h, x〉 the value of h ∈ L(X,Y ) at x.

Equation (VEPC) includes as a special case a vector variational inequality with
constraints (for short, (VVIC)) involving

F
(
x, y

)
=
〈
Tx, y − x〉, (4.1)

where T is a mapping from D to L(X,Y ).

Definition 4.1 (see [18]). If F(x, y) = 〈Tx, y − x〉, x, y ∈ A, and if x ∈ A is a globally efficient
solution of (VEPC), then x ∈ A is called a globally efficient solution of (VVIC).

Theorem 4.2. Assume that (i) C ⊂ Y , K ⊂ Z are closed, D ⊂ X is a nonempty convex subset; (ii)
x ∈ A and there exists x0 ∈ D such that g(x0) ∈ − intK; (iii) g : D → Y is Gateaux differentiable
at x and K-convex on D. Then x ∈ A is a globally efficient solution of (VVIC) if and only if there
exists ϕ ∈ C+i and ψ ∈ K∗ such that

〈
ϕ,

〈
T x, y − x〉〉 + 〈

ψ, g ′
x

(
y − x)〉 ≥ 0, ∀y ∈ D,

〈
ψ, g(x)

〉
= 0.

(4.2)
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Proof. Let

F
(
x, y

)
= 〈Tx, y − x〉, x, y ∈ D,

η
(
y, x

)
= y − x, x, y ∈ D,

(4.3)

then D is invex with respect to η, F(x, ·) is Gateaux differentiable at x and C-preinvex with
respect to η, and g : D → Y is Gateaux differentiable at x and K-preinvex on D with
respect to η. Thus the conditions of Theorem 3.4 are satisfied. Note that 〈ϕ, F ′

x
(x, η(y, x))〉 =

〈ϕ, 〈T x, y − x〉〉, by Theorem 3.4, then the conclusion of Theorem 4.2 holds.

Another special case of (VEPC) is the vector optimization problem with constraints
(for short, VOP):

min f(x)

subject to x ∈ A
(VOP)

involving

F
(
x, y

)
= f

(
y
) − f(x), x, y ∈ D, (4.4)

where f : D → Y is a mapping.

Definition 4.3 (see [18]). If F(x, y) = f(y) − f(x), x, y ∈ A, and if x ∈ A is a globally efficient
solution of (VEPC), then x ∈ A is called a globally efficient solution of (VOP).

Theorem 4.4. Assume that (i) C ⊂ Y ,K ⊂ Z are closed,D ⊂ X is invex with respect to η; (ii) x ∈ A
and there exists x0 ∈ D such that g(x0) ∈ − intK; (iii) f : D → Y is Gateaux differentiable at x and
C-preinvex on D with respect to η, and g : D → Y is Gateaux differentiable at x and K-preinvex on
D with respect to η. Then x ∈ A is a globally efficient solution of (VOP) if and only if there exists
ϕ ∈ C+i and ψ ∈ K∗ such that

〈ϕ, f ′
x

(
η
(
y, x

)〉
+
〈
ψ, g ′

x

(
η
(
y, x

))〉 ≥ 0, ∀y ∈ D,
〈
ψ, g(x)

〉
= 0.

(4.5)

Proof. Let

F
(
x, y

)
= f

(
y
) − f(x), x, y ∈ D, (4.6)

then F(x, ·) is Gateaux differentiable at x and C-preinvex with respect to η, and g : D → Y
is Gateaux differentiable at x and K-preinvex on D with respect to η. Thus the conditions
of Theorem 3.4 are satisfied. Note that 〈ϕ, F ′

x
(x, η(y, x))〉 = 〈ϕ, f ′

x
(η(y, x))〉, by Theorem 3.4,

then the conclusion of Theorem 4.4 holds.

By Theorem 3.1, we have the following result.
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Theorem 4.5. Assume that (i) x ∈ A and there exists x0 ∈ D such that g(x0) ∈ − intK; (ii)
h(y) = (f(y) − f(x), g(y)) is generalized C × K-subconvexlike on D. Then x ∈ A is a globally
efficient solution of (VOP) if and only if there exists ϕ ∈ C+i and ψ ∈ K∗ such that

〈
ϕ, f(x)

〉
+
〈
ψ, g(x)

〉
= min

y∈D
{〈
ϕ, f

(
y
)〉

+
〈
ψ, g

(
y
)〉}

,

〈
ψ, g(x)

〉
= 0.

(4.7)
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