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1. Introduction

It is well known that many existence theorems of maximal elements for various classes
of set-valued mappings have been established in different spaces. For their applications to
mathematical economies, generalized games, and other branches of mathematics, the reader
may consult [1–12] and the references therein.

In most of the known existence results of maximal elements, the convexity
assumptions play a crucial role which strictly restrict the applicable area of these results.
In this paper, we will continue to study existence theorems of maximal elements in general
topological spaces without convexity structure. We introduce a new class of generalized
GB-majorized mappings Ai : X → 2Yi for each i ∈ I which involve a set-valued
mapping F ∈ B(Y,X). The notion of generalized GB-majorized mappings unifies and
generalizes the corresponding notions of GB-majorized mappings in [4]; LS-majorized
mappings in [2, 13]; H-majorized mappings in [14]. Some new existence theorems of
maximal elements for generalized GB-majorized mappings are proved under noncompact
setting of FC-spaces. Our results improve and generalize the corresponding results in
[2, 4, 14–16].
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2. Preliminaries

Let X and Y be two nonempty sets. We denote by 2Y and 〈X〉 the family of all subsets of
Y and the family of all nonempty finite subsets of X, respectively. For each A ∈ 〈X〉, we
denote by |A| the cardinality of A. Let Δn denote the standard n-dimensional simplex with
the vertices {e0, . . . , en}. If J is a nonempty subset of {0, 1, . . . , n}, we will denote by ΔJ the
convex hull of the vertices {ej : j ∈ J}.

Let X and Y be two sets, and let T : X → 2Y be a set-valued mapping. We will use the
following notations in the sequel:

(i) T(x) = {y ∈ Y : y ∈ T(x)},
(ii) T(A) =

⋃
x∈A T(x),

(iii) T−1(y) = {x ∈ X : y ∈ T(x)}.

For topological spaces X and Y , a subset A of X is said to be compactly open (resp.,
compactly closed) if for each nonempty compact subsetK ofX,A∩K is open (resp., closed) in
K. The compact closure ofA and the compact interior ofA (see [17]) are defined, respectively,
by

cclA =
⋂{

B ⊂ X : A ⊂ B, B is compactly closed in X
}
,

cintA =
⋃{

B ⊂ X : B ⊂ A, B is compactly open in X
}
.

(2.1)

It is easy to see that ccl(X \ A) = X \ cintA, intA ⊂ cintA ⊂ A, A ⊂ cclA ⊂ clA, A is
compactly open (resp., compactly closed) inX if and only ifA = cintA (resp.,A = cclA). For
each nonempty compact subset K of X, cclA

⋂
K = clK(A

⋂
K) and cintA

⋂
K = intK(A

⋂
K),

where clK(A
⋂
K) (resp., intK(A

⋂
K)) denotes the closure (resp., interior) of A

⋂
K in K. A

set-valued mapping T : X → 2Y is transfer compactly open valued on X (see [17]) if for
each x ∈ X and y ∈ T(x), there exists x′ ∈ X such that y ∈ cint T(x′). Let Ai (i = 1, . . . , m) be
transfer compactly open valued, then

⋂m
i=1 cintAi = cint

⋂m
i=1Ai. It is clear that each transfer

open valued correspondence is transfer compactly open valued. The inverse is not true in
general.

The definition of FC-space and the class B(Y,X) of better admissible mapping were
introduced by Ding in [8]. Note that the class B(Y,X) of better admissible mapping includes
many important classes of mappings, for example, the class B(Y,X) in [18], Uk

c (Y,X) in [19]
and so on as proper subclasses. Now we introduce the following definition.

Definition 2.1. An FC-space (Y, ϕN) is said to be an CFC-space if for each N ∈ 〈Y〉, there
exists a compact FC-subspace LN of Y containing N.

(Y, ϕN) be a G-convex space, let the notion of CG-convex space was introduced by
Ding in [4].

Lemma 2.2 ([8]). Let I be any index set. For each i ∈ I, let (Yi, ϕNi) be an FC-space, Y =
∏

i∈IYi

and ϕN =
∏

i∈IϕNi . Then (Y, ϕN) is also an FC-space.

Let X be a topological space, and let I be any index set. For each i ∈ I, let (Yi, ϕNi)i∈I
be an FC-space, and let Y =

∏
i∈IYi such that (Y, ϕN) is an FC-space defined as in Lemma 2.2.
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Let F ∈ B(Y,X) and for each i ∈ I, let Ai : X → 2Yi be a set-valued mapping. For each i ∈ I,

(1) Ai : X → 2Yi is said to be a generalized GB-mapping if

(a) for each N = {y0, . . . , yn} ∈ 〈Y〉 and {yi0 , . . . , yik} ⊂ N, F(ϕN(Δk))⋂
(
⋂k

j=0 cintA
−1
i (πi(yij ))) = ∅, where πi is the projection of Y onto Yi and

Δk = co({eij : j = 0, . . . , k});
(b) A−1

i (yi) = {x ∈ X : yi ∈ Ai(x)} is transfer compactly open in Yi for each yi ∈ Yi;

(2) Ax,i : X → 2Yi is said to be a generalized GB-majorant of Ai at x ∈ X if Ax,i is a
generalized GB-mapping and there exists an open neighborhood N(x) of x in X
such that Ai(z) ⊂ Ax,i(z) for all z ∈ N(x);

(3) Ai is said to be a generalized GB-majorized if for each x ∈ X with Ai(x)/= ∅, there
exists a generalized GB-majorant Ax,i of Ai at x, and for any N ∈ 〈{x ∈ X :
Ai(x)/= ∅}〉, the mapping

⋂
x∈NA−1

x,i is transfer compactly open in Yi;

(4) Ai is said to be a generalized GB-majorized if for each x ∈ X, there exists a
generalized GB-majorant Ax,i of Ai at x.

Then {Ai}i∈I is said to be a family of generalized GB-mappings (resp., GB-majorant
mappings) if for each i ∈ I, Ai : X → 2Yi is a generalized GB-mapping (resp., GB-majorant
mapping).

If for each i ∈ I, let (Yi, ϕNi) be a G-convex space, a family of GB-mappings (resp., GB-
majorant mappings) were introduced by Ding in [4]. Clearly, each family of generalized GB-
mappings must be a family of generalized GB-majorant mappings. If F = S is a single-valued
mapping and Ai(x) is an FC-subspace of Yi for each x ∈ X, then condition yi /∈Ai(S(y)) for
each y ∈ Y implies that condition (a) in (1) holds. Indeed, if (a) is false, then there exist N =
{y0, . . . , yn} ∈ 〈Y〉, {yi0 , . . . , yik} ⊆ N, and y ∈ ϕN(Δk) such that F(y) = Sy ∈ ⋂k

j=0A
−1
i (πi(yij ))

and hence πi(yij ) ∈ Ai(Sy) for each j = 0, . . . , k. It follows from y ∈ ϕN(Δk) that πi(y) ∈
(ϕNi(Δk))whereNi = πi(N). It follows from Ai(Sy) being an FC-subspace of Yi that πi(y) ∈
(ϕNi(Δk)) ⊂ Ai(Sy) which contradicts condition yi /∈Ai(S(y)) for each y ∈ Y . Hence each
LS-mapping (resp., LS-majorant mapping) introduced by Deguire et al. (see [2, page 934])
must be a generalized GB-mapping (resp., GB-majorant mapping). The inverse is not true in
general.

3. Maximal Elements

In order to obtain our main results, we need the following lemmas.

Lemma 3.1 ([3]). Let X and Y be topological spaces, let K be a nonempty compact subset of X, and
let G : X → 2Y be a set-valued mapping such that G(x)/= ∅ for each x ∈ K. Then the following
conditions are equivalent:

(1) G have the compactly local intersection property;

(2) for each y ∈ Y , there exists an open subset Oy of X (which may be empty) such that
Oy
⋂
K ⊂ G−1(y) and K =

⋃
y∈Y (Oy

⋂
K);

(3) there exists a set-valued mapping F : X → 2Y such that for each y ∈ Y, F−1(y) is open or
empty in X, F−1(y)

⋂
K ⊂ G−1(y), ∀y ∈ Y, and K =

⋃
y∈Y (F

−1(y)
⋂
K);
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(4) for each x ∈ K, there exists y ∈ Y such that x ∈ cintG−1(y)
⋂
K and K =

⋃
y∈Y (cintG

−1(y)
⋂
K) =

⋃
y∈Y (G

−1(y)
⋂
K);

(5) G−1 : Y → 2X is transfer compactly open valued on Y .

Lemma 3.2 ([8]). Let X be a topological space, and let (Y, ϕN) be an FC-space, F ∈ B(Y,X) and
A : X → 2Y such that

(i) for each N = {y0, . . . , yn} ∈ 〈Y〉 and for each {yi0 , . . . , yik} ⊆ N,

F
(
ϕN(Δk)

)⋂
⎛

⎝
k⋂

j=0

cintA−1
(
yij

)
⎞

⎠ = ∅, (3.1)

(ii) A−1 : Y → 2X is transfer compactly open valued;

(iii) there exists a nonempty set Y0 ⊂ Y and for each N = {y0, . . . , yn} ∈ 〈Y〉, there exists a
compact FC-subspace LN of Y containing Y0 ∪N such that K =

⋂
y∈Y0

(cintA−1(y))c is
empty or compact in X, where (cintA−1(y))c denotes the complement of cintA−1(y).

Then there exists a point x̂ ∈ X such that A(x̂) = ∅.

Theorem 3.3. Let X be a topological space, letK be a nonempty compact subset ofX, and let (Y, ϕN)
be an FC-space, F ∈ B(Y,X) and A : X → 2Y be a generalized GB-mapping such that

(i) for each N = {y0, . . . , yn} ∈ 〈Y〉, there exists a compact FC-subspace LN of Y containing
N such that for each x ∈ X \K,LN

⋂
cintA(x)/= ∅.

Then there exists a point x̂ ∈ K such that A(x̂) = ∅.

Proof. Suppose that A(x)/= ∅ for each x ∈ X. Since A is a generalized GB-mapping, A−1 is
transfer compactly open valued. By Lemma 3.1, we have

K =
⋃

y∈Y

(
cintA−1(y

)⋂
K
)
. (3.2)

Since K is compact, there exists a finite set N = {yo, . . . , yn} ∈ 〈Y〉 such that

K =
n⋃

i=0

(
cintA−1(yi

)⋂
K
)
. (3.3)

By condition (i) and F ∈ B(Y,X), there exists a compact FC-subspace LN of Y containing N
and F(LN) is compact in X, and hence we have

F(LN) =
⋃

y∈LN

(
cintA−1(y

)⋂
F(LN)

)
. (3.4)

By using similar argument as in the proof of Lemma 3.2, we can show that there exists x̂ ∈ X
such that A(x̂) = ∅. Condition (i) implies that x̂ must be in K. This completes the proof.
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Remark 3.4. Theorem 3.3 generalizes in [4, Theorem 2.2] in the following several aspects:
(a) from G-convex space to FC-space without linear structure; (b) from GB-mappings to
generalized GB-mappings.

Theorem 3.5. Let X be a topological space, and let (Y, ϕN) be an FC-space. Let F ∈ B(Y,X) and
A : X → 2Y be a generalized GB-majorized mapping such that

(i) there exists a paracompact subset E of X such that {x ∈ X : A(x)/= ∅} ⊂ E;

(ii) there exists a nonempty set Y0 ⊂ Y and for each N = {y0, . . . , yn} ∈ 〈Y〉, there
exists a compact FC-subspace LN of Y containing Y0 ∪ N such that the set K =
⋂

y∈Y0
(cintA−1(y))c is empty or compact.

Then there exists a point x̂ ∈ X such that A(x̂) = ∅.

Proof. Suppose that A(x)/= ∅ for each x ∈ X. Since A is a generalized GB-majorized, for each
x ∈ X, there exists an open neighborhood N(x) of x in X and a generalized GB-mapping
Ax : X → 2Y such that

(a) A(z) ⊂ Ax(z) for each z ∈ N(x),

(b) for each N = {y0, . . . , yn} ∈ 〈Y〉 and {yi0 , . . . , yik} ⊆ N, F(ϕN(Δk))⋂
(
⋂k

j=0 cintA
−1
x (yij )) = ∅,

(c) A−1
x is transfer compactly open in Y ,

(d) for anyN ∈ 〈{x ∈ X : A(x)/= ∅}〉, the mapping
⋂

x∈NA−1
x is transfer compactly open

in X.

Since A(x)/= ∅ for each x ∈ X, it follows from condition (i) that X = {x ∈ X : A(x)/= ∅} = E is
paracompact. By Dugundji in [20, Theorem VIII.1.4], the open covering {N(x) : x ∈ X} has
an open precise locally finite refinement {O(x) : x ∈ X}, and for each x ∈ X,O(x) ⊂ N(x)
since X is normal. For each x ∈ X, define a mapping Bx : X → 2Y by

Bx(z) =

⎧
⎨

⎩

Ax(z), if z ∈ O(x),

Y, if z ∈ X \O(x).
(3.5)

Then for each y ∈ Y , we have

B−1
x

(
y
)
=
{
z ∈ O(x) : y ∈ Ax(z)

}⋃{
z ∈ X \O(x) : y ∈ Y

}

=
(
A−1

x

(
y
)⋂

O(x)
)⋃(

X \O(x)
)

=
[
A−1

x

(
y
)⋃(

X \O(x)
)]⋂[

O(x)
⋃(

X \O(x)
)]

= A−1
x

(
y
)⋃

X \O(x).

(3.6)

Hence B−1
x (y) is transfer compactly open in Y by (c).

Now define a mapping B : X → 2Y by

B(z) =
⋂

x∈X
Bx(z), ∀z ∈ X. (3.7)
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We claim that B is a generalized GB-mapping and A(z) ⊂ B(z) for each z ∈ X. Indeed, for
any nonempty compact subset C of X and each y ∈ Y with B−1(y) ∩ C/= ∅, we may take any
fixed u ∈ B−1(y) ∩C. Since {O(x) : x ∈ X} is locally finite, there exists an open neighborhood
Vu of u in X such that {x ∈ X : Vu ∩O(x)/= ∅} = {x1, . . . , xn} is a finite set. If x /∈ {x1, . . . , xn},
then ∅ = Vu ∩ O(x) = Vu ∩ O(x), and hence Bx(z) = Y for all z ∈ Vu which implies that
B(z) =

⋂
x∈XBx(z) =

⋂n
i=1Bxi(z) for all z ∈ Vu. It follows that for each y ∈ Y ,

B−1(y
)
=
{
z ∈ X : y ∈ B(z)

} ⊃ {z ∈ Vu : y ∈ B(z)
}

=

{

z ∈ Vu : y ∈
n⋂

i=1

Bxi(z)

}

= Vu

⋂
(

n⋂

i=1

B−1
xi

(
y
)
)

.
(3.8)

For any nonempty compact subset C of X and each y ∈ Y , if v ∈ Vu ∩ (
⋂n

i=1B
−1
xi
(y))
⋂
C ⊂

B−1(y)
⋂
C. Since Vu is open in X, it follows from (d) that there exists y′ ∈ Y such that

v ∈ Vu

⋂
cint

(
n⋂

i=1

B−1
xi

(
y′)
)
⋂

C = cint

(

Vu

⋂ n⋂

i=1

B−1
xi

(
y′)
)
⋂

C

= cintB−1(y′)⋂C.

(3.9)

This proves that B−1 : Y → 2X is transfer compactly open valued in Y .
On the other hand, for each N = {y0, . . . , yn} ∈ 〈Y〉 and N1 = {yi0 , . . . , yik} ⊆ N, if t ∈

⋂k
j=0 cintB

−1(yij ), then N1 ⊂ cintB(t). Since there exists x0 ∈ X such that t ∈ O(x0) and N1 ⊂
cintB(t) ⊂ cintBx0(t) = cintAx0(t), we have t ∈ ⋂k

j=0 cintA
−1
x0
(yij ), and hence t /∈F(ϕN(Δk)) by

(b). Hence we have

F
(
ϕN(Δk)

)⋂
⎛

⎝
k⋂

j=0

cintB−1
(
yij

)
⎞

⎠ = ∅ (3.10)

for each N = {y0, . . . , yn} ∈ 〈Y〉 and N1 = {yi0 , . . . , yik} ⊆ N. This shows that B is a
generalized GB-mapping.

For each z ∈ X, if y /∈B(z), then there exists an x0 ∈ X such that y /∈Bx0(z) = Ax0(z)
and z ∈ O(x0) ⊂ N(x0). It follows from (a) that y /∈A(z). Hence we have A(z) ⊂ B(z)
for each z ∈ X. By condition (ii), there exists a nonempty set Y0 ⊂ Y and for each N =
{y0, . . . , yn} ∈ 〈Y〉, there exists a compact FC-subspace LN of Y containing Y0 ∪N such that
the set K =

⋂
y∈Y0

(cintA−1(y))c is empty or compact. Note that A(z) ⊂ B(z) for each z ∈ X

implies (cintB−1(y))c ⊂ (cintA−1(y))c for each y ∈ Y . Hence K′ =
⋂

y∈Y0
(cintB−1(y))c ⊂ K

andK′ is empty or compact. By Lemma 3.2, there exists a point x ∈ X such that B(x) = ∅, and
hence A(x) = ∅ which contradicts the assumption that A(x)/= ∅ for each x ∈ X. Therefore,
there exists x̂ ∈ X such that A(x̂) = ∅.
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Theorem 3.6. Let X be a topological space, let K be a nonempty compact subset of X and (Y, ϕN) be
an FC-space. Let F ∈ B(Y,X) and A : X → 2Y be a generalized GB-majorized mapping such that

(i) there exists a paracompact subset E of X such that {x ∈ X : A(x)/= ∅} ⊂ E;

(ii) for each N = {y0, . . . , yn} ∈ 〈Y〉, there exists a compact FC-subspace LN of Y containing
N such that for each x ∈ X \K,LN

⋂
cintA(x)/= ∅.

Then there exists x̂ ∈ K such that A(x̂) = ∅.

Proof. Suppose that A(x)/= ∅ for each x ∈ X. By using similar argument as in the proof of
Theorem 3.5, we can show that there exists a generalized GB-mapping B : X → 2Y such that
A(x) ⊂ B(x) for each x ∈ X. It follows from condition (ii) that for each x ∈ X \ K,LN ∩
cintB(x)/= ∅. By Theorem 3.3, there exists x ∈ K such that B(x) = ∅, and hence A(x) = ∅
which contradicts the assumption that A(x)/= ∅ for each x ∈ X. Therefore, there exists x̂ ∈ X
such that A(x̂) = ∅. Condition (ii) implies x̂ ∈ K. This completes the proof.

Remark 3.7. Theorem 3.5 generalizes [4, Theorem 2.3] in several aspects: Section 1(1) from
G-convex space to FC-space without linear structure; Section 1(2) from a GB-majorized
mapping to a generalized GB-majorized mapping; Section 1(3) condition (ii) of Theorem 3.5
is weaker than condition (ii) of [4, Theorem 2.3]. If X is compact, condition (i) is satisfied
trivially. If X = (Y, ϕN) is a compact FC-space, then by letting K = X = Y = LN for
all N ∈ 〈X〉, conditions (i) and (ii) are satisfied automatically. Theorem 3.6 unifies and
generalizes Shen’s [14, Theorem 2.1, Corollary 2.2 and Theorem 2.3] in the following ways:
Section 2(1) from CH-convex space to FC-space without linear structure; Section 2(2) from
H-majorized correspondences to generalized GB-majorized mapping; Section 2(3) condition
(ii) of Theorem 3.6 is weaker than that in the corresponding results of Shen in [14].
Theorem 3.6 also generalizes in [4, Theorem 2.4], Ding in [15, Theorem 5.3], and Ding and
Yuan in [16, Theorem 2.3] in several aspects.

Corollary 3.8. Let X be a compact topological space, and let (Y, ϕN) be an CFC-space. Let F ∈
B(Y,X) and A : X → 2Y be a generalized GB-majorized mapping. Then there exists a point x̂ ∈ X
such that A(x̂) = ∅.

Proof. The conclusion of Corollary 3.8 follows from Theorem 3.6 with E = K = X.

Corollary 3.9. Let X be a topological space, and let (Y, ϕN) be an CFC-space. Let F ∈ B(Y,X) be a
compact mapping andA : X → 2Y be a generalized GB-majorized mapping. Then there exists a point
x̂ ∈ X such that A(x̂) = ∅.

Proof. Since F is a compact mapping, there exists a compact subset X0 of X such that F(Y ) ⊂
X0. The mappingA|X0 : X0 → 2Y be the restriction ofA toX0. It is easy to see thatA|X0

is also
generalized GB-majorized. By Corollary 3.8, there exists x̂ ∈ X0 such that A|X0

(x̂) = A(x̂) =
∅.

Remark 3.10. Corollary 3.8 generalizes Deguire et al. [2, Theorem 1] in the following ways:
(1.1) from a convex subset of Hausdorff topological vector space to an FC-space without
linear structure; (1.2) from a LS-majorized mapping to a generalized GB-majorized mapping.
Corollary 3.8 also generalizes [4, Corollary 2.3] from CG-convex space to CFC-space
and from a GB-majorized mapping to a generalized GB-majorized mapping. Corollary 3.9
generalizes [2, Theorem 2] and [4, Corollary 2.4] in several aspects.
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Theorem 3.11. Let X be a topological space, and let I be any index set. For each i ∈ I, let (Yi, ϕNi)
be an FC-space, and let Y =

∏
i∈IYi such that (Y, ϕN) is an FC-space defined as in Lemma 2.2. Let

F ∈ B(Y,X) such that for each i ∈ I,

(i) let Ai : X → 2Yi be a generalized GB-majorized mapping;

(ii)
⋃

i∈I{x ∈ X : Ai(x)/= ∅} =
⋃

i∈I cint{x ∈ X : Ai(x)/= ∅};
(iii) there exists a paracompact subset Ei of X such that {x ∈ X : Ai(x)/= ∅} ⊂ Ei;

(iv) there exists a nonempty set Y0 ⊂ Y and for each N = {y0, . . . , yn} ∈ 〈Y〉, there exists a
compact FC-subspace LN of Y containing Y0

⋃
N such that the set

⋂
y∈Y0

ccl{x ∈ X : ∃i ∈
I(x), πi(y)/∈Ai(x)} is empty or compact, where I(x) = {i ∈ I : Ai(x)/= ∅}.

Then there exists x̂ ∈ X such that Ai(x̂) = ∅ for each i ∈ I.

Proof. For each x ∈ X, I(x) = {i ∈ I : Ai(x)/= ∅}. Define A : X → 2Y by

A(x) =

⎧
⎪⎨

⎪⎩

⋂

i∈I(x)
π−1
i (Ai(x)), if I(x)/= ∅,

∅, if I(x) = ∅.
(3.11)

Then for each x ∈ X,A(x)/= ∅ if and only if I(x)/= ∅. Let x ∈ X withA(x)/= ∅, then there exists
j0 ∈ I(x) such thatAj0(x)/= ∅. By condition (ii), there exists i0 ∈ I(x) such that x ∈ cint{x ∈ X :
Ai0(x)/= ∅}. Since Ai0 is generalized GB-majorized, there exist an open neighborhoodN(x) of
x in X and a generalized GB-majorant Ax,i0 of Ai0 at x such that

(a) Ai0(z) ⊂ Ax,i0(z) for all z ∈ N(x),

(b) for each N = {y0, . . . , yn} ∈ 〈Y〉 and {yr0 , . . . , yrk} ⊂ N,

F
(
ϕN(Δk)

)⋂
⎛

⎝
k⋂

j=0

cintA−1
x,i0

(
πi0

(
yrj

))
⎞

⎠ = ∅, (3.12)

(c) A−1
x,i0

: Yi → 2X is transfer compactly open in Yi,

(d) for each N ∈ 〈{x ∈ X : Ai0(x)/= ∅}〉, the mapping
⋂

x∈NA−1
x,i0

is transfer compactly
open in Yi.

Without loss of generality, we can assume that N(x) ⊂ cint{x ∈ X : Ai0(x)/= ∅}. Hence,
Ai0(z)/= ∅ for each z ∈ N(x). Define Bx,i0 : X → 2Y by

Bx,i0(z) = π−1
i0
(Ax,i0(z)), ∀z ∈ X. (3.13)

We claim that Bx,i0 is a generalized GB-majorant of A at x. Indeed, we have

(a′) for each z ∈ N(x), A(z) =
⋂

i∈I(z)π
−1
i (Ai(z)) ⊂ π−1

i0
(Ai0(z)) ⊂ π−1

i0
(Ax,i0(z)) =

Bx,i0(z),
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(b′) for each N = {y0, . . . , yn} ∈ 〈Y〉 and M = {yr0 , . . . , yrk} ⊂ N, if u ∈
⋂k

j=0 cintB
−1
x,i0

(πi0(yrj )), then M ⊂ cintBx,i0(u). It is easy to see that πi0(M) ⊂
cintπi0(Bx,i0(u)), so that πi0(M) ⊂ cintAx,i0(u), i.e., u ∈ ⋂k

j=0 cintA
−1
x,i0

(πi0(yrj )) and
hence u/∈F(ϕN(Δk)) by (b). It follows that

F
(
ϕN(Δk)

)⋂
⎛

⎝
k⋂

j=0

cintB−1
x,i0

(
πi0

(
yrj

))
⎞

⎠ = ∅, (3.14)

(c′) for each y ∈ Y , we have that

B−1
x,i0

(
y
)
= A−1

x,i0

(
πi0

(
y
))

(3.15)

is transfer compactly open in Y by (c).

Hence Bx,i0 is a generalized GB-majorant of A at x.
For each N ∈ 〈{x ∈ X : Ai0(x)/= ∅}〉 and y ∈ Y , by (3.15), we have

⋂

x∈N
B−1
x,i0

(
y
)
=
⋂

x∈N
A−1

x,i0

(
πi0

(
y
))
. (3.16)

It follows from (d) that
⋂

x∈NB−1
x,i0

is transfer compactly open in Y .
Hence A : X → 2Y is generalized GB-majorized. By condition (iii), we have

{x ∈ X : A(x)/= ∅} ⊂ {x ∈ X : Ai0(x)/= ∅} ⊂ Ei0 . (3.17)

By condition (iv), there exists a nonempty set Y0 ⊂ Y and for each N = {y0, . . . , yn} ∈ 〈Y〉,
there exists a compact FC-subspace LN of Y containing Y0

⋃
N. By the definition of A, for

each y ∈ Y0, we have

A−1(y
)
=
{
x ∈ X : y ∈ A(x)

}
=

⎧
⎨

⎩
x ∈ X : y ∈

⋂

i∈I(x)
π−1
i (Ai(x))

⎫
⎬

⎭

=

⎧
⎨

⎩
x ∈ X : πi

(
y
) ∈

⋂

i∈I(x)
(Ai(x))

⎫
⎬

⎭
.

(3.18)

It follows from condition (iv) that K =
⋂

y∈Y0
(cintA−1(y))c =

⋂
y∈Y0

ccl{x ∈ X : ∃i ∈
I(x), πi(y)/∈Ai(x)} is empty or compact and hence all conditions of Theorem 3.5 are satisfied.
By Theorem 3.5, there exists x̂ ∈ X such that A(x̂) = ∅ which implies I(x̂) = ∅, that is,
Ai(x̂) = ∅ for each i ∈ I.
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Theorem 3.12. Let X be a topological space, and let I be any index set. For each i ∈ I, let (Yi, ϕNi) be
an CFC-space, and let Y =

∏
i∈IYi. Let F ∈ B(y, x) be a compact mapping such that for each i ∈ I,

(i) let Ai : X → 2Yi be a generalized GB-majorized mapping;

(ii)
⋃

i∈I{x ∈ X : Ai(x)/= ∅} =
⋃

i∈I cint{x ∈ X : Ai(x)/= ∅}.

Then there exists x̂ ∈ X such that Ai(x̂) = ∅ for each i ∈ I.

Proof. Since for each i ∈ I, let (Yi, ϕNi) be an CFC-space, then for each Ni ∈ 〈Yi〉, there exists
a compact FC-subspace LNi of Yi containing Ni. Let LN =

∏
i∈ILNi and N =

∏
i∈INi ∈ 〈Y〉,

then LN is a compact FC-subspace of Y for eachN ∈ 〈Y〉, LN is a compact FC-subspace of Y
containing N. Hence (Y, ϕN) is also an CFC-space.

For each x ∈ X, I(x) = {i ∈ I : Ai(x)/= ∅}. Define A : X → 2Y

A(x) =

⎧
⎪⎨

⎪⎩

⋂

i∈I(x)
π−1
i (Ai(x)), if I(x)/= ∅,

∅, if I(x) = ∅.
(3.19)

Then for each x ∈ X,A(x)/= ∅ if and only if I(x)/= ∅. By using similar argument as in the proof
of Theorem 3.11, we can show that A : X → 2Y is a generalized GB-majorized mapping.
By Corollary 3.9, there exists x̂ ∈ X such that A(x̂) = ∅, and so I(x̂) = ∅. Hence, we have
Ai(x̂) = ∅ for each i ∈ I.

Theorem 3.13. Let X be a topological space, let K be a nonempty compact subset of X, and let I be
any index set. For each i ∈ I, let (Yi, ϕNi) be an FC-space, and let Y =

∏
i∈IYi such that (Y, ϕN) is

an FC-space defined as in Lemma 2.2. Let F ∈ B(Y,X) such that for each i ∈ I, Ai : X → 2Yi be a
generalized GB-mapping such that

(i) for each i ∈ I and Ni ∈ 〈Yi〉, there exists a compact FC-subspace LNi of Yi containing Ni

and for each x ∈ X \K, there exists i ∈ I satisfying LNi

⋂
cintAi(x)/= ∅.

Then there exists x̂ ∈ K such that Ai(x̂) = ∅ for each i ∈ I.

Proof. Suppose that the conclusion is not true, then for each x ∈ K, there exists i ∈ I such that
Ai(x)/= ∅. Since Ai is a generalized GB-mapping, A−1

i is transfer compactly open valued. By
Lemma 3.1, we have

K ⊂
⋃

i∈I

⋃

yi∈Yi

(
cintA−1

i

(
yi

))
. (3.20)

Since K is compact, there exists a finite set J ⊂ I such that for each j ∈ J , there exists Nj =
{y1

j , y
2
j , . . . , y

mj

j } ⊂ Yj with K ⊂ ⋃j∈J
⋃mj

k=1(cintA
−1
j (yk

j )). It follows that for each x ∈ K, there
exists a j ∈ J ⊂ I such that Nj

⋂
cintAj(x)/= ∅. We may take any fixed y0 = (y0

i )i∈I ∈ Y . For
each i ∈ I\J , letNi = {y0

i }. By condition (i), for each i ∈ I, there exists a compact FC-subspace
LNi of Yi containingNi and for each x ∈ X \K, there exists i ∈ I satisfying LNi

⋂
cintAi(x)/= ∅.

Hence for each x ∈ X, there exists i ∈ I such that LNi

⋂
cintAi(x)/= ∅. Let LN =

∏
i∈ILNi , then

LN is a compact FC-subspace of Y and hence it is also a compact CFC-space. LetX0 = F(LN),
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then X0 is compact in X. Define A′
i : X0 → 2LNi by A′

i(x) = LNi

⋂
Ai(x). For each yi ∈ LNi , we

have

(
A′

i

)−1(
yi

)
=
{
x ∈ X0 : yi ∈ LNi

⋂
Ai(x)

}
= X0

⋂
A−1

i

(
yi

)
. (3.21)

Since A−1
i (yi) is transfer compactly open valued in Yi for each i ∈ I and yi ∈ Yi, so that

we claim that (A′
i)
−1(yi) is transfer open valued in LNi . Noting that each Ai is a generalized

GB-mapping, for eachM = {y0, . . . , ym} ∈ 〈LN〉 ⊂ 〈Y〉 andM1 = {yr0 , . . . , yrk} ⊂ M, we have

F
(
ϕM(Δk)

)⋂
⎛

⎝
k⋂

j=0

cint
(
A′

i

)−1(
πi

(
yrj
))
⎞

⎠ = F
(
ϕM(Δk)

)⋂
⎛

⎝
k⋂

j=0

cint
(
X0

⋂
A−1

i

(
πi

(
yrj
)))
⎞

⎠

⊂ F
(
ϕM(Δk)

)⋂
⎛

⎝
k⋂

j=0

cintA−1
i

(
πi

(
yrj
))
⎞

⎠ = ∅,

(3.22)

where Δk = co({eij : j = 0, . . . , k}).
Hence for each i ∈ I,A′

i is a generalized GB-mapping and hence it is also a generalized
GB-majorized mapping. All conditions of Corollary 3.8 are satisfied. By Corollary 3.8, there
exists x ∈ X0 ⊂ X such that A′

i(x) = LNi

⋂
Ai(x) = ∅ for each i ∈ I, so we have

LNi

⋂
cintAi(x) ⊂ LNi

⋂
Ai(x) = A′

i(x) = ∅ which contradicts the fact that for each x ∈ X \K
there exists i ∈ I such that LNi

⋂
cintAi(x)/= ∅. Therefore, there exists x̂ ∈ K such that

Ai(x̂) = ∅ for each i ∈ I.

Remark 3.14. Theorem 3.11 generalizes [4, Theorem 2.5] in several aspects. Theorem 3.12
improves [2, Theorem 3] from convex subsets of topological vector spaces to CFC-spaces
without linear structure and from a family of LS-majorized mappings to the family of
generalized GB-majorized mappings. Theorem 3.13 generalizes [4, Theorem 2.6] in several
aspects: (1.1) from G-convex spaces to FC-spaces without linear structure; (1.2) from a GB-
mapping to a generalized GB-mapping; (1.3) condition (i) of Theorem 3.13 is weaker than
condition (i) of [4, Theorem 2.6]. Theorem 3.13 improves and generalizes [2, Theorem 7]
in the following ways: (2.1) from nonempty convex subsets of Hausdorff topological vector
spaces to FC-space without linear structure; (2.2) from the family of LS-majorized mappings
to the family of generalized GB-majorized mappings.
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